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Interior Elastodynamics Inverse Problems

Data: Propagating Elastic Wave

Characteristics:

Initially the medium is at rest
® Time and space dependent interior displacement measurements
® \Wave has propagating fronts

® \Wave amplitude is low — use linear model

® NMedium is isotropic

Assumptions:

® Compression wavespeed,/ (A + 2u)/p, and shear wavespeed,/ 11/p
significantly different

e Compression wave is significantly lower amplitude contribution
when shear wave arrives
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Two Possible Arrival Time Equations
V- (u(x)Vu) = puy
Two Models :{ . . o .
VAV - @) + V- (u(Vi + (V@)")) = piiy

t=1

Define arrival time:

w0 w=0 T(z) = inf{t € (0,T) : u(z,t) # 0}.

Eikonal equations WTI v ’U’/'O =1

For each model \VT\ A+2u)/p=1
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Practical Matters

How to find arrival time in the presence of noise?

* Reject simple thresholding

e Underlying idea: Track distinctive features in the
data that propagate at the unknown wavespeed

® Extreme values or peaks are distinctive features

e Track distinctive features collectively using
correlation




5/35

Zem

Oem

R A ——

r. - I AN SRIEEI (L USNS OMETSAl it e s L L . " .
Ocm f_,, 3_+G _l_'E; Fom o 0.025 003 0.035 .04 0045 005

® Determine Arrival Time Surface by Peak Location:

1. Zero of u; = peak of u.

2. Apply mollifier to u and approximate peak location by applying
thresholding to u.

3. Calculate u; and use MATLAB zero finding routine.

® Determine Arrival Time Surface by Correlation:
1. Apply mollifier to u;
2. T(z1) := T(zo) + Af where z; = zo + Az and
Al = arg nﬁx/u(mo, tu(zy, t — At) dt.
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Model V - (u(z)Vu) = puy
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Arrival Time Surface with Simulated Data
Using Peaks and Interpolation
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Model V - (u(z)Vu) = puy

vl times of synthetic data usng comosation
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Arrival Time Surface with Simulated Data

Using Correlation (No Interpolation)

no noise
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Simulation Model V - (u(z)Vu) = pugy

.« =1, Ju(m,xz)(3+9e)<p{_(xl—3)2 z3 })2

0252 (.52

. Background wave speed = 3m/sec
which makes

Maximum wave speed = 12m/sec

]

=250 Hz

e Boundary impulse
central frequency

e Discretization:

250 time steps
100 x 100 spatial grid

2 22 24 28 28 3 3R 34 36 38 4

Normalized Térget wave speed




Phantom for Laboratory Data

(Boundary impulse central frequency=50Hz)

3% agar
4% gelatin

Transducer 4 cm

3% agar
2% gelatin

v

A

7 cm depth
Cross-section of the phantom

® Shear wavespeed is doubled in the included cylinder

o Arrival Time Surface with Laboratory Data

(Boundary impulse central frequency=50Hz)

Arrival time
surface with
peak location
(interpolation)
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Arrival time
surface with
correlation
method

Time traces
along the center line
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Level Curves of Arrival Time Surface
(Laboratory Data)

comours of armval time surtace from real datn wih peaks leved curves of amval Sme surtace using comiaon
e s e ey st . . M - sl ag s IREE

Using peak location Using correlation method
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How to Use Formula /u/p = 1/|VT|
Simplistic Method

e Try taking partial derivatives with noisy data

Target wave speed Recovered wave speed
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Distance Method: Use Level Curve

A 1 - -
%(:r:) = g inf{le —&|: (&) = T(2) + At} 1t Order Method

7

1
p z) = QAt[
Vinf{|z — | : T(3) = T(z) — At}}

inf{|z — & : T(&) = T(x) + At} 214 Order

Method

“* " Simulated Data (15t Order Distance Method)
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Peak 5
Location I:>

Target wave speed

Correlation I:>
Method i
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Simulated Data (2" Order Distance Method)
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Reconstruction using Real Data and Peak Location

Arrival
time

.. Recovered
wave
speed
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Final Step with Real Data
(Total Variation Denoising)

with regularized Euler-Lagrange equation

o [ L), ()

+ €

Introducing the evolving variable s, solve

9 b _y. V(\/E) Loy AN
25w [ [, (1)

5= (5)
P ls=o P/ p

F
+ €
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We can speed this up considerably

1. Using Distance Method (finding distance to previous
level set);
O(N?12), N is the number of grid points.

2. With level set algorithm; O(NlogN).




19059 Key Ideas for Level Set Method
for Inverse Problems

(1) Recall |VT|\/i/p=1.

(2) t = T'(z) is the zero level set of a function ¢;
¢(x, T(x)) = 0.

(3) For each t, ¢(x,t) =+ inf |z —Z|
T(&)=t

(4) T(x) Lipschitz continuous = ¢ is Lipschitz continuous.
(5) Chain Rule applies to ¢(z, T'(z))
= VT +Vep=0  ae t=T(x),
= o =u/plVad|  ae t=T(x).
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(6) Extend this equation to narrow band around ¢ = T'(z):

(¢t,V ) exists a.e.
feat = ¢i/|vl¢| a.e.
(f)t - fe.cilv.cqsl a.e.

feazt -V }'JJ/P a.e. t = f‘(;{,‘)

(7) From (3), |[V.¢| =1 for fixed t.
(8) Calculate

or
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Recovery with Synthetic Data
Using Level Set (first order) Method

v vy Ut T taes with sk

Using Peak Locations | . iiaam I

Level Set
Method

O(N3/2)
Method
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Sources of Error

(1) Both peak location and correlation experience some
distortion due to backscattering

(2) Low amplitude compression wave treated as noise in
the data

(3) Use of ultrasound to determine interior displacement
yields errors

(4) Modeling errors — Viscoelastic effects,
Anisotropic model
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Conclusion for Arrival Time Algorithm

(1) Data is subset of time and space dependent interior
displacement subset = arrival time surface

2) Arrival time determined by correlating feature propagation
3) Simplistic Approach yields poor results
4) Distance Method yields O(N?3/2) algorithm, N = # of grid pts
)
)

~ A~ A~ o~

5) Level set method yields O(N logN) algorithm

(6) Final Total Variation step is needed to ‘clean up’ noisy
reconstruction when using real data

(7) Excellent Recovery when wavespeed increases up to
4 times over the background wavespeed
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Unsolved Problems

(1) Reduce smoothness assumptions in uniqueness theorem
for equations of elasticity — almost complete

(2) Identify more coefficients

(3) Determine uniqueness theorems for anisotropic case
- choosing models to fit applications

(4) Justify arrival time algorithm for the shear wave in an
elastic system

(5) Extend arrival time algorithm to anisotropic case

(6) Investigate elasticity equations for an incompressible
medium

(7) Model viscoelastic and nonlinear effects
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Second algorithm:
Use Central Frequency Content

e Applies to Dynamic Sinusoidal Excitation

¢ Single Frequency

Theorem (Richter) Let Q0 be bounded and p1, ps € CH(Q) with

1 = pg on 0, and g € CO(0). Let it € C1(Q) be a common solution

to V- (u; Vi) + k%0 =0 in Q with p;Vi-v =g on 0Q for j =1,2.
Suppose further that @ satisfies infeq{max{|Vi(z)|,|Ad(z)|}} > 0.
Then p1 = po in 2.
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Geometric Optics Algorithm(1)

I3
e 2-D wave equation:
xr

V-(2puVw)—wy = 0, x>0
ow
= = g(t,x2)
971 |4, 0
e The corresponding Helmholtz equation:
A
V- (pVu)+(—)v = 0, z;>0
Co
du
l - .f(T'.' ‘T'Z)
01 |, —o

Inverse Problem
w(t, ) 2 I

o - F T . ‘
Fourier Tra Orm inverse leg(')l‘lthlll
)|

lu(T,
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Geometric Optics Algorithm(2)
e Single frequency content
e The key:

algebraic equation

(approximate relation) |“'(T’ ;;.-)|

e Asymptotic expansion of geometrical optics:

u(r, x) = a(k,z)e"?®, k=

where

ay(z) as(x)
K T (ik)?

as R — 00

a ~ ap(x)+

lu(r,2)| ~ ao(x)
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Geometric Optics Algorithm(3)

JT TN

1
e Eikonal equation for the phase: |V¢|> — = =0
7

e Transport equation for the amplitude:
2uVag - Vo + papAgd + agVp -V =0

e Characteristic ODE for the Eikonal equation:

dzy P2 1 .

5 = — Ih= ——P%>0‘1 >O: p::v¢1
dz; P Iz

dpa 1 01

dzy 2p1 Oz2 i
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Geometric Optics Algorithm(4)

EAESYS

ODE-algebraic system ("= d/dx)

. P2 1 2
= = - = = >0:
&= 2 ”lp (p2)? = ap
.1 9 1
p2_2P13$2 w)’
J — 1 81 81
=F J$A1 E = = B I
(A) ( P By 6‘@“%#)

where z2(0) = y2, p5(0) =0, J(0) =1, A(0) = 0.

#($1;$2]ﬂ§($1;$211’1 (z1,22)J (1) -1
14(0,1)ad (0,3")p1(0,3")

ag ~ |u|

L Dby
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Numerical Experiment (Mild Stiffness)

@ 5 2
JuliTx) v 5. [8,)0x)
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Recovery From Exact Data

Stittness Profile. p(x)
Stittness Prefile, p(x)

e ! Horizental Space, X, Horzottal Space. X,

The recovered p from the exact ag (left) and the data, u(7,2) (right).
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Recovery From Noisy Data

Stttness Protile, ux)
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The recovered p (right) from the data, u(7, x), with random noise (left).

The random noise is created as w(t,z) = w(t,x) + 0.05wmazr(t, ).
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Numerical Experiment
(Strong Stiffness)

Degth, x,
w N

Jul{Tx) v.s. |a0:[x

B
Stittness Frotile, uix)

'
Horizental Space %
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Conclusion for Single Frequency Algorithm

(a) Successful when wavespeed increases up to
~1.7 times the background wavespeed

(b) Robust to noise

(c) Large backscattering limits application of this
algorithm (so far)

(d) Algorithm needs to be advanced to include caustics
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Unsolved Problems

(1) Reduce smoothness assumptions in uniqueness theorem
for equations of elasticity — almost complete

(2) Identify more coefficients

(3) Determine uniqueness theorems for anisotropic case
- choosing models to fit applications

(4) Justify arrival time algorithm for the shear wave in an
elastic system

(5) Extend arrival time algorithm to anisotropic case

(6) Investigate elasticity equations for an incompressible
medium

(7) Model viscoelastic and nonlinear effects




