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Current Algorithms

In 2003 Kristian Sandberg, David N. Mastronarde and I published a paper �A fastreonstrution algorithm for eletron mirosope tomography� in J. of Strutural Biology, v.144. The algorithm uses the Fourier domain to gain speed. Our main goal was to math theauray of the usual bakprojetion algorithm and inrease speed (whih we did, it is for anumber of years a part of IMOD pakage).
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Total speed up was about a fator of 30, but most of the gain (a fator of 10) ame from.....It may be time to revise a reonstrution algorithm written in the 70s ... not a simple task ...1



Challenges of Eletron Mirosope Tomography

1. The imaging tehnique is hardly �non-destrutive�; a limited useful energy range.2. Limited aperture resulting in artifats, very noisy data3. Di�ulties with forward modeling4. ....Currently we are looking at a number of new mathematial tools to address several hallengesof NDE imaging in general and eletron mirosopy in partiular.The rest of my talk is a mathematial desription of our approah and tools at our disposal.This work involves Kristian Sandberg, Luas Monzón, Christopher Kurz and (reently) MattReynolds.
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Fourier transform on a �nite domain

It is well-known that a funtion with ompatly supported Fourier transform annot haveompat support itself unless it is identially zero.Yet, all measurements, being approximate, violate this loalization onstraint sine we neverdeal with either in�nite bandwidth nor with funtions that extend inde�nitely in spae ortime.This onstraint is easily overome for a �nite auray. For example, onsider a Gaussianand set a threshold on the funtion and its Fourier transform, thus limiting both supports forany �nite auray.Thus, it is natural to analyze the operator whose e�et on a funtion is to trunate it bothin spatial and Fourier domains. This has been the topi of a series of seminal papers bySlepian et al. (ira 1961), where it is observed (inter alia) that the eigenfuntions of suhoperator on a �nite interval are the Prolate Spheroidal Wave Funtions (PSWFs) of lassialmathematial physis.
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Bases born on an interval: Slepian's (PSWF) funtions

The PSWFs are the eigenfuntions of the operator

Fc(ψj)(x) = λjψj(x),where Fc : L2 [−1, 1] → L2 [−1, 1] ,

Fc(φ)(x) =

∫ 1

−1

eicxξφ(ξ)dξ,

and c is a positive real onstant (bandlimit).The eigenvalues λj, j = 0, 1, . . ., are all non-zero and simple, and are arranged so that

|λj| > |λj+1|.Eah λj is either real or pure imaginary, aording to the parity of the eigenfuntion ψj.
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Band-limiting and time-limiting operatorThe eigenfuntions ψj are also eigenfuntions of the band-limiting and time-limiting operator
Qc = c

2πF
∗
c Fc,

Qc(ψj)(x) =
1

π

∫ 1

−1

sin c(x− y)

x− y
ψj(y)dy = µjψj(x),

with eigenvalues

µj =
c

2π
|λj|2, j = 0, 1, . . .

For large c the �rst ≈ 2c/π eigenvalues µj are lose to 1.Then the next O(log c) eigenvalues deay exponentially fast to almost zero.The rest of the eigenvalues are very lose to zero.
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Where the name �PSWFs� omes from?There exists a stritly inreasing sequene of real numbers η0 < η1 < . . . , suh that ψj areeigenfuntions of the di�erential operator

Lψj ≡
(

−(1 − x2)
d2

dx2
+ 2x

d

dx
+ c2x2

)

ψj(x) = ηjψj(x).

The eigenfuntions of L have been known as the angular prolate spheroidal funtions.About 50 years ago Slepian et.al. disovered that L and Fc ommute and onstruted auseful theory for bandlimited funtions.We note that if c→ 0 then, in this limit, PSWFs ψj beome the Legendre polynomials.Also, for any n ≥ 0, the �rst n funtions ψj, j = 0, . . . , n− 1, form a Chebyshev system.In partiular, the number of zeros of ψj in [−1, 1] is equal to j.
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Important properties of PSWFsDe�ned on the interval [−1, 1], PSWFs ψj are extended to the real line via
ψj(x) =

1

µjπ

∫ 1

−1

sin c(x− y)

(x− y)
ψj(y)dy.

These funtions are orthogonal on both [−1, 1] and the real line (−∞,∞),
∫ 1

−1

ψj(x)ψl(x) dx = δjl and ∫ ∞

−∞
ψj(x)ψl(x) dx =

1

µj
δjl.

We have the optimal separated representation for the exponential,

eicxy =
∞
∑

j=0

λj ψj(x)ψj(y) .
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Reent results: Gaussian-type quadratures for bandlimitedfuntions

Currently there are two methods for �nding nodes and weights to integrate funtions eibxfor |b| ≤ c with user seleted auray ǫ:

• Sine the �rst n PSWFs form a Chebyshev system, the generalized Gaussian quadraturesfor PSWFs an be onstruted numerially. For a given auray ǫ and a hoie of n,these quadratures are also quadratures for exponentials. This approah has been taken inXiao-Rokhlin-Yarvin, Inverse Problems, 2001
• We have onstruted a new type of the generalized Gaussian quadratures diretly forexponentials in Beylkin-Monzón, Appl. & Comp. Harm. Anal., v. 12, 2002. Thesequadratures are parameterized by eigenvalues of the Toeplitz matrix onstruted fromthe trigonometri moments of a positive measure. For a given auray ǫ, seleting aneigenvalue lose to ǫ and the orresponding eigenvetor yields (in the end) an approximatequadrature for that auray.
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Distribution of nodes of Gaussian quadratures
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Sampling rate for Gaussian quadratures
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Auray of the Gaussian quadratures
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Comparison of derivative operators
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Error of di�erentiating sin(bx) for |b| ≤ 32π on the interval [−1, 1] using PSWFs with 64nodes, 4th-order FD and the Chebyshev polynomials of degrees up to 15 on 4 subintervals.
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Slepian funtions in higher dimensions

Slepian (1964) also onsidered mapping of a disk in spae to a disk in the Fourier domain(or a ball in higher dimension).

However, the spetrum of the spae-limiting and band-limiting operator for the disk-to-diskmapping is substantially di�erent from that in 1D. Namely, the omplete spetrum has alarge transition region (of order O(N logN) out of O(N2) eigenvalues).

Reently Yoel Shkolnisky implemented Slepian's onstrution. For eah angular mode thetransition region is O(logN), but there are O(N) angular modes!
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Transforms from square in spae to a disk in Fourierdomain (and bak)

• A really long list of appliations whih inlude the Radon transform and its pratialvariants

• Note that the pseudo-polar DFT maps a square in spae to a square in Fourier domainbut with a radial grid

• Diretional bases, urvelets, et.Is there a �orret� mathematial objet, an analogue of DFT, or this is just numeris?What are �good� grids in a disk?
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Forward and adjoint transforms

Consider the Fourier transform of a funtion f supported in B,
f̂(p) = F2c[f ](p) =

∫

B

f(x)e−ix·pdx,

and restrit the support of f̂ to the disk of radius 2, so that
F2c : L2(B) → L2(D2c).We then onsider the adjoint transform

F∗
2c[ĝ](x) =

1

4π2

∫

D2c

ĝ(p)eix·pdp,

and limit the support of the resulting funtion to the square B, so that

F∗
2c : L2(D2c) → L2(B).
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Slepian operator

We now de�ne the band-limiting and spae-limiting operator as
Q2c = F∗

2cF2c : L2(B) → L2(B),where Q2c[f ](x) = 1
4π2

∫

D2c
f̂(p)eix·pdp. The ompat positive de�nite operator Q2c atsas a onvolution with kernel

K2c(x) = K2c(x1, x2) =
1

4π2

∫

D2c

eip·xdp =
c J1(2c

√

x2
1 + x2

2)

π
√

x2
1 + x2

2

,

and we onsider the eigenvalue problem
µjψj,2c(y) =

∫

B

K2c(y − z)ψj,2c(z) dz,

where y, z ∈ B, j = 0, 1, 2, . . . and 1 > µ0 > µ1 ≥ µ2 ≥ . . . .
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Spetrum of spae-limiting and band-limiting operator forsquare to disk mapping

Eigenvalues of spae-limiting and band-limiting operator for equally and unequally spaeddisretization in spae (N = Nω = 60).
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Eigenvetors in the �e�etive null spae�

The last three eigenvetors of (top row) and the magnitude of their disrete Fouriertransforms (bottom row) for N = 21.
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Quadratures: nodes and weights on the diameter of the disk

We ompute for given ǫ > 0 and bandlimit 2
√

2c > 0 the nodes |ρk| < 1 and the weights
wk > 0, k = 1, . . . ,M , where M = M(c, ǫ), suh that for all y ∈ [−1, 1]

∣

∣

∣

∣

∣

∫ 1

−1

ei 2
√

2cρy |ρ| dρ−
M
∑

k=1

wke
i 2

√
2cρky

∣

∣

∣

∣

∣

≤ πǫ

c2
.

With these we obtain a disretization of the kernel,
K2c(x) =

c2

π2

∫ 2π

0

∫ 1

0

ei 2c ρ(x1 cos θ+x2 sin θ)ρ dρ dθ

=
c2

2π2

∫ 2π

0

(∫ 1

−1

ei 2c ρ(x1 cos θ+x2 sin θ)|ρ| dρ
)

dθ.
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Example of nodes and weights on the diameter

Weights at radial nodes for M = 30, ǫ ≈ 9.75 · 10−6 and c ≈ 23.324. As expeted, theweights mimi the measure |ρ|dρ.
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Inversion on a subspae

Consider

f =

N2
ω−1
∑

j=0

〈f , ψω
j 〉ωψω

j .

For a given auray δ > 0, split the spetrum of Slepian operator into three parts

Jhead =
{

j ∈ N |µω
j > 1 − δ

}, Jdecay =
{

j ∈ N | 1 − δ ≥ µω
j ≥ δ

}, and Jtail =
{

j ∈ N |µω
j < δ

}.We assume that f has a small projetion on the eigenvetors of the tail region,





∑

j∈Jtail

|〈f , ψω
j 〉ω|2(1 − µω

j )2





1/2

≤ δ‖f‖ω.
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Inversion algorithm

Given f ♯ = Gω,2c[f ], where Gω,2c is the forward transform, we would like to reover f(under the assumption).Assume that the funtions ψω
j and ψ♯,ω

j for indies j ∈ Jdecay have been omputed inadvane. We ompute1. αj =
〈

f ♯, ψ♯,ω
j

〉

σ

for indies in Jdecay.2. Given αj and the eigenvalues µω
j , we form

d =
∑

j∈Jdecay

αj

µω
j

ψω
j and d♯ =

∑

j∈Jdecay

αj

µω
j

ψ♯,ω
j .

We note that Gω,2c(d) = d♯.3. As an approximation to f we ompute
frecon = G∗

ω,2c[f
♯ − d♯] + d.
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Rotation of a funtion
f(x1, x2) = e−σ1(x1−τ)2e−σ2x2

2 cos(kx1) + e−σ1(x1+τ)2e−σ2x2
2 cos(kx2),with k = 40π, σ1 = 240, σ2 = 100 and τ = 1/7. The rotation is by φ = π/5 withauray ≈ 1.33 · 10−11.
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Inversion via a fast algorithm
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Rotating Grid
.
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Grids with even and odd subdivisions

Grids with even Nα = Nβ = 36 and odd Nα = Nβ = 37 number of points.
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Trigonometri interpolation on irles in the Fourier domain
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Imbeded Grids
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Experiments to redue the e�et of limited aperture
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Simple test
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Reonstrution
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Final remarks

Further work:

• Using these new transforms in pratial algorithms (MRI, Eletron mirosopy, ...). Notan obvious or easy task!

• 3D: disretization of the sphere, rotating spheres, et.
• Diretional bases suitable for numerial appliations
• Near optimal grids in �arbitrary� domains for funtions bandlimited in a disk
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