Extracting Macroscopic Data from Microscopic Images -

grain boundaries and macroscopic deformations from images on atomic scale

Martin Rumpf, Bonn University

Image Analysis Challenges in Molecular Microscopy, January 28 - February 1, 2008
Extracting macroscopic data from microscopic images

joint work with:

B. Berkels, O. Nemitz (Bonn),
A. Rätz, A. Voigt (Dresden)
Overview

Macroscopic Parameters from Microscopic Observations

Transmission electron microscopy
(courtesy G.H. Campell, Lawrence Livermore Nat. Lab.)

Phase field crystal simulation
[Rätz, Voigt '06]
Overview

macroscopic parameters from microscopic observations

transmission electron microscopy (courtesy G.H. Campell, Lawrence Livermore Nat. Lab.)

phase field cristal simulation [Rätz, Voigt '06]

aim: identification of grain boundary contours, orientations, and macroscopic deformation fields
Overview

macroscopic parameters from microscopic observations

- transmission electron microscopy (courtesy G.H. Campell, Lawrence Livermore Nat. Lab.)
- phase field crystal simulation

 [Rätz, Voigt '06]

aim: identification of grain boundary contours, orientations, and macroscopic deformation fields

→ a generalized Mumford Shah approach
Recall: Mumford Shah free discontinuity problem

Given \(g : \Omega \rightarrow \mathbb{R} \) find an set \(S \subset \Omega \) and a piecewise smooth \(u : \Omega \setminus S \rightarrow \mathbb{R} \) such that
\[
E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S)
\]
is minimized.

[Mumford, Shah '86]
Recall: Mumford Shah free discontinuity problem

Given $g : \Omega \to \mathbb{R}$ find an set $S \subset \Omega$ and a piecewise smooth $u : \Omega \setminus S \to \mathbb{R}$ such that

$$E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S)$$

is minimized.

[Muoford, Shah '86]

Shape optimization perspective

Suppose Ω is partitioned into domains \mathcal{O}_i ($i = 1, \ldots, m$) with $\Omega = \bigcup_{i=1}^{m} \mathcal{O}_i$, $\mathcal{O}_i \cap \mathcal{O}_j = \emptyset$ and consider
Recall: Mumford Shah free discontinuity problem

Given $g : \Omega \to \mathbb{R}$ find an set $S \subset \Omega$ and a piecewise smooth $u : \Omega \setminus S \to \mathbb{R}$ such that

$$E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S)$$

is minimized.

[\text{Mumford, Shah '86}]

Shape optimization perspective

Suppose Ω is partitioned into domains O_i ($i = 1, \ldots, m$) with $\Omega = \bigcup_{i=1}^{m} O_i$, $O_i \cap O_j = \emptyset$ and consider

$$S = \bigcup_{i=1}^{m} \partial O_i$$
Recall: Mumford Shah free discontinuity problem

Given \(g : \Omega \rightarrow \mathbb{R} \) find an set \(S \subset \Omega \) and a piecewise smooth \(u : \Omega \setminus S \rightarrow \mathbb{R} \) such that

\[
E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S)
\]

is minimized.

[\text{Mumford, Shah '86}]

Shape optimization perspective

Suppose \(\Omega \) is partitioned into domains \(\mathcal{O}_i \) \((i = 1, \ldots, m) \) with \(\Omega = \bigcup_{i=1}^{m} \mathcal{O}_i \), \(\mathcal{O}_i \cap \mathcal{O}_j = \emptyset \) and consider

\[
S = \bigcup_{i=1}^{m} \partial \mathcal{O}_i, \quad u_i = u[\mathcal{O}_i] = u\big|_{\mathcal{O}_i}.
\]
Recall: Mumford Shah free discontinuity problem

Given \(g : \Omega \to \mathbb{R} \) find an set \(S \subset \Omega \) and a piecewise smooth \(u : \Omega \setminus S \to \mathbb{R} \) such that

\[
E[u, S] = \int_\Omega (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S)
\]

is minimized.

[\text{Mumford, Shah '86}]

Shape optimization perspective

Suppose \(\Omega \) is partitioned into domains \(O_i \) \((i = 1, \ldots, m)\) with \(\Omega = \bigcup_{i=1}^{m} O_i \), \(O_i \cap O_j = \emptyset \) and consider

\[
S = \bigcup_{i=1}^{m} \partial O_i , \quad u_i = u[O_i] = u\big|_{O_i}.
\]

Then we ask for a minimizing partition \((O_i)_{i=1,\ldots,m}\) of

\[
E[(O_i)_{i=1,\ldots,m}] = E[(u[O_i], O_i)_{i=1,\ldots,m}]
\]
Mumford Shah model and shape optimization

General structure of the Mumford Shah functional

$$E[(u_i, O_i)_i] = \sum_i (E_{\text{fid}}[u_i, O_i] + E_{\text{prior}, u}[u_i, O_i] + E_{\text{prior}, O}[O_i])$$

where \((O_i)_i\) is a domain partition

\(u_i\) a parameter (function) on \(O_i\)
Mumford Shah model and shape optimization

General structure of the Mumford Shah functional

\[
E[(u_i, O_i)_i] = \sum_i (E_{\text{fid}}[u_i, O_i] + E_{\text{prior},u}[u_i, O_i] + E_{\text{prior},O}[O_i])
\]

where \((O_i)_i\) is a domain partition
\(u_i\) a parameter (function) on \(O_i\)

“region competition”: different local descriptors \(u_i\) compete for terrain [Zhu, Yuille '96]
Mumford Shah model and shape optimization

General structure of the Mumford Shah functional

\[E[(u_i, O_i)_i] = \sum_i (E_{\text{fid}}[u_i, O_i] + E_{\text{prior},u}[u_i, O_i] + E_{\text{prior},O}[O_i]) \]

where \((O_i)_i\) is a domain partition

\(u_i\) a parameter (function) on \(O_i\)

“region competition”: different local descriptors \(u_i\) compete for terrain [Zhu, Yuille ’96]

in our generalized Mumford Shah approach:
Mumford Shah model and shape optimization

General structure of the Mumford Shah functional

\[E[(u_i, O_i)_i] = \sum_i \left(E_{\text{fid}}[u_i, O_i] + E_{\text{prior},u}[u_i, O_i] + E_{\text{prior},O}[O_i] \right) \]

where \((O_i)_i\) is a domain partition
\(u_i\) a parameter (function) on \(O_i\)

“region competition”: different local descriptors \(u_i\) compete for terrain [Zhu, Yuille '96]

in our generalized Mumford Shah approach:

- a macroscopic orientation parameter describes the microscopic lattice anisotropy
General structure of the Mumford Shah functional

\[E[(u_i, O_i)_i] = \sum_i (E_{\text{fid}}[u_i, O_i] + E_{\text{prior}, u}[u_i, O_i] + E_{\text{prior}, o}[O_i]) \]

where \((O_i)_i\) is a domain partition

\(u_i\) a parameter (function) on \(O_i\)

“region competition”: different local descriptors \(u_i\) compete for terrain [Zhu, Yuille '96]

in our generalized Mumford Shah approach:

- a macroscopic orientation parameter describes the microscopic lattice anisotropy
- a macroscopic deformation influences the lattice pattern
Some related work on pattern analysis

- Unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa ’91]
Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa ’91]
- texture classification using Wavelets [Unser ’95]
Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa '91]
- texture classification using Wavelets [Unser '95]
- BV^*, BV decomposition [Meyer '01]
Identification of grain boundary at atomic scale

Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa ’91]
- texture classification using Wavelets [Unser ’95]
- BV^*, BV decomposition [Meyer ’01]
- combining level sets and Gabor filter for texture analysis [Chan, Vese, Osher ’02]
Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa '91]
- texture classification using Wavelets [Unser '95]
- BV^*, BV decomposition [Meyer '01]
- combining level sets and Gabor filter for texture analysis [Chan, Vese, Osher '02]
- Numerical approx. of BV^*, BV decomposition [Vese, Osher '03]
Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa ’91]
- texture classification using Wavelets [Unser ’95]
- BV^*, BV decomposition [Meyer ’01]
- combining level sets and Gabor filter for texture analysis [Chan, Vese, Osher ’02]
- Numerical approx. of BV^*, BV decomposition [Vese, Osher ’03]
- dynamic texture segmentation [Doretto, Cremers, Favaro, Soatto ’03]
Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa '91]
- texture classification using Wavelets [Unser '95]
- BV^*, BV decomposition [Meyer '01]
- combining level sets and Gabor filter for texture analysis [Chan, Vese, Osher '02]
- Numerical approx. of BV^*, BV decomposition [Vese, Osher '03]
- dynamic texture segmentation [Doretto, Cremers, Favaro, Soatto '03]
- wavelet texture analysis [Aujol et al. '06]
Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa '91]
- texture classification using Wavelets [Unser '95]
- BV^*, BV decomposition [Meyer '01]
- combining level sets and Gabor filter for texture analysis [Chan, Vese, Osher '02]
- Numerical approx. of BV^*, BV decomposition [Vese, Osher '03]
- dynamic texture segmentation [Doretto, Cremers, Favaro, Soatto '03]
- wavelet texture analysis [Aujol et al. '06]
- combining geometric and texture information [Aujol, Chan '06]
Identification of grain boundary at atomic scale

Some related work on pattern analysis

- unsupervised texture segmentation using Markov random fields [Manjunath, Chellappa ’91]
- texture classification using Wavelets [Unser ’95]
- BV^*, BV decomposition [Meyer ’01]
- combining level sets and Gabor filter for texture analysis [Chan, Vese, Osher ’02]
- Numerical approx. of BV^*, BV decomposition [Vese, Osher ’03]
- dynamic texture segmentation [Doretto, Cremers, Favaro, Soatto ’03]
- wavelet texture analysis [Aujol et al. ’06]
- combining geometric and texture information [Aujol, Chan ’06]
- ...

Identification of grain boundary at atomic scale

An energy based on local pattern classification

description of the lattice:
Identification of grain boundary at atomic scale

An energy based on local pattern classification

description of the lattice:

\[x + M(\alpha)q_i \quad \text{atom position} \]
\[x + M(\alpha)q_i \quad \text{neighbour locations} \]
\[(i = 1, \ldots, m) \]

\[M(\alpha) := \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \]

\[\text{e.g. } q_i := d \left(\cos \left(i \frac{\pi}{3} \right), \sin \left(i \frac{\pi}{3} \right) \right) \]
Identification of grain boundary at atomic scale

An energy based on local pattern classification

description of the lattice:

\[x \]
atom position

\[x + M(\alpha)q_i \]
neighbour locations
\((i = 1, \ldots, m) \)

\[M(\alpha) := \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \]

e.g. \(q_i := d(\cos(i\pi/3), \sin(i\pi/3)) \)

indicator function for atomic dots:

\[\chi_{[u>\theta]}(x) := \begin{cases}
1; & u(x) > \theta \\
0; & \text{else}
\end{cases} \]
description of the lattice:

\[x \] atom position

\[x + M(\alpha)q_i \] neighbour locations

\[(i = 1, \cdots, m) \]

local lattice classification function:
description of the lattice:

\[x \quad \text{atom position} \]
\[x + M(\alpha)q_i \quad \text{neighbour locations} \]
\[(i = 1, \cdots, m) \]

local lattice classification function:

\[f[\alpha](x) = \frac{d^2}{mr^2} \chi_{[u>\theta]}(x) \sum_{i=1}^{m} (1 - \chi_{[u>\theta]}(x + M(\alpha)q_i)) , \]

where \(d \) distance between atom dots,
\(m \) number of neighbouring dots,
\(r \) dot radius.
macroscopic lattice orientation function:

\[\alpha = \sum_{j=1, \ldots, n} \alpha_j \chi_{O_j} \]
Identification of grain boundary at atomic scale

An energy based on local pattern classification (cont.)

macroscopic lattice orientation function:

\[
\alpha = \sum_{j=1,\ldots,n} \alpha_j \chi_{\mathcal{O}_j}
\]

Mumford Shah type functional \(E_{\text{grain}} \) acting on lattice orientations \(\alpha_j \) and grain domains \(\mathcal{O}_j \):

\[
E_{\text{grain}}[(\alpha_j, \mathcal{O}_j)_{j=1,\ldots,n}] = \sum_{j=1,\ldots,n} \left(\int_{\mathcal{O}_j} f[\alpha_j](x) \, dx + \frac{\nu}{2} \mathcal{H}^1(\partial \mathcal{O}_j) \right),
\]
macroscopic lattice orientation function:

\[\alpha = \sum_{j=1, \ldots, n} \alpha_j \chi_{O_j} \]

Mumford Shah type functional \(E_{\text{grain}} \) acting on lattice orientations \(\alpha_j \) and grain domains \(O_j \) :

\[
E_{\text{grain}}[(\alpha_j, O_j)_{j=1, \ldots, n}] = \sum_{j=1, \ldots, n} \left(\int_{O_j} f[\alpha_j](x) \, dx + \frac{\nu}{2} \mathcal{H}^1(\partial O_j) \right),
\]
direct consequences of the variational approach:

- relation between interface curvature on $O_j \cap O_k$ and fidelity term:
 \[
 \nu \kappa = - (f[\alpha_j] - f[\alpha_k])
 \]

- \[
 0 \leq f[\alpha] \leq \frac{d^2}{r^2} \Rightarrow |\kappa| \leq \frac{d^2}{\nu r^2}
 \]
direct consequences of the variational approach:

- relation between interface curvature on $O_j \cap O_k$ and fidelity term:
 \[\nu \kappa = -(f[\alpha_j] - f[\alpha_k]) \]
 \[0 \leq f[\alpha] \leq \frac{d^2}{r^2} \Rightarrow |\kappa| \leq \frac{d^2}{\nu r^2} \]

- Young's law at triple points, i.e. three grains always meet at equal angles of $\frac{2}{3} \pi$.
Recall: Chan-Vese approximation

\[E[u, S] = \int_{\Omega} (u - g)^2\,dx + \mu \int_{\Omega \setminus S} |\nabla u|^2\,dx + \nu H_{d-1}(S) \]

in the piecewise constant case with \(S = \partial O_1 \cup \partial O_2 \), \(u|_{O_i} \equiv \text{const} \)

we consider \(O_1 = [\phi < 0] = [H(\phi) = 0] \), \(O_2 = [H(\phi) = 1] \) (Heaviside function) and reformulate

\[E[u_1, u_2, \phi] = \int_{\Omega} H(\phi)((u_2 - g)^2 + \mu |\nabla u_2|^2) + (1 - H(\phi)) ((u_1 - g)^2 + \mu |\nabla u_1|^2)\,dx + \nu |D_H(\phi)|_H(\Omega) \]

cf. [Vese, Chan '99]
numerical algorithm for grain boundary extraction

Recall: Chan-Vese approximation

for the original Mumford Shah functional

\[E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu H^{d-1}(S) \]

in the piecewise constant case with \(S = \partial \Omega_1 \cup \partial \Omega_2 \), \(u|_{\Omega_i} \equiv \text{const} \)
numerical algorithm for grain boundary extraction

Recall: Chan-Vese approximation

for the original Mumford Shah functional

\[E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S) \]

in the piecewise constant case with \(S = \partial O_1 \cup \partial O_2, \ u|_{O_i} \equiv \text{const} \)

we consider \(O_1 = [\phi < 0] = [H(\phi) = 0], \overline{O_2} = [H(\phi) = 1] \)

(\(H \) heavyside fct.)
numerical algorithm for grain boundary extraction

Recall: Chan-Vese approximation

for the original Mumford Shah functional

\[E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\partial S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S) \]

in the piecewise constant case with \(S = \partial O_1 \cup \partial O_2, \ u|_{O_i} \equiv \text{const} \)

we consider \(O_1 = [\phi < 0] = [H(\phi) = 0], \ \overline{O}_2 = [H(\phi) = 1] \)

(\(H \) heavyside fct.) and reformulate

\[E[u_1, u_2, \phi] = \int_{\Omega} H(\phi)((u_2 - g)^2 + \mu |\nabla u_2|^2) + \]

\[(1 - H(\phi))((u_1 - g)^2 + \mu |\nabla u_1|^2) \, dx + \nu |D H(\phi)|(\Omega) \]

cf. [Vese, Chan '99]
for the original Mumford Shah functional

\[E[u, S] = \int_{\Omega} (u - g)^2 \, dx + \mu \int_{\Omega \setminus S} |\nabla u|^2 \, dx + \nu \mathcal{H}^{d-1}(S) \]

in the piecewise constant case with \(S = \partial \mathcal{O}_1 \cup \partial \mathcal{O}_2, u|_{\mathcal{O}_i} \equiv \text{const} \)

we consider \(\mathcal{O}_1 = [\phi < 0] = [H(\phi) = 0], \quad \overline{\mathcal{O}_2} = [H(\phi) = 1] \)

(\(H \) heavyside fct.) and approximate

\[E_\delta[u_1, u_2, \phi] = \int_{\Omega} H_\delta(\phi)(u_2 - g)^2 + \mu |\nabla u_2|^2 + (1 - H_\delta(\phi))(u_1 - g)^2 + \mu |\nabla u_1|^2 + \nu |\nabla H_\delta(\phi)| \, dx \]

where \(H_\delta(s) = \frac{1}{2} + \frac{1}{\pi} \arctan(\frac{x}{\delta}) \).

cf. [Vese, Chan '99]
numerical algorithm for grain boundary extraction

Grain boundary extraction by a Chan-Vese approach

regularized lattice classification function:

\[f_\epsilon[\alpha](X) = \frac{d^2}{m r^2} H_\epsilon(u(x) - \theta) \sum_{i=1,\ldots,m} (1 - (H_\epsilon(u(x + M(\alpha)q_i) - \theta))) \]

\(\longrightarrow \) to be motivated later
A regularized lattice classification function:

\[f_\epsilon[\alpha](X) = \frac{d^2}{m r^2} H_\epsilon(u(x) - \theta) \sum_{i=1,\ldots,m} (1 - (H_\epsilon(u(x + M(\alpha)q_i) - \theta))) \]

→ to be motivated later

In the two grain case we obtain the approximate functional:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_\Omega H_\delta(\phi)f_\epsilon[\alpha_2] + (1 - H_\delta(\phi))f_\epsilon[\alpha_1] + \nu |\nabla H_\delta(\phi)| \, dx \]
Grain boundary extraction by a Chan-Vese approach

regularized lattice classification function:

\[f_\epsilon[\alpha](X) = \frac{d^2}{m r^2} H_\epsilon(u(x) - \theta) \sum_{i=1,\ldots,m} \left(1 - (H_\epsilon(u(x + M(\alpha)q_i) - \theta)) \right) \]

\[\longrightarrow \text{to be motivated later} \]

in the two grain case we obtain the approximate functional:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_\delta(\phi)f_\epsilon[\alpha_2] + (1 - H_\delta(\phi))f_\epsilon[\alpha_1] + \nu |\nabla H_\delta(\phi)| \, dx \]

where two types of regularization are involved:

- regularization parameter \(\delta \) for the macroscopic interfaces
Grain boundary extraction by a Chan-Vese approach

regularized lattice classification function:

\[f_{\epsilon}[\alpha](X) = \frac{d^2}{m r^2} H_{\epsilon}(u(x) - \theta) \sum_{i=1,\ldots,m} (1 - (H_{\epsilon}(u(x + M(\alpha)q_i) - \theta))) \]

\[\rightarrow \text{to be motivated later} \]

in the two grain case we obtain the approximate functional:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_{\delta}(\phi) f_{\epsilon}[\alpha_2] + (1 - H_{\delta}(\phi)) f_{\epsilon}[\alpha_1] \]

\[+ \nu |\nabla H_{\delta}(\phi)| \, dx \]

where two types of regularization are involved:

- regularization parameter \(\delta \) for the macroscopic interfaces
- regularization parameter \(\epsilon \) for the microscopic interfaces

\((\epsilon \leq \delta) \)
the functional to be minimized:

\[E_{\delta, \epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_\delta(\phi) f_\epsilon[\alpha_2] + (1 - H_\delta(\phi)) f_\epsilon[\alpha_1] + \nu |\nabla H_\delta(\phi)| \, dx \]
the functional to be minimized:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_{\delta}(\phi)f_{\epsilon}[\alpha_2] + (1 - H_{\delta}(\phi))f_{\epsilon}[\alpha_1] + \nu |\nabla H_{\delta}(\phi)| \, dx \]

Algorithm (in the two grain case):
the functional to be minimized:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_\delta(\phi) f_\epsilon[\alpha_2] + (1 - H_\delta(\phi)) f_\epsilon[\alpha_1] + \nu |\nabla H_\delta(\phi)| \, dx \]

Algorithm (in the two grain case):

- for fixed \(\Phi^k \in \mathcal{V}_h \) update \(\alpha_1^k, \alpha_2^k \) via a discrete version of

\[\alpha_1^{k+1} = \alpha_1^k - \tau \int_{\Omega} H_\delta(\phi) \partial_{\alpha_1} f_\epsilon[\alpha_1^k] \]

- \(\alpha_2^{k+1} = \alpha_2^k - \tau \int_{\Omega} H_\delta(\phi) \partial_{\alpha_2} f_\epsilon[\alpha_2^k] \)
the functional to be minimized:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_{\delta}(\phi) f_\epsilon[\alpha_2] + (1 - H_{\delta}(\phi)) f_\epsilon[\alpha_1] + \nu |\nabla H_{\delta}(\phi)| \, dx \]

Algorithm (in the two grain case):

- for fixed \(\Phi^k \in \mathcal{V}_h \) update \(\alpha_1^k, \alpha_2^k \) via a discrete version of

\[
\alpha_1^{k+1} = \alpha_1^k - \tau \int_{\Omega} H_{\delta}(\phi) \partial_{\alpha_1} f_\epsilon[\alpha_1^k]
\]

\[
\alpha_2^{k+1} = \alpha_2^k - \tau \int_{\Omega} (1 - H_{\delta}(\phi)) \partial_{\alpha_2} f_\epsilon[\alpha^k]
\]
Numerical relaxation with regularized gradient descent

the functional to be minimized:

\[E_{\delta,\epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_\delta(\phi) f_\epsilon[\alpha_2] + (1 - H_\delta(\phi)) f_\epsilon[\alpha_1] + \nu |\nabla H_\delta(\phi)| \, dx \]

Algorithm (in the two grain case):

- for fixed \(\Phi^k \in \mathcal{V}_h \) update \(\alpha^k_1, \alpha^k_2 \) via a discrete version of
 \[
 \alpha^{k+1}_1 = \alpha^k_1 - \tau \int_{\Omega} H_\delta(\phi) \partial_1 f_\epsilon[\alpha^k_1] \\
 \alpha^{k+1}_2 = \alpha^k_2 - \tau \int_{\Omega} (1 - H_\delta(\phi)) \partial_2 f_\epsilon[\alpha^k]
 \]

- for given \(\alpha^k_{1,2} \) compute \(\Phi^k \in \mathcal{V}_h \) via a discrete time step of:
 \[
 g \left(H'_\delta(\phi)^{-1} \partial_t \phi, \theta \right) = \int_{\Omega} \nu \frac{\nabla \phi}{|\nabla \phi|} \nabla \theta + (f_\epsilon[\alpha^k_1] - f_\epsilon[\alpha^k_2]) \theta \, dx \, ,
 \]
Numerical algorithm for grain boundary extraction

Numerical relaxation with regularized gradient descent

the functional to be minimized:

$$E_{\delta, \epsilon}[\alpha_1, \alpha_2, \phi] = \int_{\Omega} H_\delta(\phi) f_\epsilon[\alpha_2] + (1 - H_\delta(\phi)) f_\epsilon[\alpha_1] + \nu |\nabla H_\delta(\phi)| \, dx$$

Algorithm (in the two grain case):

- for fixed $\Phi^k \in \mathcal{V}_h$ update α_1^k, α_2^k via a discrete version of

 $$
 \begin{align*}
 \alpha_1^{k+1} &= \alpha_1^k - \tau \int_{\Omega} H_\delta(\phi) \partial_{\alpha_1} f_\epsilon[\alpha_1^k] \\
 \alpha_2^{k+1} &= \alpha_2^k - \tau \int_{\Omega} (1 - H_\delta(\phi)) \partial_{\alpha_2} f_\epsilon[\alpha^k]
 \end{align*}
 $$

- for given α_1^k, α_2^k compute $\Phi^k \in \mathcal{V}_h$ via a discrete time step of:

 $$
 g \left(H'_\delta(\phi)^{-1} \partial_t \phi, \theta \right) = \int_{\Omega} \nu \frac{\nabla \phi}{|\nabla \phi|} \nabla \theta + (f_\epsilon[\alpha_1^k] - f_\epsilon[\alpha_2^k]) \theta \, dx,
 $$

 where $g(\xi_1, \xi_2) = \int_{\Omega} \xi_1(x) \xi_2(x) + \frac{\sigma^2}{2} \nabla \xi_1(x) \cdot \nabla \xi_2(x) \, dx$
numerical algorithm for grain boundary extraction

Grain boundary extraction on TEM images

[Berkels, Rätz, R., Voigt ’06]
energy decay plot:

The *crosses* mark refinements of the scale parameter σ.

The graph shows the energy decay over iterations.
numerical algorithm for grain boundary extraction

Multi-phase grain boundary extraction

Segmentation with multiple grains using three level set functions

[Vese, Chan ’02]
A first generalization: liquid–solid interfaces

An additional liquid–solid interface

Liquid / crystal and grain interface evolution [Rätz, Voigt '06]
A first generalization: liquid–solid interfaces

An additional liquid–solid interface

Liquid / crystal and grain interface evolution [Rätz, Voigt '06]

Local classification based on the image:

Description of the liquid phase: $u(x) \in [\theta_1, \theta_2]$ and $|\nabla u(x)| < \gamma$
liquid–solid interfaces

An additional liquid–solid interface

liquid / crystal and grain interface evolution [Rätz, Voigt ’06]

local classification based on the image:

description of the liquid phase: $u(x) \in [\theta_1, \theta_2]$ and $|\nabla u(x)| < \gamma$
Incorporating a liquid–solid interface (cont)

local liquid classification function:

\[g(x) = 1 - \chi_{[u>\theta_1]}(x) \chi_{[u<\theta_2]}(x) \chi_{[|\nabla u|<\gamma]}(x) \]
local liquid classification function:

\[g(x) = 1 - \chi_{[u>\theta_1]}(x)\chi_{[u<\theta_2]}(x)\chi_{[|\nabla u|<\gamma]}(x) \]

Mumford Shah type functional \(E_{\text{phase}} \) acting on liquid domain \(\mathcal{O}_L \):

\[
E_{\text{phase}}[\mathcal{O}_L] = \int_{\mathcal{O}_L} 1 - g(x) \, dx + \int_{\Omega \setminus \mathcal{O}_L} g(x) \, dx + \nu \mathcal{H}^1(\mathcal{O}_L)
\]
Incorporating a liquid–solid interface (cont)

Local liquid classification function:

\[
g(x) = 1 - \chi_{[u>\theta_1]}(x) \chi_{[u<\theta_2]}(x) \chi_{[|\nabla u|<\gamma]}(x)
\]

Mumford Shah type functional \(E_{\text{phase}} \) acting on liquid domain \(\mathcal{O}_L \):

\[
E_{\text{phase}}[\mathcal{O}_L] = \int_{\mathcal{O}_L} 1 - g(x) \, dx + \int_{\Omega \setminus \mathcal{O}_L} g(x) \, dx + \nu \mathcal{H}^1(\mathcal{O}_L)
\]

Application for a test case
a first generalization: liquid–solid interfaces

Combined model

\[E[\mathcal{O}_L, (\alpha_j, \mathcal{O}_j)_j] = \int_{\mathcal{O}_L} g(x) \, dx + \int_{\Omega \setminus \mathcal{O}_L} (1 - g(x)) \, dx + \nu \mathcal{H}^1(\partial \mathcal{O}_L) \]

\[+ \eta \sum_{j=1,\ldots,n} \left(\int_{\mathcal{O}_j} f[\alpha_j](x) \, dx + \frac{\nu}{2} \mathcal{H}^1(\partial \mathcal{O}_j) \right). \]
a first generalization: liquid–solid interfaces

Combined model

\[
E[\mathcal{O}_L, (\alpha_j, \mathcal{O}_j)_j] = \int_{\mathcal{O}_L} g(x) \, dx + \int_{\Omega \setminus \mathcal{O}_L} (1 - g(x)) \, dx + \nu \mathcal{H}^1(\partial \mathcal{O}_L) \\
+ \eta \sum_{j=1,\ldots,n} \left(\int_{\mathcal{O}_j} f[\alpha_j](x) \, dx + \frac{\nu}{2} \mathcal{H}^1(\partial \mathcal{O}_j) \right).
\]

Result on PFC data

[Berkels, Rätz, R., Voigt '06]
description of a deformed lattice:

\[\psi(x) \] atom position

\[\psi \] elastic deformation

\[\psi(x + M(\alpha)q_i) \] neighbor position

local lattice classification function:

\[f[\alpha, \psi](x) = \frac{d^2}{m r^2} \chi_{[u>\theta]}(\psi(x)) \]
\[\cdot \sum_{i=1}^{m} (1 - \chi_{[u>\theta]} \psi(x + M(\alpha)q_i)) \]
we have to deal with two types of deformations:

- the observer transformation induced by $M(\alpha)$
The single crystal case

we have to deal with two types of deformations:

- the observer transformation induced by $M(\alpha)$
- the actual lattice deformation $\psi(\cdot)$
we have to deal with two types of deformations:

- the observer transformation induced by $M(\alpha)$
- the actual lattice deformation $\psi(.)$

We are interested in the elastic deformation up to rigid body motions, hence we consider the following functional to be minimized for a single crystal:

$$E_{\text{single}}[\alpha, \psi] = \int_{\Omega} f[\alpha, \psi](x) \, dx$$
The single crystal case

we have to deal with two types of deformations:

- the observer transformation induced by $M(\alpha)$
- the actual lattice deformation $\psi(\cdot)$

We are interested in the elastic deformation up to rigid body motions, hence we consider the following functional to be minimized for a single crystal:

$$E_{\text{single}}[\alpha, \psi] = \int_{\Omega} f[\alpha, \psi](x) \, dx + \mu E_{\text{elast}}[\psi],$$

with

$$E_{\text{elast}}[\alpha, \psi] = \frac{1}{2} \int_{D} \left| D\psi(x) + D\psi(x)^T - 2 \mathbb{I} \right|^2 \, dx$$

under the constraint for the angular momentum

$$\int_{\Omega} \psi_2(x)x_1 - \psi_1(x)x_2 \, dx = 0.$$

[Berkels, Rätz, R., Voigt '07]
Concentration of energy at the minimizer

consider the Euler Lagrange equations:

\[-2\mu (\Delta \psi(x) + \nabla \text{div} \psi(x)) = \lambda (0 - 1)
\]

where \(\lambda\) is a Lagrange multiplier reflecting the constraint.

For \(\psi\) on \(u \circ \psi \neq 0\):

\[
\left(D\psi^T + D\psi \right) \cdot \nu = d_2 \nabla u \circ \psi^2 m \mu r^2 m \sum_{i=1} \left(1 - H(u \circ \psi(\cdot) + M(\alpha)q_i - \theta) - H(u \circ \psi(\cdot) - M(\alpha)q_i - \theta) \right)
\]

For the orientation \(\alpha\):

\[
0 = m \sum_{i=1} M'(\alpha)q_i \int \left[u \circ \psi = \theta \right] H(u \circ \psi(\cdot) - M(\alpha)q_i - \theta) D\psi^T \nabla u \circ \psi dH_1,
\]

where \(M'(\alpha) =
\[
\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\]
\(M(\alpha)\).
Consider the Euler-Lagrange equations:

For ψ on $[u \circ \psi \neq 0]$:

$$-2\mu(\Delta \psi(x) + \nabla \text{div} \psi(x)) = \lambda \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} x,$$

where λ is a Lagrange multiplier reflecting the constraint.
consider the Euler Lagrange equations:

For ψ on $[u \circ \psi \neq 0]$:

$$-2\mu(\Delta \psi(x) + \nabla \text{div} \psi(x)) = \lambda \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} x,$$

where λ is a Lagrange multiplier reflecting the constraint.

For ψ on $[u \circ \psi = 0]$:

$$\left[(D\psi^T + D\psi) \cdot \nu\right] = \frac{d^2 \nabla u \circ \psi}{2m\mu r^2} \sum_{i=1}^{m} \left(1 - H(u \circ \psi(\cdot + M(\alpha)q_i) - \theta) - H(u \circ \psi(\cdot - M(\alpha)q_i) - \theta) \right)$$
Consider the Euler Lagrange equations:

For ψ on $[u \circ \psi \neq 0]$:

$$-2\mu(\Delta \psi(x) + \nabla \text{div} \psi(x)) = \lambda \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} x,$$

where λ is a Lagrange multiplier reflecting the constraint.

For ψ on $[u \circ \psi = 0]$:

$$\left[(D\psi^T + D\psi) \cdot \nu\right] = \frac{d^2 \nabla u \circ \psi}{2m\mu r^2} \sum_{i=1}^{m} \left(1 - H(u \circ \psi(\cdot + M(\alpha)q_i) - \theta) - H(u \circ \psi(\cdot - M(\alpha)q_i) - \theta)\right)$$

For the orientation α:

$$0 = \sum_{i=1}^{m} M'(\alpha)q_i \cdot \int_{[u \circ \psi = \theta]} H(u \circ \psi(\cdot - M(\alpha)q_i) - \theta) D\psi^T \nabla u \circ \psi \, d\mathcal{H}^1,$$

where $M'(\alpha) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} M(\alpha)$.
regularized lattice classification function:

\[f_\epsilon[\alpha, \psi] = \frac{d^2}{mr^2} H_\epsilon(u \circ \psi - \theta) \sum_{i=1}^{m} (1 - (H_\epsilon(u(\psi(\cdot + M(\alpha)q_i)) - \theta))) \]

regularized single grain energy:

\[E_{\text{single}}^\epsilon[\alpha, \psi] = \int_{\Omega} f_\epsilon[\alpha, \psi](x) \, dx + \mu E_{\text{elast}}[\psi] \]
regularized lattice classification function:

\[f_\epsilon[\alpha, \psi] = \frac{d^2}{mr^2} H_\epsilon(u \circ \psi - \theta) \sum_{i=1}^{m} \left(1 - (H_\epsilon(u(\psi(\cdot + M(\alpha)q_i)) - \theta)) \right) \]

regularized single grain energy:

\[E_{\text{single}}^\epsilon[\alpha, \psi] = \int_{\Omega} f_\epsilon[\alpha, \psi](x) \, dx + \mu E_{\text{elast}}[\psi] \]

and again a regularized descent now in the deformation \(\psi \):

\[g(\tilde{\psi}^{k+1} - \psi^k, \zeta) = -\tau_{\psi}^k \partial_\psi E_{\text{single}}^\epsilon[\alpha^k, \psi^k](\zeta) \quad \forall \text{variations } \zeta, \]
regularized lattice classification function:

\[f_\epsilon[\alpha, \psi] = \frac{d^2}{mr^2} H_\epsilon(u \circ \psi - \theta) \sum_{i=1}^{m} (1 - (H_\epsilon(u(\psi(\cdot + M(\alpha)q_i)) - \theta))) \]

regularized single grain energy:

\[E^\epsilon_{\text{single}}[\alpha, \psi] = \int_\Omega f_\epsilon[\alpha, \psi](x) \, dx + \mu E_{\text{elast}}[\psi] \]

and again a regularized descent now in the deformation \(\psi \):

\[g(\tilde{\psi}^{k+1} - \psi^k, \zeta) = -\tau^k_\psi \partial_\psi E^\epsilon_{\text{single}}[\alpha^k, \psi^k](\zeta) \quad \forall \text{variations } \zeta, \]

\[\psi^{k+1} = \tilde{\psi}^{k+1} - S(\cdot - x_\Omega), \]

where

\[S = \frac{1}{2|\Omega|} \int_\Omega D\tilde{\psi}^{k+1} - (D\tilde{\psi}^{k+1})^T \, dx, \quad x_\Omega = \frac{1}{|\Omega|} \int_\Omega \, dx, \]
regularized lattice classification function:

\[f_\epsilon[\alpha, \psi] = \frac{d^2}{mr^2} H_\epsilon(u \circ \psi - \theta) \sum_{i=1}^{m} (1 - (H_\epsilon(u(\psi(\cdot + M(\alpha)q_i)) - \theta))) \]

regularized single grain energy:

\[E_\epsilon^{\text{single}}[\alpha, \psi] = \int_{\Omega} f_\epsilon[\alpha, \psi](x) \, dx + \mu E_{\text{elast}}[\psi] \]

and again a regularized descent now in the deformation \(\psi \):

\[g(\tilde{\psi}^{k+1} - \psi^k, \zeta) = -\tau_\psi^k \partial_\psi E_\epsilon^{\text{single}}[\alpha^k, \psi^k](\zeta) \quad \forall \text{variations } \zeta, \]

\[\psi^{k+1} = \tilde{\psi}^{k+1} - S(\cdot - x_\Omega), \]

where \(S \) = \[\frac{1}{2|\Omega|} \int_{\Omega} D\tilde{\psi}^{k+1} - (D\tilde{\psi}^{k+1})^T \, dx, \quad x_\Omega = \frac{1}{|\Omega|} \int_{\Omega} dx, \]

\[\alpha^{k+1} = \alpha^k - \tau_\alpha^k \partial_\alpha E_\epsilon^{\text{single}}[\alpha^k, \psi^{k+1}]. \]
regularized lattice classification function:

\[f_\epsilon[\alpha, \psi] = \frac{d^2}{m r^2} H_\epsilon(u \circ \psi - \theta) \sum_{i=1}^{m} (1 - (H_\epsilon(u(\psi(\cdot + M(\alpha)q_i)) - \theta))) \]

regularized single grain energy:

\[E_{\text{single}}^{\epsilon}[\alpha, \psi] = \int_{\Omega} f_\epsilon[\alpha, \psi](x) \, dx + \mu E_{\text{elast}}[\psi] \]

and again a regularized descent now in the deformation \(\psi \):

\[g(\tilde{\psi}^{k+1} - \psi^k, \zeta) = -\tau_\psi^k \partial_\psi E_{\text{single}}^{\epsilon}[\alpha^k, \psi^k](\zeta) \quad \forall \text{variations } \zeta, \]

\[\psi^{k+1} = \tilde{\psi}^{k+1} - S(\cdot - x_\Omega), \]

where \(S = \frac{1}{2|\Omega|} \int_{\Omega} D\tilde{\psi}^{k+1} - (D\tilde{\psi}^{k+1})^T \, dx, \quad x_\Omega = \frac{1}{|\Omega|} \int_{\Omega} \, dx, \]

\[\alpha^{k+1} = \alpha^k - \tau_\alpha^k \partial_\alpha E_{\text{single}}^{\epsilon}[\alpha^k, \psi^{k+1}] \]

and \(g(\zeta_1, \zeta_2) = \int_{\mathcal{D}} \zeta_1(x) \cdot \zeta_2(x) + \frac{\sigma^2}{2} D\zeta_1(x) : D\zeta_2(x) \, dx \)
test case (first row) and real data:
generalization for elastically stressed lattices

Application for the single grain functional

test case (first row) and real data:

courtesy: N. Schryvers (Antwerpen University)
Application for the single grain functional

test case (first row) and real data:

courtesy: N. Schryvers (Antwerpen University)
generalization for elastically stressed lattices

Combined model for elastically deformed grains

joint functional for \((\alpha_j, \Omega_j)_{j=1,\ldots,n}\) and \(\psi\):

\[
E_{\text{joint}}[(\alpha_j, \Omega_j)_{j=1,\ldots,n}, \psi] := \sum_{j=1,\ldots,n} (E_{\Omega_j}[\alpha_j, \psi] + \eta \text{Per}(\Omega_j)) + \mu E_{\text{elast}}[\psi]
\]
generalization for elastically stressed lattices

Combined model for elastically deformed grains

joint functional for \((\alpha_j, \Omega_j)_{j=1, \ldots, n}\) and \(\psi\):

\[
E_{\text{joint}}[\{(\alpha_j, \Omega_j)_{j=1, \ldots, n}, \psi\}] := \sum_{j=1, \ldots, n} \left(E_{\Omega_j}[\alpha_j, \psi] + \eta \text{Per}(\Omega_j) \right) + \mu E_{\text{elast}}[\psi]
\]

regularized functional in the two grain case:

\[
E_{\text{joint}}^{\delta, \epsilon}[\alpha_1, \alpha_2, \phi, \psi] := \int_{\Omega} H_\delta(\phi) f_\epsilon[\alpha_2, \psi] + (1 - H_\delta(\phi)) f_\epsilon[\alpha_1, \psi] + \nu |\nabla H_\delta(\phi)| \, dx
+ \mu \int_{D} |D\psi(x) + D\psi(x)^T - 2 \mathbb{I}|^2 \, dx.
\]
Applications for a test case and for real data:
Applications for a test case and for real data:

courtesy: N. Schryvers (Antwerpen University)
Improving the model:
Outlook

Improving the model:

considering the proper anisotropic elastic regularization:

\[C_{ijkl}(\alpha) = \sum_{\beta,\gamma,\delta,\eta} C_{ijkl}^{\text{ref}} M(\alpha)_{i\beta} M(\alpha)_{j\gamma} M(\alpha)_{k\delta} M(\alpha)_{l\eta}, \]

where the \(C_{ijkl}^{\text{ref}} \)’s are priori known material parameters.
Outlook

- **Improving the model:**
 - considering the proper anisotropic elastic regularization:

\[
C_{ijkl}(\alpha) = \sum_{\beta,\gamma,\delta,\eta} C_{ijkl}^{ref} M(\alpha)_{i\beta} M(\alpha)_{j\gamma} M(\alpha)_{k\delta} M(\alpha)_{l\eta},
\]

where the \(C_{ijkl}^{ref} \)'s are priori known material parameters.
 - evaluation of realistic macroscopic stresses

\[
C_{ijkl}(\alpha) \frac{\nabla \psi + (\nabla \psi)^T}{2}
\]
Outlook

- **Improving the model:**
 - considering the proper anisotropic elastic regularization:
 \[
 C_{ijkl}(\alpha) = \sum_{\beta,\gamma,\delta,\eta} C_{ijkl}^{ref} M(\alpha)_{i\beta} M(\alpha)_{j\gamma} M(\alpha)_{k\delta} M(\alpha)_{l\eta},
 \]
 where the \(C_{ijkl}^{ref} \)'s are priori known material parameters.
 - evaluation of realistic macroscopic stresses
 \[
 C_{ijkl}(\alpha) \frac{\nabla \psi + (\nabla \psi)^T}{2}
 \]
 - studying the dynamics of grain boundaries
Improving the model:

- considering the proper anisotropic elastic regularization:

\[C_{ijkl}(\alpha) = \sum_{\beta,\gamma,\delta,\eta} C_{ijkl}^{ref} M(\alpha)_i \beta M(\alpha)_j \gamma M(\alpha)_k \delta M(\alpha)_l \eta, \]

where the \(C_{ijkl}^{ref} \)'s are priori known material parameters.

- evaluation of realistic macroscopic stresses

\[C_{ijkl}(\alpha) \frac{\nabla \psi + (\nabla \psi)^T}{2} \]

- studying the dynamics of grain boundaries

- joining image acquisition and image processing
Anisotropic Cartoon Extraction

A related two scale problem

Given: image u_0 dominated by right angle structures, we ask for a cartoon u and an anisotropic classification α.
Given: image u_0 dominated by right angle structures
A related two scale problem

Given: image u_0 dominated by right angle structures we ask for a cartoon u and an anisotropic classification α.

![Image](image.png)
Given: image u_0 dominated by right angle structures we ask for a cartoon u and an anisotropic classification α.
Given: image u_0 dominated by right angle structures we ask for a cartoon u and an anisotropic classification α.
Anisotropic Cartoon Extraction

A related two scale problem

Given: image u_0 dominated by right angle structures we ask for a cartoon u and an anisotropic classification α.

\rightarrow Joint extraction and orientation classification
Recall: the classical ROF model

Minimizing

\[E[u] := \frac{\lambda}{2} \int_{\Omega} (u_0 - u)^2 \, dx + \int_{\Omega} |\nabla u|_2 \, dx \]

gives a cartoon of \(u_0 \). Here \(|x|_2 = \sqrt{x_1^2 + x_2^2} \).

[Rudin, Osher, Fatemi '92]
Anisotropic Cartoon Extraction

Recall: the classical ROF model

Minimizing

\[E[u] := \frac{\lambda}{2} \int_{\Omega} (u_0 - u)^2 \, dx + \int_{\Omega} |\nabla u|_2 \, dx \]

gives a cartoon of \(u_0 \). Here \(|x|_2 = \sqrt{x_1^2 + x_2^2} \).

[Rudin, Osher, Fatemi '92]

Example

Original

Reconstruction
The anisotropic ROF model

Given an anisotropy γ, minimizing

$$E_{\gamma}[u] := \frac{\lambda}{2} \int_{\Omega} (u_0 - u)^2 \, dx + \int_{\Omega} \gamma(\nabla u) \, dx$$

[Clarenz, Dziuk, R. ’02], [Esedoglu, Osher ’03]
Given an anisotropy γ, minimizing

$$E_\gamma[u] := \frac{\lambda}{2} \int_\Omega (u_0 - u)^2 \, dx + \int_\Omega \gamma(\nabla u) \, dx$$

[Clarenz, Dziuk, R. '02], [Esedoglu, Osher '03]

Example

$$\gamma = |\cdot|_1 \quad \text{and} \quad \gamma = |\cdot|_1 \text{ rot. by } \frac{\pi}{4}$$
The anisotropic ROF model

Given an anisotropy γ, minimizing

$$E_\gamma[u] := \frac{\lambda}{2} \int_{\Omega} (u_0 - u)^2 \, dx + \int_{\Omega} \gamma(\nabla u) \, dx$$

[Clarenz, Dziuk, R. '02], [Esedoglu, Osher '03]

Example

$\gamma = |\cdot|_1$

$\gamma = |\cdot|_1 \text{ rot. by } \frac{\pi}{4}$

\rightarrow let γ depend on a coarse scale orientation α
Anisotropic Cartoon Extraction

Defining the anisotropic energy

\[E_{\gamma}[u, \alpha] := \frac{\lambda}{2} \int_{\Omega} |u_0(x) - u(x)|^2 \, dx + \int_{\Omega} |M(\alpha(x)) \nabla u(x)|_1 \, dx, \]

where \[M(\alpha) := \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] (rotation by \(-\alpha\))
Anisotropic Cartoon Extraction

Defining the anisotropic energy

\[E_\gamma[u, \alpha] := \frac{\lambda}{2} \int_\Omega |u_0(x) - u(x)|^2 \, dx + \int_\Omega |M(\alpha(x)) \nabla u(x)|_1 \, dx, \]

where \(M(\alpha) := \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \) (rotation by \(-\alpha\))

Sample result of the final method

\[u_0 \quad u \quad \alpha \]
Recall: The method shall be able to reconstruct corners
Recall: The method shall be able to reconstruct corners
→ corners are co-dimension two objects
Recall: The method shall be able to reconstruct corners
→ corners are co-dimension two objects
→ Simple Dirichlet type regularization not sufficient.
Recall: The method shall be able to reconstruct corners
→ corners are co-dimension two objects
→ Simple Dirichlet type regularization not sufficient.

\[E_\alpha[\alpha] := \frac{1}{2} \int_\Omega \left(\mu_1 |\nabla \alpha|^2 + \mu_2 |\Delta \alpha|^2 \right) \, dx. \]
Recall: The method shall be able to reconstruct corners
→ corners are co-dimension two objects
→ Simple Dirichlet type regularization not sufficient.

\[E_\alpha[\alpha] := \frac{1}{2} \int_\Omega (\mu_1|\nabla \alpha|^2 + \mu_2|\Delta \alpha|^2) \, dx. \]

Final model:

\[E[u, \alpha] = \int_\Omega \frac{1}{2}|u_0 - u|^2 + |M(\alpha) \nabla u|_1 \, dx + E_\alpha[\alpha]. \]
Postprocessing by Bregman iteration

Reconstruction with zero to two Bregman iterations:
Reconstruction with zero to two Bregman iterations:
Reconstruction with zero to two Bregman iterations:
Postprocessing by Bregman iteration

Reconstruction with zero to two Bregman iterations:
Reconstruction with zero to two Bregman iterations:
Reconstruction with zero to two Bregman iterations:
Reconstruction of a corner test data set

From left to right: Original images, isotropic reconstruction, anisotropic reconstruction with zero/two Bregman iterations
Anisotropic Cartoon Extraction

Application on aerial images

\[u_0 \]

\[u \]

\[\alpha \]
Anisotropic Cartoon Extraction

Application on aerial images (cont.)

u_0

u

α
include a shearing transformation:

\[M_S(\beta) = \begin{pmatrix} \cos \beta & 1 \\ \sin \beta & 0 \end{pmatrix} \]
include a shearing transformation:

\[M_S(\beta) = \begin{pmatrix} \cos \beta & 1 \\ \sin \beta & 0 \end{pmatrix} \]

\[M(\alpha, \beta) = M(\alpha)M_S(\beta) \]

\[= \begin{pmatrix} \frac{\cos \alpha \cos \beta + \sin \alpha}{\sin \beta} & \cos \alpha \\ \frac{\cos \alpha - \sin \alpha \cos \beta}{\sin \beta} & -\sin \beta \end{pmatrix} \]

generalized model:

\[E[u, \alpha, \beta] = \int_{\Omega} \frac{\lambda}{2} |u_0 - u|^2 + |M(\alpha, \beta)\nabla u|_1 \, dx + E_\alpha[\alpha] + E_\beta[\beta]. \]
first numerical results: