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Physical setting – CryoEM imaging

Electron source

Copy 1

Projection 1

Electron source

Copy 2

Projection 2

Electron source

Copy 3

Projection 3

g1∈SO(3) g2∈SO(3) g3∈SO(3)

• CryoEM: Put sample in liq-

uid medium, freeze, take im-

ages using an Electron Mi-

croscope.

• Many images: each image

corresponds to a different

copy of the molecule in a dif-

ferent spatial orientation.

• Orientations are random and

unknown: there might a pre-

ferred orientation!

Goal: Reconstruct the 3D molecule from its

projections taken at random unknown directions
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Physical setting – CryoEM imaging (cont.)

• Imaging process destroys the sample: a single molecule can be

imaged only once.

• Images are small (100 × 100) and noisy (signal to noise ratio

< 1).

• If orientations were known then reconstruction could be done

by the classical tomography algorithms.

• BUT, orientations are unknown!

• The structure of the molecule is also unknown.

• Can the orientations be revealed from the images themselves,

without knowing what is being imaged?

• Assumption: the molecule has no symmetries.
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What is being measured by the electron
microscope? – The Radon transform

Projection

Molecule

Electron
source

g∈SO(3)

• φ(r) is the electric potential of

the molecule (r ∈ R
3).

• The molecule is rotated by

g ∈ SO(3): φg(r) = φ(g−1r).

• A projection image is

Pg(x, y) =

∫ ∞

−∞

φg(x, y, z) dz.

• Each projection is a collec-

tions of line integrals through

the molecule in a direction de-

termined by g ∈ SO(3).
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Projection Images: Toy Example
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The Fourier projection-slice theorem

• The Radon transform and the Fourier transform are related by

the projection-slice theorem.

• θ ∈ S2 beaming direction, image is formed on the orthogonal

plane θ⊥.

• The 2D FT of the projection image is the double integral

P̂θ(ξ) =

∫

θ⊥

e−ir·ξPθ(r) dr.

• The 3D FT of the molecule is the triple integral

φ̂(ξ) =

∫

R3

e−ir·ξφ(r) dr.

• Projection-slice Theorem: P̂θ(η) = φ̂(η), η ∈ θ⊥.
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Geometry of the projection-slice theorem

Projection Fourier transform 3D Fourier
space

3D Fourier
space

Fourier transformProjection

P0 P̂0

P1 P̂1

The 2D Fourier transform of a projection image is a slice of the 3D

Fourier transform of the molecule.
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Geometry of the projection-slice theorem (cont.)

• The Fourier transform of any two projections has a common line – a

ray in 3D Fourier space of the molecule.

• Each ray of the 3D Fourier transform of the molecule corresponds to

a point on S2 (the direction of the ray).

• Every image corresponds to a great circle over S2.
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Molecular reconstruction puzzle

• The radial Fourier rays are the puzzle pieces – not the

projection images.

• Every image is a circular chain of pieces – Fourier

projection-slice theorem.

• Common line: meeting point

• Goal: determine the location of each piece – orientation of each

radial line.
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Main idea

Construct an operator on the dataset (Fourier rays)

whose eigenvectors reveal the orientation of each ray

• Construct a graph where each Fourier ray is a node.

• Connect edges using the Fourier projection-slice theorem.

• Explore the spectrum and eigenvectors of the graph –

eigenvectors will reveal orientations.
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Identify local geometry

Projection Fourier transform 3D Fourier
space

P0 P̂0

(k0,l0)

(k0,l0)

• The Fourier transform of a projection P0 corresponds to a plane in

the 3D Fourier space, that is , a great circle on S2.

• The neighbors of (k0, l0) on P̂0 lie on a geodesic arc on S2 centered

at (k0, l0).

• Identify d such neighbors (say 10) on each side of (k0, l0) – write

down their indices (k0, l−d), . . . , (k0, ld).
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Identify local geometry – two projections with a
common line

Projection Fourier transform 3D Fourier
space

3D Fourier
space

Fourier transformProjection

P0 P̂0

(k0,l0)

(k1,l1)=(k0,l0)
(k1,l1)=(k0,l0)

P1 P̂1

• P̂1 gives another geodesic circle through (k0, l0).

• Identify d neighbors on each side of (k0, l0) on this circle –

(k1, l−d), . . . , (k1, ld).
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Identify local geometry – “spider” neighborhood

Two projections with a

common line give

intersecting arcs on S2

Repeat for several

projections having (k0, l0) as

a common line – “spider”

neighborhood
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Properties of the “spider” neighborhood

• The projection-slice theorem allows to identify for each ray its

“spider” neighborhood on S2.

• The “spider” neighborhood is symmetric around (k0, l0).

• The average of their coordinates on S2 is a multiple of the

coordinate of (k0, l0) – each pair of opposite legs balance each

other.
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Orientation revealing operator

• Given K projection images, compute L equally-spaced polar

Fourier rays.

• The dataset of the problem is the set of KL Fourier rays (and

no longer the projection images).

• The “orientation revealing operator” is a matrix W of size

KL×KL – each row corresponds to a Fourier ray (a point on

S2).

• For each row (Fourier ray) put 1’s at columns that correspond

to its “spider” neighbors – W is sparse.
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Orientation revealing operator

• Normalize W to be row-stochastic – divide each row by its sum

Dii =
KL
∑

j=1

Wij ,

A = D−1W.

• A is not symmetric – spectrum may be complex.

• λ0 = 1. Other eigenvalues satisfy |λ| < 1.

• (1, . . . , 1)T is an eigenvector.

• Each “spider” may have a different number of legs.

• Any symmetric weights would work.
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A as an averaging operator

• Take a vector f = (f1, . . . , fKL)
T
.

• View f as a function on the dataset of the rays: fj is the value

of the function for ray j.

• Af is a vector whose j entry is the average of f over the

“spider” neighborhood of ray j.

(Af)j =











...

0 1
|Sj |

0 1
|Sj |

. . . 0
...





















f1
...

fKL











=
1

|Sj |

∑

l∈Sj

fl.

• A is an averaging operator on the dataset of Fourier rays - the

geometry of the averaging is determined by “spider”

neighborhoods.
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Eigenvectors of A reveal orientations

• Let pj = (xj , yj , zj) ∈ S2 be the direction vector of ray j.

• Since the “spider” neighborhood is symmetric around pj

1

|Sj |

∑

l∈Sj

pl = λpj ,

or, in coordinates:

1

|Sj |

∑

l∈Sj

xl = λxj ,
1

|Sj |

∑

l∈Sj

yl = λyj ,
1

|Sj |

∑

l∈Sj

zl = λzj .

• Reminder:

(Ax)j =
1

|Sj |

∑

l∈Sj

xl, (Ay)j =
1

|Sj |

∑

l∈Sj

yl, (Az)j =
1

|Sj |

∑

l∈Sj

zl.
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Eigenvectors of A reveal orientations (cont.)

• So,

(Ax)j = λxj , (Ay)j = λyj , (Az)j = λzj .

• The coordinate functions of the dataset x = (x1, . . . , xKL),

y = (y1, . . . , yKL), z = (z1, . . . , zKL) are eigenvectors of A.

• The direction vector of each Fourier ray pj = (xj , yj , zj) ∈ S2 is

given by the eigenvectors of A.

• If

Aψ1 = λψ1, Aψ2 = λψ2, Aψ3 = λψ3,

then

pj = (xj , yj , zj) = (ψ1(j), ψ2(j), ψ3(j)) .
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Algorithm

• Compute the polar Fourier transform of all projections.

• Find common lines for all pairs of Fourier images.

• Use common lines to construct the “spider” matrix A.

• Compute eigenvectors Aψi = λiψi.

• Embed each Fourier ray rj into the three linear eigenvectors

(ψ1, ψ2, ψ3)

rj 7→ (ψ1(j), ψ2(j), ψ3(j)).

• The embedding reveals the projection orientations up to

rotation and reflection.
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Eigenvectors unmixing

• A is not symmetric – eigenvectors not orthogonal.

• x, y, z are eigenvectors (with the same eigenvalue), but so any

linear combination of x, y, z.

• Computed eigenvectors of A give some arbitrary linear

combination of x, y, z – unmix x, y, z from the given

eigenvectors.

• Let ψ1, ψ2, ψ3 be the computed eigenvectors, and let M be the

3 × 3 unmixing matrix such that

M









— ψT
1 —

— ψT
2 —

— ψT
3 —









=









— xT —

— yT —

— zT —
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Eigenvectors unmixing (cont.)

• Set

Ψ =









— ψT
1 —

— ψT
2 —

— ψT
3 —









, X =









— xT —

— yT —

— zT —









.

We are looking for M such that MΨ = X .

• x, y, z are coordinates on S2 and so

(XTX)ii = x2
i + y2

i + z2
i = 1, or,

(

ΨTMTMΨ
)

ii
= 1.

• Since Ψ is known, this gives KL linear equations for the 9

entries of MTM – solve using least-squares.

• Once MTM is given, factor M using Cholesky decomposition

or SVD.
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Improvements to the algorithm

• Use Fourier space geometry again (“cosmetics”):

PCA same image Fourier lines and equally space them.

• Do not use all intersection of all projection images. Use only

certain common lines. This gives fewer arcs in each “spider”

(sparser matrix) while increasing the accuracy of the

embedding (due to fewer errors in A).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9
x 10

−3

How “common” is the common line between images –

sorted from best to worst
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Improvements to the algorithm (cont.)

• Real-life projection images are never centered. The algorithm

can be modified to estimate image translations as well as

orientations simultaneously – essential for reconstruction.
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Results

• Toy molecule: K = 200 projections; L = 400 Fourier rays in

each projection.
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Results (cont.)

• Spectrum of the A
|1

−
λ

i
|
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The eigenspace of dimension 3 is apparent.
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Results (cont.)

• Three linear eigenfunctions plotted on S2 (after unmixing)

Clearly, these eigenfunctions correspond to the x, y, and z

coordinates on S2.
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Results (cont.)

• Angle estimation error (angle between the true direction of

each Fourier ray and its estimated direction)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

1000

2000

3000

4000

5000

6000

7000

Maximal estimation error is less than 0.2 degrees.
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Results (cont.)

Original Reconstructed
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Another example

• 100 images

• Each image 96 × 96 pixels

• Images are not centered
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Another example (cont.)
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Noisy projections
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Advantages of the algorithm

• Global: all Fourier rays are linked together.

• Fast: linear in data size KL and intersection points
(

K
2

)

.

• Averaging: all geometric information is averaged.

• Robust: errors due to false detections of common lines are

smoothed out (can be viewed as matrix perturbation).

• Independent of the distribution of the orientations.

• Insensitive to in-plane rotations of the projection images.
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Further properties of the eigenvectors – spherical
harmonics

|1
−

λ
i
|
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• The spherical harmonics Y m
l are the eigenfunctions of the

Laplacian on the sphere

∆S2Y m
l = −l(l + 1)Y m

l , l = 0, 1, 2, . . . , m = −l, . . . , l.
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Further properties of the eigenvectors – spherical
harmonics (cont.)

• Funk-Hecke: The spherical harmonics are the eigenfunctions of

any integral operator that commutes with rotations

(Kf)(β) =

∫

S2

k(〈β, β′〉)f(β′) dSβ′ ,

KY m
l = λlY

m
l .

• The operator A (“spider kernel”) commutes with rotations only

in the limit, so spherical harmonics are not guaranteed.

• The three linear spherical harmonics are exact eigenfunctions

of A.
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Center determination

• For two shifted projections

Q1(x
1, y1) = P1(x

1 + ∆x1, y1 + ∆y1),

Q2(x
2, y2) = P2(x

2 + ∆x2, y2 + ∆y2)

we have

Q̂j(ω
j
x, ω

j
y) = P̂j(ω

j
x, ω

j
y)eı(∆xjωj

x+∆yjωj
y).

• Along the common line

P̂1(r cos θ1, r sin θ1) = P̂2(r cos θ2, r sin θ2),

or,

Q̂1(r cos θ1, r sin θ1)e−ır(∆x1 cos θ1+∆y1 sin θ1)

= Q̂2(r cos θ2, r sin θ2)e−ır(∆x2 cos θ2+∆y2 sin θ2).
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Center determination (cont.)

• Equation for the unknowns (∆x1,∆y1) and (∆x2,∆y2)

µ1,2 = ∆x1 cos θ1 + ∆y1 sin θ1 − ∆x2 cos θ2 − ∆y2 sin θ2.

with
1

r
arg

Q̂1(r cos θ1, r sin θ1)

Q̂2(r cos θ2, r sin θ2)
= µ1,2

• One equation for each common line

• System is very sparse (4 unknowns per equation)

• Solve using least-squares
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Thank You!
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