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Current Algorithms

In 2003 Kristian Sandberg, David N. Mastronarde and I published a paper �A fastre
onstru
tion algorithm for ele
tron mi
ros
ope tomography� in J. of Stru
tural Biology, v.144. The algorithm uses the Fourier domain to gain speed. Our main goal was to mat
h thea

ura
y of the usual ba
kproje
tion algorithm and in
rease speed (whi
h we did, it is for anumber of years a part of IMOD pa
kage).
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Total speed up was about a fa
tor of 30, but most of the gain (a fa
tor of 10) 
ame from.....It may be time to revise a re
onstru
tion algorithm written in the 70s ... not a simple task ...1



Challenges of Ele
tron Mi
ros
ope Tomography

1. The imaging te
hnique is hardly �non-destru
tive�; a limited useful energy range.2. Limited aperture resulting in artifa
ts, very noisy data3. Di�
ulties with forward modeling4. ....Currently we are looking at a number of new mathemati
al tools to address several 
hallengesof NDE imaging in general and ele
tron mi
ros
opy in parti
ular.The rest of my talk is a mathemati
al desription of our approa
h and tools at our disposal.This work involves Kristian Sandberg, Lu
as Monzón, Christopher Kur
z and (re
ently) MattReynolds.
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Fourier transform on a �nite domain

It is well-known that a fun
tion with 
ompa
tly supported Fourier transform 
annot have
ompa
t support itself unless it is identi
ally zero.Yet, all measurements, being approximate, violate this lo
alization 
onstraint sin
e we neverdeal with either in�nite bandwidth nor with fun
tions that extend inde�nitely in spa
e ortime.This 
onstraint is easily over
ome for a �nite a

ura
y. For example, 
onsider a Gaussianand set a threshold on the fun
tion and its Fourier transform, thus limiting both supports forany �nite a

ura
y.Thus, it is natural to analyze the operator whose e�e
t on a fun
tion is to trun
ate it bothin spatial and Fourier domains. This has been the topi
 of a series of seminal papers bySlepian et al. (
ir
a 1961), where it is observed (inter alia) that the eigenfun
tions of su
hoperator on a �nite interval are the Prolate Spheroidal Wave Fun
tions (PSWFs) of 
lassi
almathemati
al physi
s.
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Bases born on an interval: Slepian's (PSWF) fun
tions

The PSWFs are the eigenfun
tions of the operator

Fc(ψj)(x) = λjψj(x),where Fc : L2 [−1, 1] → L2 [−1, 1] ,

Fc(φ)(x) =

∫ 1

−1

eicxξφ(ξ)dξ,

and c is a positive real 
onstant (bandlimit).The eigenvalues λj, j = 0, 1, . . ., are all non-zero and simple, and are arranged so that

|λj| > |λj+1|.Ea
h λj is either real or pure imaginary, a

ording to the parity of the eigenfun
tion ψj.
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Band-limiting and time-limiting operatorThe eigenfun
tions ψj are also eigenfun
tions of the band-limiting and time-limiting operator
Qc = c

2πF
∗
c Fc,

Qc(ψj)(x) =
1

π

∫ 1

−1

sin c(x− y)

x− y
ψj(y)dy = µjψj(x),

with eigenvalues

µj =
c

2π
|λj|2, j = 0, 1, . . .

For large c the �rst ≈ 2c/π eigenvalues µj are 
lose to 1.Then the next O(log c) eigenvalues de
ay exponentially fast to almost zero.The rest of the eigenvalues are very 
lose to zero.
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Where the name �PSWFs� 
omes from?There exists a stri
tly in
reasing sequen
e of real numbers η0 < η1 < . . . , su
h that ψj areeigenfun
tions of the di�erential operator

Lψj ≡
(

−(1 − x2)
d2

dx2
+ 2x

d

dx
+ c2x2

)

ψj(x) = ηjψj(x).

The eigenfun
tions of L have been known as the angular prolate spheroidal fun
tions.About 50 years ago Slepian et.al. dis
overed that L and Fc 
ommute and 
onstru
ted auseful theory for bandlimited fun
tions.We note that if c→ 0 then, in this limit, PSWFs ψj be
ome the Legendre polynomials.Also, for any n ≥ 0, the �rst n fun
tions ψj, j = 0, . . . , n− 1, form a Chebyshev system.In parti
ular, the number of zeros of ψj in [−1, 1] is equal to j.
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Important properties of PSWFsDe�ned on the interval [−1, 1], PSWFs ψj are extended to the real line via
ψj(x) =

1

µjπ

∫ 1

−1

sin c(x− y)

(x− y)
ψj(y)dy.

These fun
tions are orthogonal on both [−1, 1] and the real line (−∞,∞),
∫ 1

−1

ψj(x)ψl(x) dx = δjl and ∫ ∞

−∞
ψj(x)ψl(x) dx =

1

µj
δjl.

We have the optimal separated representation for the exponential,

eicxy =
∞
∑

j=0

λj ψj(x)ψj(y) .
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Re
ent results: Gaussian-type quadratures for bandlimitedfun
tions

Currently there are two methods for �nding nodes and weights to integrate fun
tions eibxfor |b| ≤ c with user sele
ted a

ura
y ǫ:

• Sin
e the �rst n PSWFs form a Chebyshev system, the generalized Gaussian quadraturesfor PSWFs 
an be 
onstru
ted numeri
ally. For a given a

ura
y ǫ and a 
hoi
e of n,these quadratures are also quadratures for exponentials. This approa
h has been taken inXiao-Rokhlin-Yarvin, Inverse Problems, 2001
• We have 
onstru
ted a new type of the generalized Gaussian quadratures dire
tly forexponentials in Beylkin-Monzón, Appl. & Comp. Harm. Anal., v. 12, 2002. Thesequadratures are parameterized by eigenvalues of the Toeplitz matrix 
onstru
ted fromthe trigonometri
 moments of a positive measure. For a given a

ura
y ǫ, sele
ting aneigenvalue 
lose to ǫ and the 
orresponding eigenve
tor yields (in the end) an approximatequadrature for that a

ura
y.
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Distribution of nodes of Gaussian quadratures
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Sampling rate for Gaussian quadratures
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A

ura
y of the Gaussian quadratures
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Comparison of derivative operators
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Error of di�erentiating sin(bx) for |b| ≤ 32π on the interval [−1, 1] using PSWFs with 64nodes, 4th-order FD and the Chebyshev polynomials of degrees up to 15 on 4 subintervals.
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Slepian fun
tions in higher dimensions

Slepian (1964) also 
onsidered mapping of a disk in spa
e to a disk in the Fourier domain(or a ball in higher dimension).

However, the spe
trum of the spa
e-limiting and band-limiting operator for the disk-to-diskmapping is substantially di�erent from that in 1D. Namely, the 
omplete spe
trum has alarge transition region (of order O(N logN) out of O(N2) eigenvalues).

Re
ently Yoel Shkolnisky implemented Slepian's 
onstru
tion. For ea
h angular mode thetransition region is O(logN), but there are O(N) angular modes!
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Transforms from square in spa
e to a disk in Fourierdomain (and ba
k)

• A really long list of appli
ations whi
h in
lude the Radon transform and its pra
ti
alvariants

• Note that the pseudo-polar DFT maps a square in spa
e to a square in Fourier domainbut with a radial grid

• Dire
tional bases, 
urvelets, et
.Is there a �
orre
t� mathemati
al obje
t, an analogue of DFT, or this is just numeri
s?What are �good� grids in a disk?
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Forward and adjoint transforms

Consider the Fourier transform of a fun
tion f supported in B,
f̂(p) = F2c[f ](p) =

∫

B

f(x)e−ix·pdx,

and restri
t the support of f̂ to the disk of radius 2
, so that
F2c : L2(B) → L2(D2c).We then 
onsider the adjoint transform

F∗
2c[ĝ](x) =

1

4π2

∫

D2c

ĝ(p)eix·pdp,

and limit the support of the resulting fun
tion to the square B, so that

F∗
2c : L2(D2c) → L2(B).
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Slepian operator

We now de�ne the band-limiting and spa
e-limiting operator as
Q2c = F∗

2cF2c : L2(B) → L2(B),where Q2c[f ](x) = 1
4π2

∫

D2c
f̂(p)eix·pdp. The 
ompa
t positive de�nite operator Q2c a
tsas a 
onvolution with kernel

K2c(x) = K2c(x1, x2) =
1

4π2

∫

D2c

eip·xdp =
c J1(2c

√

x2
1 + x2

2)

π
√

x2
1 + x2

2

,

and we 
onsider the eigenvalue problem
µjψj,2c(y) =

∫

B

K2c(y − z)ψj,2c(z) dz,

where y, z ∈ B, j = 0, 1, 2, . . . and 1 > µ0 > µ1 ≥ µ2 ≥ . . . .
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Spe
trum of spa
e-limiting and band-limiting operator forsquare to disk mapping

Eigenvalues of spa
e-limiting and band-limiting operator for equally and unequally spa
eddis
retization in spa
e (N = Nω = 60).
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Eigenve
tors in the �e�e
tive null spa
e�

The last three eigenve
tors of (top row) and the magnitude of their dis
rete Fouriertransforms (bottom row) for N = 21.

18



Quadratures: nodes and weights on the diameter of the disk

We 
ompute for given ǫ > 0 and bandlimit 2
√

2c > 0 the nodes |ρk| < 1 and the weights
wk > 0, k = 1, . . . ,M , where M = M(c, ǫ), su
h that for all y ∈ [−1, 1]

∣

∣

∣

∣

∣

∫ 1

−1

ei 2
√

2cρy |ρ| dρ−
M
∑

k=1

wke
i 2

√
2cρky

∣

∣

∣

∣

∣

≤ πǫ

c2
.

With these we obtain a dis
retization of the kernel,
K2c(x) =

c2

π2

∫ 2π

0

∫ 1

0

ei 2c ρ(x1 cos θ+x2 sin θ)ρ dρ dθ

=
c2

2π2

∫ 2π

0

(∫ 1

−1

ei 2c ρ(x1 cos θ+x2 sin θ)|ρ| dρ
)

dθ.
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Example of nodes and weights on the diameter

Weights at radial nodes for M = 30, ǫ ≈ 9.75 · 10−6 and c ≈ 23.324. As expe
ted, theweights mimi
 the measure |ρ|dρ.
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Inversion on a subspa
e

Consider

f =

N2
ω−1
∑

j=0

〈f , ψω
j 〉ωψω

j .

For a given a

ura
y δ > 0, split the spe
trum of Slepian operator into three parts

Jhead =
{

j ∈ N |µω
j > 1 − δ

}, Jdecay =
{

j ∈ N | 1 − δ ≥ µω
j ≥ δ

}, and Jtail =
{

j ∈ N |µω
j < δ

}.We assume that f has a small proje
tion on the eigenve
tors of the tail region,





∑

j∈Jtail

|〈f , ψω
j 〉ω|2(1 − µω

j )2





1/2

≤ δ‖f‖ω.
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Inversion algorithm

Given f ♯ = Gω,2c[f ], where Gω,2c is the forward transform, we would like to re
over f(under the assumption).Assume that the fun
tions ψω
j and ψ♯,ω

j for indi
es j ∈ Jdecay have been 
omputed inadvan
e. We 
ompute1. αj =
〈

f ♯, ψ♯,ω
j

〉

σ

for indi
es in Jdecay.2. Given αj and the eigenvalues µω
j , we form

d =
∑

j∈Jdecay

αj

µω
j

ψω
j and d♯ =

∑

j∈Jdecay

αj

µω
j

ψ♯,ω
j .

We note that Gω,2c(d) = d♯.3. As an approximation to f we 
ompute
frecon = G∗

ω,2c[f
♯ − d♯] + d.
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Rotation of a fun
tion
f(x1, x2) = e−σ1(x1−τ)2e−σ2x2

2 cos(kx1) + e−σ1(x1+τ)2e−σ2x2
2 cos(kx2),with k = 40π, σ1 = 240, σ2 = 100 and τ = 1/7. The rotation is by φ = π/5 witha

ura
y ≈ 1.33 · 10−11.
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Inversion via a fast algorithm
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Rotating Grid
.
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Grids with even and odd subdivisions

Grids with even Nα = Nβ = 36 and odd Nα = Nβ = 37 number of points.
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Trigonometri
 interpolation on 
ir
les in the Fourier domain
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Imbeded Grids
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Experiments to redu
e the e�e
t of limited aperture
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Simple test
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Re
onstru
tion
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Final remarks

Further work:

• Using these new transforms in pra
ti
al algorithms (MRI, Ele
tron mi
ros
opy, ...). Notan obvious or easy task!

• 3D: dis
retization of the sphere, rotating spheres, et
.
• Dire
tional bases suitable for numeri
al appli
ations
• Near optimal grids in �arbitrary� domains for fun
tions bandlimited in a disk
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