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Abstract

During the twenty “golden years” of Inverse Problems after World War
2, the most important ideas appeared in the field of linear inverse prob-
lems and that of inverse scattering problems, which give a taste of how
nonlinearity ean modify an inverse problem. Although both were closely
connected to problems of real physics, both could be given not only nu-
merical analyses but also exact anal of how the information which is
contained in data can be disentangled | the art of doing it corresponds
to the most general meaning of the wopd “deconvolution”. We give here
a sketchy review of main ideas which appeared, main remarks, and main

- directions for future developments in the field of Inverse Scattering.

{Lecture given at University of California Los Angeles on october 16th
2003).

1 Imtroduction

“Solving” an Inverse Problem is discovering the information contained by
data. This process should be extended to all data that may appear in the
Problem. As so, it must rely on good methods of analysis. The first cases where

— —such methods were derived were linear inverse problems

Mz =y ' ' (1.1)

In (1.1), for instance, z € K", M is a real matrix m X n, ¥y € K™ and measures
of y are data. As it is well-known, a good method (1.2) of analysis is the
so-called “singular value decomposition” (SVD), whose key is the spectrum of
M*M, made of non negative eigenvalues 7.

M*Muv; = M*oquy = oy, (1.2)

The problem (1.1), or preferably the problem M*Mzx = M™y, can be trans-
formed into




S§TSz' =|8Ty' (1.3)
where § is a (m x n) diagonal matrix, '
¥, by rotation in R, resp. B™, of the coordinate systems into the principal
axes systems, made of the normalised eigenvectors vy, resp. us. The elements
on the diagonal of S7S are the 2. Hence the problem (1.1) is clearly analysed
on the equation (1.3) : no information on the corresponding components of z'
does correspond to a vanishing o7, and we can get only little information on
those Which correspond to small ¢¢ /a1, in|addition to a large sensivity to errors.
With some more work, most linear inverse problems can be fully analysed, and
stable generalised solutions are obtained by shunting small o, for instance the
Tikhonov one, ¥which amounts to solving '

, resp. y', are obtained from T, resp.

(STS + €)' = 8Ty (1.4)
Thus, our study shows that an essential point in linear problems analysis is
the existence of a spectrum made of real eigenvalues as much as the problem

linearity itself. This idea is also supported by the “ideal case” of a Fourier

transform in L?(R), defining the direct problem f — F :
+oo |
F(\) = / e f(r)de (1.5)
~00
Its inverse is
+o0 |
f(z) = f 2% P(2)dA (1.6)

and since Parseval theorem guarantees th
F give equal errors on parameters f. Thei
This fact is related to the completeness 1
which are “eigenfunctions” of the operato
another sort of uncertainty comes in : 2
spectral window, say, |A| < Ag. The inv
solutions unless imposing a priori informs
by assuming F' equal to zero beyond Ag (th
or by assuming f equal to zero outside of

mt norm are conserved, errors on data
nverse problem is perfectly well posed.
n L2(R) of the functions exp [2irAz),
T —dl:,. However, in optical imaging,
i is structurally known only inside a
erse problem has an infinity of exact
ation restore uniqueness - for instance
e inverse problem remains well posed),
a compact support : in this case, F' is

an entire function completely determined
but constructible, outside of it, only by
stability. Physically this case is called the
power is, in fact, limited by the signal / ¢

Many problems can be liriearised for
direct linear problems were already well

by its exact values inside the window
analytic continuation, to the price of
superresolving case and the resolving

srror ratio.

some range of their parameters, and

understood in the nineteenth century.




Small size inverse linear problems were we
1950, but of course the development of ¢

Il understood and easy to work out in
puters made their study easier and

that of (very) large size problems possible - arising new problems of numerical

analysis.

These few remarks were a preamble citing some ideas afforded by studies
of linear inverse problems. Now we go to our subject, showing how inverse
scattering introduced nonlinearity, arising new ideas.

2 Scattering

Suppose we know perfectly well an “i
* they are emitted from a source into a set
and collectively called a “target”. After in
into outgoing waves or particles called th
called “Scattering”.

Obviously much information on the p
processes - in fact almost all informatio
explains why scattering problems bec
World War I1, where they had also proved
(radar, etc)(® first notice that in imagin
scattering is essential but most inverse p!

B.IIII

cident” field of waves or particles, as
.of obstacles, interacting with them,
iteraction the incident field is turned
e “emergent” field, this process being

hysical world comes from scattering
available in* particle physics. This
of outstanding importance) after
their interest in many useful devices

g, and particularly medical imaging,

oblems can be linearised. Opposite

cases are geophysical soundings which meet so complicated structures that the
example we shall see now much too [simples. Now, for physical reasons,
several wave equations are linear and involve a Laplacean on space variables, so
that the Schrédinger equation in the frequency domain is inintermediate cases

a reasonably general example to show ho

AY (k,x) + (k2 -V

where ¥ is the wave function, V' is a real fu
k is the wave number (k> =k - k), and k =
italic for their length, hats for elements

decreases fast enough at co, we can write | down 7

¥ (k,x) = exp [ik x] + 27! exp[ikz] F (E,E, k) +o(z™)

problems are posed. It reads :

x)) ¥ (k,x) =0 (2.1)

nction of x € B3, called the potential,

k/k (bold letters are used for vectors,
f the unit sphere). Provided that V

(2.2)

which shows an incident plane wave plus a scattered wave. F is called the
scattering amplitude, and is often used to represent the data in inverse problems,
although its determination from real data is usually indirect and always with
uncertainties. The simplest case is V with spherical symmetry, (i.e. depending
only on 7}, which gives an axisymmetric scattering around the incident direction,
that we choose as the polar axis. Thus




¥(k,r,cosf) = Z(2£+
£=0

where the “partial wave” 1,(k,r) is the
equation”

d2,

gzt ¥ -V(r)~¢

which reduces for V =0 to the spherical I

ue(k,r) = (%kr)

itr Ly (r) Py (cos 8) (2.3)

regular splution of the “partial wave _

As r — 00, Yy i3 asymptotic to a trigonometric function :

wi(k,7) = Ag(k)sin (kr i

and the scattering amplitude F(k,cos#d)
b2(k)

o0
F(k,cos8) = k™1 (2 +1
=0

" Hence, because of the spherical symmetry

(£+1)r e =0 (2.4)
Bessel function
1/2

Tery (k1) (2.5)
L eg- + 6¢(k)) +0(1) (2.6)

is given in terms of the phase-shifts

'k} gin §,(k) Py(cos ) (2.7

v, the scattering problem becomes an

explicit combination of one-dimensional problems.

The scattering problem may also be on
(this case has applications as so in seve
acoustics and electromagnetics).

e-dimensional from its very definition
ral problems of real physics, e.g. in

—-Agaim, the simplest-form is (2.1), which reads then
——d—":-+V(z) Fk,z) = K* f(k,z) (2.8)
dmz H ? .
We assume V € L}(R) :
+oo
j (1 +|al) [V(#)] dz < 00 2.9)

and define the so called “Jost solutions”
behavior ; respectively

fE(k,z) of (2.8) by their asymptotic




fi(k,z) ~ e:l:ik::

They give the definition of scattering coeffic

(reflection on the right, resp. left)

T(k)f~ (k,z) = f*(=k,2

We can study‘® as a direct problem V — (7
V (The problem on the left would be the s

hs = — +oo (2.10)

rients T'(k) (transmission) and R* (k)
Y+ RAOF D @1

", R*) and inverse problem (T, R*) —
ymmetric one).

3 Extension of the problem and History

The scheme we presented above on th
equation can be extended with nonessent
other scattering problems in quantum mechanics but also in acoustics and elec-
tromagnetics (it is particularly useful for radar, lidar, sonor, etc soundings), and
even in more exotic problems. This explains the history of scattering studies.
Shortly after World War 2, the first ones were either approximated or confined
to one-dimensional cases, which were given complete mathematical analysis,
the main concern being whether it is possible or not. to get the whole infor-
mation on microphysics by means of scattering experiments. The focus was
progressively modified in the seventies and both in quantum mechanics and
in the other fields, numerical analyses became dominant. Meanwhile, a com-
pletely unexpected field of research had appeared, also called Inverse Scattering
{Method or Transform), where solutions of one dimensional inverse scattering
problems are applied to solving special nonlinear partial differential equations.
After 1980, this field became more and more autonomous, quantum scattering
became less and less studied, three dimensional scattering problems became the
main concern in acoustics and electromaghetics, creating new concepts. Those
corresponding to mathematical models will be studied in the present school by
D. Colton. I will go througtrapproximate and exact one-dimensional, reductions .
and try to show what new ideas they afforfled, what mathematical beauty they
created.

le simplest examples of Schridinger
ital complications to cover not only

We shall see in chapter 4 and chapter 5/one dimensional analyses of Gelfand-
Levitan-Marchenko kind as “extreme studies” justified by the geometry of the
scattering problem. A set of completely opposite “extreme studies” is given by
two kinds of reductions of the direct and nverse electromagnetic (or acoustic)
scattering problems, obtained either if ong parameter of the sounding is itself
extreme or if, in the conditions of sounding, the target can be characterised by
a finite set of parameters.

Examples of the first kind are the ap
tering and Physical Optics approximatiol

roximation known as Rayleigh scat-
n. In the Rayleigh scattering, it is




assumed that the wave length k~! is much larger that the scatterer charac-
teristic length, say a, so that one obtain| the results at ka — 0 by means of
electrostatic potential theory, and next orders involve powers of ka. Hence a
scatterer can be represented by monopoles, dipoles, multipoles, and this may
be convenient to study for instance scattering by a random distribution of smail
scatterers. In the othér extreme case, short wave lengths (compared to a) can
be consistent with a “physical optics” approximation, where studies of optical
imaging are useful. Some problems are thus reduced to Fourier transforms or
to tomographic scanning(® and solutions of the corresponding inverse problems
are well-known. In some way, one may say.that the direct and inverse problem
were linearised, but this is true only for ome formulas : actually the original
nonlinear problem was replaced by another one, with some linear correspon-
dences. Although these studies are appraximate, they were fruitful in Inverse
Theory because of their way of putting emphasis on the dominant aspects of
the object imageé correspondences. Many examples of reductions of the second
kind come from radar studies. In these studies, radars are industrial devices,
with only a small number of available freqTencies. Targets!”) are of complicated
shape, and their coverings are very important for energy radiating. Hence the
scattering is very difficult to study, but it is often possible to describe what
particular aspects of the target radiate miore or less energy. And one uses the
: results in designing the target, for minimizing the observed target cross section
‘ (SER), being understood that the illumination angle (the “aspect” of the tar-
get) can modify very much the result. In the same way, people who want to
detect the target will represent it by a number of parameters to be “observed”
in the radar images (their “signature”). In order to take advantage of all infor-
mation, polarimetry will also try to give a few parameters, etc, and the eternal
fight between the hunter and the huntediwill emphasize what can be call the
“physical parameters” observable by electromagnetic soundings. Emphasis on
this representing the object to be analysed by a set of “essential parameters” is
probably the best gift of this kind of study to Inverse Theory. In linear Inverse
Theory, a similar idea underlies the definition of the “degrees of freedom” in
a system. But in Inverse Scattering the selection of “essential parameters” is
more guided by physics than by mathematics and nowhere do we learn better
that for complicated, realistic, inverse problems, approaches combining physics
and mathematics are necessary. Both for the hunter and for the prey, modelling
becomes a dialog between selecting parameters and looking what information
they afford and how it can be identified. There are other inverse problems where
“egsential” parameters are selected on the basis of extreme properties only, e.g.
gravimetry, and all those where one privilegiates a kind of decisive modelling (i.e
enabling decisions without identifying all the parameters), but they rely more
on mathematics than physics.

4 Reductions of Inverse scattering Problems

Shortly after World War 2, most experiments of particle physics were able to




give only few phase-shifts, with small, valyes, say, dy{(k), 6;(k), and in a limited
range of k values. Expecting for a small phase-shift a small potential, one may
try the so-called Born approximate formula

Se(k) = -%f‘ fo " V) el 7 dr (4.1)

where m is the particle mass. For £ = 0, uy is sin kr and the formula is a Fourier
transform. Hence one expects that the only limitation for our knowledge of rV°
in (say) L1 (R*) (Bargmann class) or in L2 (R*) (another class of interest) is the
limitation on k values. That the conclusion is wrong was shown by Bargmann in ..
1949®)| who showed that several potentials V can fit the same phase-shift &, (k),
supposedly known exactly on Rt. One neéeds more information. In fact, there
are potentials V' for which the Schrédinger equation has solutions in L? {R?)
called bound states, and one needs the cortesponding informations. The surprise
generated by Bargmann'’s result was a trigger for studies of inverse problems in
quantum mechanics, and many other ones in mathematics, which made the
years between 1950 and 1965 the most frjitful ones®). However, although the
one-dimensional problem (2.8) came a few lyears later in History, we like it better
to explain on this example the same quedtions, both because they seem easier
to understand and because their consequences on Science were eventually more
important. ' .

Writing (2.8) and (2.11) for two potentials V and V, one can derive(®} the
exact formulas :

L RY(k) - Rt(k) _ ¥ . ~_' i
ZskW = /_m [V(x) . V(.'L‘)] F(k,2)f~(k,z)dz (42)

K I®) —Tk) _ [+ Sl _
e rwTE /_ - V@ - P@)] Pk ko (43)

Assume now V =0, so that T = 1,. Bt = 0, and assume also V “small”. It
follows from (4.3) and (4.2) that a linear {Born) approximation of the mapping
V — R* is described by the formula

2ik R* (k) ~ [+°° V(z)e 22 dz (4.4)

~—0Q

which suggests in turn the “linearised inverse formula”

Viz) = %:;/Mo kR*(k)e*** dk (4.5)

-0




for the linear operator D = —3‘9;’; + V, corresponding to the spectral value k2.

But let us look (2.8) more carefully. Eor fixed V, it is a spectral equation

More precisely, if V is attractive and belo

it has been shown that the spectrum o
set of numbers A for which (D — AI) is n¢
half axis (values A = k?) and a finite nuh
for which the operator D has an eigenfunc

s V(z_)] Yl

gs to L} (R) (see 2.9)
f the self adjoint operator D (i.e. the
bt inversible) is made of the positive

er of negative eigenvalues A; = ~&2,
tion ¥n in L(R) :

) = —kaYn() {4.6)

The ¥y, definition is achieved by notrna.hsmg it in LE(IR) Comparing to
(2.10), which holds for Im k > 0, we see that f¥* (ik,, z) is proportional to v,

FE (i, 2) = L, (2) (4.7)

Now, if instead of D' we were dealing wit.
R", we could associate to its eigenvalues J
thus make a basis in the image of M, such

h a symmetric real matrix acting on
~ orthonormal eigenvectors w,, and
that for any z € R"®, the effect of M

is represented as a sium of projections

ng .
Mm:ZAm< , Wy > Wy (4.8)

m=1

(mo is the rank). Similarly, let us define a“family of projections” as a function
E5 (A € R) with values in the orthogonal grojectors on the Hiibert space H and
such that

(a) Beoe =0, B =1

(b) A < u= (Va)(z € H) ({(E, — E») z) > 0)

(c) (V2)( € H)limgoyor ||Earez — Entll = |
With these definitions, if A is a self-adjoint opera.tor on H, domain D4, the

so-called “spectral theorem” says that there exists a family E) with the following
properties
(a) = belongs to D4 if and only if fj:: Md{Exz,z) < ©

(b) (vz, z € Da) (Ax = .[_ :° AdE,.x) | Az|? = f_ :o Azd(EA:c,a:)) (4.9)

It is readily seen that the first equality in (4.9) is nothing but the extension
to this general case of the formula (4.8), where a finite number of projectors
exist, so that dE\z reduces to a sum of Dirac measures. Now when these
results are written for our operator D, the family E, can be constructed by
means of the x,, and the C,, for the discrete spectrum and by means of R* (k)




for the continuous spectrum. It follows that knowing R (k) is not sufficient to
identify V. One also needs the informatipn related to the discrete spectrum !
As we see, a curious feature of this inverseproblem is that it is nonlinear but the
spectrum of a linear operator containing ithe. parameter (and not independent
of it as in linear inverse problems) is its key. But it remains the problem of
constructing the linear operator, and thgrefore V, from the spectrum. The
theory which does it is called a Gelfand, Levitan, Marchenko theory because
these authors were the first to give it, the/two first authors for Sturm Liouville
problems and Marchenko for Scattering problems, all these problems centered
on the operator D. In the problem (2.8); the method was adapted(®) by Kay
and Faddeyev later. The key of GLM thedry is the existence for V € L}(R) of a
“transformation kernel” K (x,y) such that, f*(k, z), solution of (2.8) for V, can
be obtained from exp [ikz], solution of {2.8) for 0, by a simple integration

£H{k2) = explike] + || Ka.y)explits)dy (4.10)

As a matter of fact, the existence of
transform of other terms for defining K). [The only point is that K vanishes for
¥ < z. This result follows from analytic and asymptotic properties of f*(k, z),
in the half plane Imk > 0, which can be derived by transforming (2.8) into an
integral equation. By the same token® one shows that X can be constructed
from V by solving a Volterra nonlinear inpegral equation and that

is not surprising (take the Fourier

K(z,z¥) =z V(s)ds {4.11)

The derivation of the GLM equation follows similar steps(®). It reads :

K(:J:,y)+M(x+y)+_/°‘J z K{(z, ) M{z+y) =0 (4.12)

where

o0 N
M(z) = '21_7r _/:'- dk R* (k) exp [ikz] + Z (Cj],")—2 exp [—Kpx] (4.13)

=1

M(z) contains all the informations we found necessary to identify V. The GLM
equation (4.13) is at fixed = a Fredholm integral equation and it is possible
to prove that if RY(k) is indeed the reflection coefficient corresponding to a
potential in L}, (4.12) has a unique solutign, whose limit K (x,z™") yields (4.11),
the integral of the potential. Hence R* {Cp},{xp} are data (called “spectral
data”) sufficient to determine the potentihl and to construct it ; but notice the
(weakly) instable step K = V.




‘Thus, the information we learned fron

be described in several different ways. Wi

(a) that a necessary part of the info
- ments !

h this inverse scattering problem can
can say equivalently
ation escapes all scattering experi-

(b) that if we consider only scattering data, the solution V" is non unique but

the non uniqueness can be described on t
(c) thatif R* = 0, there are “transpar

fied by scattering experiments and nevert,
one eigenvalue only, with data c and & giy

‘basis of other physical informations.
bnt” potentials, that cannot be identi-
heless do not vanish. As an example,
es

2
Volz) = —-C—h—z—f;%’;“:m (4.14)
where
= —(2x)"" log [2x'¢?] (4.15)

Notice that V(z) decreases rapldly af

sharper and stronger.

As in many inverse problems, restoril

priori assumption on V is tempting.

oo and that increasing K makes V'

ng the uniqueness by means of an a
can see on the linearised problem

{4.4) that assuming V' has a compact sypport does the job, to the price of
stability, i.e., no matter how small is £ >0 an error “smaller” than £ can give
uncontrolled errors on V. It is interestingto see in the exact nonlinear problem
that allowing V' # 0 but [ |V ()] dt smaller than £ outside of the compact

>z

support [—zy,z;] is cons:sil;ént with a nonjiniqueness due to potentlals like that
of (4. 14) provided that z¢ is inside the gupport and x% (= — iv (zg)) is large
enough*As a tutorial conclusion, again, beware the restoring of uniqueness by
mathematicians.

The Gelfand Levitan Marchenko met
many inverse problems governed by linea
time domain approach, one can see that
One may also notice that the form of its
ping approach, where scattering informat
the target is sequentially identified. Although the GLM approaches, and par-
ticularly that of the one dimensional Schitdinger problem, are now most often
associated to inverse transform, they are still interacting to manage in practical
problems. For instance they are a possible key for the inverse problems of speech
and vocal tract currently studied by Forbes and Pike(1%).

hod was generalised and adapted to
+ differential systems of order 2. In a
it is related to cansal arguments(!®),
ntegral equation recalls a layer strip-
lion coming from successive layers of

5 On ill-posed inverse scattering problems

The occurence of a discrete spectru
experiments is a source of ill-posedness d

that cannot be “seen” by scattering
to nonlinearity, but there are others,

10
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which remain even if the problems are lineprised. Suppose for instance we study
the scattering problem for a spherical patential, at fixed energy. For “small”
V' the formulas (2.7) and (4.1) yield the linear “Born approximation” of the
scattering amplitude : :

Fa(k6) = Flakomon) = - [ S2lbrsnt/d

A 2keind)2 V(r)rdr (5.1)

k, proportional to the root square of the! Energy, is fixed. Let ¢t = 2ksin /2.
The Fourier transform of V' is known only through a “structural” filter of band
width 2k. The general solution of the inverse problem in

L= {V/ foo V3 (r)dr < oo} (5.2)
0 .
is
rVir) = _2 fzk sin trF ()t dt + /oo sintr a(t)dt (6.3)
T Jo 2k

where a is any function chosen in L2(2k,c0). Hence, in this approximation,
there are “transparent potentials” that cannot be seen by a sounding at this
energy. One also sees that there are two ways to restore uniqueness - the first
one, being to fix a, keeps also stability. The second one, being to assume a priori
that V' decreases so rapidly at co that Fiis analytic and is therefore uniquely
determined by its values on (0,2k). In this “superresolving case”, instabilities
appear because of the continuation of F, d hence they are definitely associated
to the uniqueness theorems for potentialsjof compact support.
As a tutorial, one must keep in mind that if any method giving a potential
from the scattering amplitude applies in 4 domain that contains the domain of
“small V" (and this is indeed the general case), the illposedness seen on Born
formulas will remain, and limitations of the method can be predicted from it. As.
an example, instabilities will be present if uniqueness is restored by 4 compact
support assuinption. The fourty years old| “Newton-Sabatier” method is related
to the first way of restoring uniqueness, byjchoosing a {or, equivalently, choosing
~ a given interpolation of d; as a function df £). Some freedom has been allowed
on the choice of @, so that the method can also be used to construct examples
_ of exact transparent potentials. The method proceeds by inversing matrices,
and has a limited range of validity, the range where Fredholm series converge
and a Fredholm determinant does not vanjish on R*. It had the historical value
of showing that the inverse problem at fixed energy can be solved exactly and
that the solution is not unique.
As a matter of fact, scattering of partitles in physics is done on a wide range
of energy. With the spherical symmetry| and the invarient V' assumptions, it
is easy to see that knowing the scattering amplitude F at all k and all angles




is too much (the left hand side of (5.1) would be enough as k¥ — oo, or giving

0¢(k) for £ large enough that no bound sta

te holds. The truly physical problem

would be using all §,(k) in a range where it is reasonably assumed that

(1) the model {2.1) is valid

(2) V depends on 7 only (and not on k)

~ Curiously mathematicaly pkysicists apd applied mathematicians did not

work so much on this problem (although i

L can obviously be managed by opti-

misation methods). Similar remarks hold for cases without symmetry.

6 The Inverse Scattering Transform

There are many ways to introduce the
and others, where scattering does not ap

IST, including purely algebraic ones
ar ! Instead of giving the historical

approaches, which are close to inverse scattering but found very “unexpectedly”,
I will give a more recent one, which I like, and where scattering appears in a
natural way and from several points of yiew. We. try to find a way of solv-
ing special nonlinear partial differential equations. The nonlinear equations are

tering and an inverse scattering problem
We see it now on the most famous historid
The nonlinear KAV equation

v 1.,
5 t1’

where “prime” denotes z—derivative, is t

tyvi=0

"consistency conditions between two linear jequations, both associated to a scat-

d this fact is the key of the results.
al example.

; _
: (6.1)

e existence condition for continuous

double-derivatives of 2-vector solutions F jof two linear (Lax) equations :

oF

oF

3o =MF ; |5 =NF (6.2}
where the matrices M and N depend on &,z,t, as so :

M = My + V(z,8) = (‘lkz é)+(%(l_,t) g) 6.3)

N = KM, + ( e o ) = KMo+ W (6.4)

Vo= V(@ Vi=-3V Va=gVi-gvi (6.5)

It is clear from (6.2) that if F exists, i} has the form

12




F= ( y ) (6.6)
and that the first equation in (6.2) is nothing but (2.8). This suggests looking for
scattering problems. Notice first that sinceé M and N are zero-trace, the matrix:
determinant (F, G) of two solutions of (6,2) does not depend on z or £. Thus,
for a given function V(z, t), solution of (1.1), the space F of solutions F of (1.2)
_ is two-dimensional. Assuming now on demand that V(z,t) goes to zero “rapidly
enough” as & — =+00, fixed ¢ or t = £00, fixed z, we can define “scattering prob-

lems” if we can construct “Jost solutions”| F with given asymptotic properties,

referred to the function E(k,z,t) = ( :k ) exp [i (kz + K%t)] = ( :, )

Flkat)-Ekat)=o ( :;-rl) fixed t, T — 0o (6.7)
Pk, z,t) - E(-k,z,t)=0 (Iwi"l) fixed f, x = —c0 (6.8)
?(k, z,t) — E(k,z,t) =0 (t|—1) fixed z, t =+ o0 (6.9)

For k #0, F(k, ) and F{—k, ) are a basis in the space F, so that :

Bk, ) =5k)F (=k,) + ER)F (k,) (6.10)

Fk, ) =qk) Pk, )+ ERF(~F,) (6.11)

Each of these relations is associated tq a reverse one, for example (6.11) to

Pk,) =n(-0F*,) - R F(=k,) (6.12)

and inserting the reverse relation in the direct relation yields the unitarity re-
lation, here :

n(km(-k) - £(R)E(—k) = 1 (6.13)

Similar ones exist for the other coefficients.
Rétracing now from F and F the usjal Jost solutions along fixed axes (by

comparing the asymptotic behaviors) we ssee that 7j(k) and f(k) are related to
the usual scattering coefficients by
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k)] | (6.14)

[
=]

(k)

E(k) = [T(k)]™! RY (k,t)e?*t (6.15)-

and these formulas readily show two essentially new resultats :

(1) in the motion described by the nonlinear KdV equation, T'(k), and there-
fore its poles which are nothing but the jeigenvalues —x2 are conserved. The
motion is therefore isospectral !

(2) the evolution of R*(k,t) is trivially given by (6.15). It follows that
solving the inverse problem R* — V gives the evolution of V(z,t) between two
times £y and ¢ : we have the solution of KdV given the initial inpui V' (z,0) in

_ LI(R) by solving successively the direct problem V'(z,0) — R*(k,0) and the
inverse problem R*(k,t} = V{z,t).

Of course, a similar approach can be done on z—axes, with similar results(12)
for the evolution of R, e?** replacing e****. But the reflection coefficient Ris a
matrix, and the equation replacing (2.8) jnvolves 6—vectors, so that the direct
and inverse problems, which can still be golved are much more complicated.

What about solving KdV in the quarterplane (z > 0, t > 0} from a knowl-
edge of V on the elbow (¢t > 0,2 =0;¢ 30, z > 0) ? The equation (6.12) still
shows the conserved quantities n(k) and €(k), so that, again, the evolution of
a conveniently defined reflection coefficients R is trivial. But it remains to
solve the direct problem (V(z,0), V(0,t) = R) and the inverse one. V(z,0)
gives ?(k,q:, 0). If we tried to construct ?(k, 0,t), it would require a knowl-
edge of V(0,t), but also V/(0,£) and V" ((,t). Once it is done, it would give ?,
and n(k), £(k) by using ‘F(k, 0,0). Then V{z,t) could be constructed either at
fixed ¢ from ?(k,O, t), and the value of Rjat (0,¢), or at fixed x from (F(k,:c,O)
and the value of R at (z,0), so that fulfilligg strong consistency conditions would
be necessary for this “double scanning” of V. This is why eventually the knowl-
edge of V(0,t) is “sufficient”, as it had been proved previously(!¥). But how to
use it in the construction ? It has been done in the linearised case and give

+ ~—— ——=—— —thesotution of the linearised KAV equatibn in the quarterplane!*}. Extendifig

it to the nonlinear case has been possible as yet only in small domains where
i iterative series converge(1?), _
a We see there a wide class of open prablems in Inverse Scattering : find in-
verse scattering transforms that work for houndary conditions given on arbitrary
“contour” in the z,t plane. For NLS as well as KdV, in the last five years all
attempts to get it failed. No attempt was done for more complicated integrable
equations.

7 Nonlinear coherent structures

Among the solutions of KdV whichare calculated by Inverse Scattering
Transform, those which correspond to transparent potentials, i.e. to the dis-
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crete spectrum only, are distinguished ones. If we look the simplest one, it is
given by (4.10) with zp = cf where c, related to &, is a constant, i.e. it looks like
a bump propagating at constant speed - the famous soliton. Others are (non-
linear) superposition of solitons. Their discovery was the beginning of a series
of results identifying coherent nonlinear sfructures (solitons, kinks, bootmerons,
breathers, etc) that can be described by sblutions of nonlinear integrable equa-
tions, KdV, NLS, KP1, KP2, etc. In these solutions, compared to those of

linearised equation, linear features as dis
other one by nonlinear features. Furth
that a large class of nonlinear partial diff
lutions, corresponding to different scales
also solutions of integrable evolution equ.

lution equations can be derived as approx

Hence an unexpected consequence of the

rsion are balanced in one way or an-
ore it has been possible to show(!%)
ential equations has approximate so-
their variables, which are eventually
ions. In other words, integrable evo-
imations of more complicated ones in

tudy of Schrédinger inverse problem

special domains : the most simpler approzmations beyond linearised equations.

on the line has been the classification of

8° Other approaches to Inverse Scat

Inverse scattering has been the objec

may be useful for many other inverse prob

invariant imbedding'™, which are classid

words on time reversal techniques. Altho
optics, these techniques were introduced
electromagnetics. The idea(" is that a si

reversed, then retransmitted back to the
(TRC) or mirror (TRM) manages the in

for analysing inverse scattering problems.
A TRC is a 2d transducer array tha

amplifier, a storage memory and a progr;
thesize a time reversed version of the storl

a TRC reconcentrates the signal into it,
Using a TRM and time windowing

veral features in nonlinear physics !
tering.

t of several approaches which are or
lems. We only cite layer stripping and
al and well kriown, but will say more
igh they existed in some problems of
pnly a few years ago in acoustics and
gnal is recorded by transducers, time
nedium. Hence, a time reversal cavity
verse source problem and gives ways

t samples the wavefield ; a receiving
ymmable transmitter are able to syn-
ed signal. Surrounding the source,
lving the inverse problem.

parates waves reflected by a target

according to their velocities and make possible concentrating on their apparent
generation points (“secondary sources”) in|the target. Hence the first reflected
echo (which determines the contour of a rigid target), the elastic echos (which
correspond to various elastic modes) can be analysed.

9 Inverse Scattering and open problems

secondary minima of a cost functional,
(2) In (stealth} targets e.m. sounding




eters.
(3) In nonlinearly propagation signals, identify nonlinear structures. This is
currently done by Osborne® on waterwaves.
(4) Use analyses of the diffraction spots to improve the resolving power of
instruments
(5) Find an inverse scattenug transform solving-boundary value problems of
integrable n.l.p.d.e. ‘
. The technical problems should never ¢onceal the deep open problem of
all studies on nonlinear inverse problems which is to identify class of solutions
pertaining to a new physics. This was dope with the discovery of solitons and -
other coherent structures. It goes very deep, since it suggests a nonlinear pro-
cessing of signals that propagate according to an integrable evolution equation.
We are at the very beginning of nonlinear studies and certainly other successes
can be expected in this direction.(®).
As a last but not least tutorial, never forget that modelling and solving
inverse problems are linked studies and that they require interdisciplinary con-
cepts and relations !
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