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Compression wavespeed,                  , and shear wavespeed,
significantly different

Compression wave is significantly lower amplitude contribution 
when shear wave arrives

Interior Elastodynamics Inverse Problems

Data: Propagating Elastic Wave

Initially the medium is at rest

Time and space dependent interior displacement measurements

Wave has propagating fronts

Wave amplitude is low → use linear model

Medium is isotropic

Characteristics:

Assumptions:
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3/35 Two Possible Arrival Time Equations

Two Models :

Eikonal equations 
For each model
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Practical Matters

Reject simple thresholding
Underlying idea: Track distinctive features in the 

data that propagate at the unknown wavespeed
Extreme values or peaks are distinctive features
Track distinctive features collectively using 

correlation

How to find arrival time in the presence of noise?
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5/35 Time Trace + Peak & Correlation Description
Time traces at different locations
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Model             

no noise 7% noise

Arrival Time Surface with Simulated Data 
Using Peaks and Interpolation



4

7/35

Model             

Arrival Time Surface with Simulated Data 
Using Correlation (No Interpolation)

no noise 7% noise
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Simulation Model             

Normalized Target wave speed

which makes
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Phantom for Laboratory Data 
(Boundary impulse central frequency=50Hz)

7 cm

4 cm

Cross-section of the phantom

depth

Transducer

3% agar
2% gelatin

3% agar
4% gelatin

1 cm

Shear wavespeed is doubled in the included cylinder

10/35

Arrival Time Surface with Laboratory Data

Time traces 
along the center line

Arrival time 
surface with 

peak location
(interpolation)

Arrival time 
surface with 
correlation 

method

(Boundary impulse central frequency=50Hz)
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Level Curves of Arrival Time Surface
(Laboratory Data)

Using peak location Using correlation method
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Target wave speed Recovered wave speed

Try taking partial derivatives with noisy data

How to Use Formula
Simplistic Method
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Distance Method: Use Level Curve

1st Order Method

2nd Order 
Method

14/35 Simulated Data (1st Order Distance Method)

no noise 7% noise

Peak
Location

Correlation
Method

Target wave speed
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15/35 Simulated Data (2nd Order Distance Method)

7% noiseno noise

Correlation
Method

Peak
Location

Target wave speed

16/35
Reconstruction using Real Data and Peak Location 

(2nd Order Method)

Time
trace

Level
curves

Recovered
wave
speed

Arrival 
time
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Final Step with Real Data 
(Total Variation Denoising)

with regularized Euler-Lagrange equation

Introducing the evolving variable s, solve
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We can speed this up considerably

1. Using Distance Method (finding distance to previous 
level set);
O(N3/2), N is the number of grid points.

2. With level set algorithm; O(N logN).
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19/35 Key Ideas for Level Set Method 
for Inverse Problems

20/35

0
(1st order)

(2nd order)
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21/35 Recovery with Synthetic Data 
Using Level Set (first order) Method

Target wave speed

Peak Location (1st order)

O(N3/2)
Method

Level Set
Method

Using Peak Locations

22/35

Sources of Error

(1) Both peak location and correlation experience some 
distortion due to backscattering

(2) Low amplitude compression wave treated as noise in 
the data

(3) Use of ultrasound to determine interior displacement 
yields errors

(4) Modeling errors – Viscoelastic effects, 
Anisotropic model
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Conclusion for Arrival Time Algorithm

(1) Data is subset of time and space dependent interior 
displacement subset = arrival time surface

(2) Arrival time determined by correlating feature propagation
(3) Simplistic Approach yields poor results
(4) Distance Method yields O(N3/2) algorithm, N = # of grid pts
(5) Level set method yields O(N logN) algorithm
(6) Final Total Variation step is needed to ‘clean up’ noisy 

reconstruction when using real data
(7) Excellent Recovery when wavespeed increases up to 

4 times over the background wavespeed
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Unsolved Problems
(1) Reduce smoothness assumptions in uniqueness theorem 

for equations of elasticity – almost complete
(2) Identify more coefficients
(3) Determine uniqueness theorems for anisotropic case 

- choosing models to fit applications
(4) Justify arrival time algorithm for the shear wave in an 

elastic system
(5) Extend arrival time algorithm to anisotropic case
(6) Investigate elasticity equations for an incompressible

medium
(7) Model viscoelastic and nonlinear effects
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Second algorithm: 
Use Central Frequency Content

Applies to Dynamic Sinusoidal Excitation

Single Frequency

26/35
Geometric Optics Algorithm(1)
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Geometric Optics Algorithm(2)

28/35
Geometric Optics Algorithm(3)
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Geometric Optics Algorithm(4)
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Numerical Experiment (Mild Stiffness)
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Recovery From Exact Data

32/35

Recovery From Noisy Data
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Numerical Experiment
(Strong Stiffness)
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Conclusion for Single Frequency Algorithm

(a) Successful when wavespeed increases up to
~1.7 times the background wavespeed

(b) Robust to noise
(c) Large backscattering limits application of this 

algorithm (so far)
(d) Algorithm needs to be advanced to include caustics
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Unsolved Problems
(1) Reduce smoothness assumptions in uniqueness theorem 

for equations of elasticity – almost complete
(2) Identify more coefficients
(3) Determine uniqueness theorems for anisotropic case 

- choosing models to fit applications
(4) Justify arrival time algorithm for the shear wave in an 

elastic system
(5) Extend arrival time algorithm to anisotropic case
(6) Investigate elasticity equations for an incompressible

medium
(7) Model viscoelastic and nonlinear effects


