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Interior Elastodynamics Inverse Problems

Data: Propagating Elastic Wave

Characteristics:

* Initially the medium is at rest
» Time and space dependent interior displacement
measurements

* Wave has a propagating front




3/20

Our Application: Transient Elastography

Goal: Create image of shear wave speed in tissue

Characteristics of the application:

* Shear wavespeed increases 2-4 times in abnormal tissue

» Shear wavespeed is 1-3 m/sec in normal tissue

* Interior displacement of wave can be measured with ultrasound (or MRI)

* Ultrasound utilizes compression wave whose speed is 1500 m/sec

* Low amplitude — linear equation model

» Wave is initiated by impulse on the boundary — data has central frequency

+ Data supplied by Mathias Fink
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Compare with

+ Static experiment: tissue is compressed (Ophir)
* Dynamic sinusoidal excitation:
time harmonic boundary source (Parker)

« Our application: Transient elastography

Group members: Lin Ji, Kui Lin, Antoinette Maniatty,
Eunyoung Park, Dan Renzi, Jeong-Rock Yoon
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Experimental Setup

electro-magnetic Recorded
vibrators ho Sigr
Echo Signal
(200 Hz) £

E Signal Processing:
cross-correlation
l technique

Output:
algar-gelatine shear wave displacement
image plane phantom (data for our inverse algorithm)

The device that is used by Fink’s Lab to excite the target tissue
and to measure the shear wave motion at the same time

6/20

Two Bar Transducer

Flg. 7. Shear lobes nuperimposed fo the image area. The transvorse
wawes coming from the rods interfere in the image ares and produce
Pl dtireckion. » largs displacement vector V' in the s-direction.

Fig. 12. The shear wava front has & cylindrical shape in the out-ol-
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Cross Correlation
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Mathematical Models

VAV - i)+ V

(Vi + (Vi)"))

U = Ut

@I+ p(Vi+ (Va)")] - 7t

Pﬁtt
0

either [A(V -

or

£l
I

f
g

(z,t) € 2% (0,T),
reQ, t=0,
(z,t) € 00 x (0,T),

(z,t) € 9 x (0,T).

V- (u(z)Vu) = pug

w=1u =10

OR

31.',

an =f or

u=g,

(z,t) € 2 x(0,7),

re, t=0,

(z,t) € 0 x (0,T).

Data: f or g and u(z,t)

Goal: Find u/p and/or (A + 2u)/p and/or p
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How rich is the data set?
Theorem. Let p; € C°(Q), p; : Lipschitz continuous, yj, p; > ag > 0.
Let u € H%(Q x (0,T)) satisfy for f € H3/2(8Q x (0,T)) :
V- (pi(z)Vu) = pjug Qx(0,7),

u=1u =0 e, t=0,
du
pige =1 o0 x (0,T).
Then (p1,p1) = (2, p2) Va where u(z,t) # 0, some t.
Proof =
(&) au
u#Fl u=10 P/ P2

+ (% _ E) Vu=0

/1 P2
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Proof (continued)

Let QF ={z € Q: p1(z) > pa(z)}.

H1 = p2
¢ = Vim/o1 = vu2/p2.
2! > M2 T .
o0 ./n /m (1 — p2) {%hsfﬁ + |Vu|2} duds
T 8
u 75 0 a.e. 22/ f / (g — po)Vu - vdtdS,ds
0 an+ Jo
=0.
o0t
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Elasticity Case

Theorem. Assume p; € CH(Q), p;, A;j € C?(Q), pj, pj, Aj > ap > 0.
Let @ € [H?(Q x (0,T))]™ satisfy:

VAV @)+ V- (p (Vi + (VE)T)) = pjiis Qx(0,7),

=1 =0 zeQ, t=0,
[\ V@l +pj(Vi+ (Va)")] i =F a0 x (0,7),
with )\1/p1 = Ag/pg in €.
Then (g1, p1) = (2, p2) Yz where i(z,t) # 0, some t.
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Key Feature: make system of seven equations in @, V - @, V X 4.

Then (@, v, w) := (4, V - 4, V x @) satisfies the following system:

- Ao VA Vi
dn =001 2y, Lyt (Vi + vaT) -2,
Pj Pi Pj Pj
N T 1 492 .
o= 2 Ay v(()‘f+ ) )-vwv-(wf)u
Pi Aj 24 Pj Pi
1 2 \viTP
v (& -wa+(Vﬁ+VﬁT)-v(“f),
Hj Pj Pj

. . 1
Wit = &A@+v(%> X (QVU—VX'EJ')—{—V(;) x V (Ajv)
'§ J

T
AL (V:‘J) x (Vii + ViiT) .
7
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How rich is the data set?

t=1

V- (u(x)Vu) = puy

Arrival Time:
u #l] uw=10 .
T(z) = inf{t € (0,T) : u(x,t) # 0}

Assumptions: . p € CH(), 0 < ag < /p1/p1, 2/ p2 < a1.

Theorem. If T'(z) is Lipschitz continuous, then

VT = p/u, e, ulp =1/|VT)

Theorem. If T} (z), Ty(z) are Lipschitz continuous arrival times

corresponding to \/u1/p1, v/ p2/pe, then

1 . . 1 PN

OTI/ ||VT1|*|VT2|‘¢’~‘"S [ [V 11/ pr—+/ b2/ p2|dr < 070[ |V(T\—T3)|dz.
Q Q Q
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Proof Assume u e H*(Q x (0,7)) for n =2,
ue H**(Q x (0,T)) for n = 3,
= ue @ x[0,T)).

Assume T'(z) is Lipschitz continuous.

’/,—--"T(IJ = T(In) /-—T(J‘) = T(J:g)
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Theorems we use

Theorem: (Evans) Let 2 C R” be open and v € C°($) be
differentiable at zo € Q. Then there exists w € C*(2) with

w(xzg) = v(wg) and w < v in a punctured neighborhood of zq, which
implies Vw(zq) = Vu(zg).

Theorem: (Eller, Isakov, Nakamura, Tataru) Let QC QCR” be open
and (t1,t2) C (0,T). Let 0 < p,p € CH(Q) and u € H?(Q x (0,T)) be a
solution to the wave equation satisfying homogeneous initial condition
and one of the Dririchlet/Neumann boundary conditions. Let S be an
n-dimensional C* surface in Q x (£1,t2) defined as in the above remark
and assume that S is noncharacteristic with respect to the operator

V - uV — pd2. Then u satisfies the unique continuation principle in the
sense that if u(z,t) = 0 for (z,t) near S satisfying ¢(z,t) > 0 then also
u(z,t) =0 for (z,t) near S satisfying ¢(z,t) < 0.
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Equations of Elasticity

VAV @) + V- (u(Vii+ (Vi)T)) = pii

Arrival Time:
w#O =0
T(z) = inf{t € (0,7T) : u(x,t) # 0}

Assumptions: A, i, p € CH(Q), 0 < ap < /(A +2u)/p, V/1u/p < 1.

Theorem. If 7'(x) is Lipschitz continuous, then

VT = Vo/(A+2p), e, V(A +2u)/p=1/|VT|




17120 Nonuniqueness in Anisotropic Media
Theorem Let U(s) = 0 for s <0, ¢ be fired, and (p,n,w) satisfy

PV . .
Vn-Vip=-V- (|V<P|2> and  pw > n°|Ve|>.

Let M be the symmetric positive-definite matriz represented by

pIVel™2 1 . { Ve V'Lw}
M = with respect to § =, .
( i w Vel [V

Then the traveling wave u(x,t) = U(t — p(x)) solves

V- (M(@)Vu(z,1)) = p@)ofu(z, ),
u(-,0) = u(-,0)=0 on Q,
u(z,t) =U(t—p(x)) ondQ x(0,T),
MVu-v=-U (/}%’% +nVip- .v) on 9 x (0,T).
e The Neumann boundary data is determined by (p,n)|sq
(independent of w).
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Sketch of Proof

Find conditions for symmetric positive matrix A so that
u(w,y,t) = Ut — p(x,y)) € C3(Q x [0, T]) solves

V- (M(:r:, y)Vu(z,y, t)) = pdiu(x,y,t).

o Vo -MVoU -V - (MVe)U = pU.
\_v_/ %’_/
=p (*) =0 (%)
o fi(zy) = p(z,y) |V n(z,y) |
n(z,y) w(z,y)
o (}) = V- (p|Vp|7?Vyp) =V-(nVip) =Vn Vie.

Positive definite = w > 1*| V|
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Nonuniqueness Example (The simplest)

e O=R2, p(z,y) ==

e Fixp=1,1n=0.

For any w > 0, u(x,y,t) := U(t — x) satisfies

1 0
V- Vu(z,y,t) | = p@fu(az, Y, t).
0 w(z,y)
20/20 .
Conclusion

—

. Data set is rich.
. Data identifies more than one physical property.
Arrival Time is a particularly rich data set.

Open Questions

1. In the elastic case, how is shear wave front defined
and used for identification?

2. What if not all the components of the elastic
displacement vector are measured?

3. When additional physical properties are to be
determined what are the continuous dependence
results?

4. When there is a large discrepancy in wavespeeds
an incompressible model may be appropriate. What
are the uniqueness and continuous dependence
results in this case?
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