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Goal of Compressed Sensing

Acquire signal/image with fewest measurements

Images
In image compression we need much fewer pieces
of information (bits) than the number of pixel values
Can we bypass pixel sampling, transformation and
thresholding
Make much fewer measurements of image

Signal Processing (Shannon-Nyquist Theory)
Bandlimited signals- Sample at Nyquist rate
Not possible for Broadbanded signals
Real world signals frequently have low information
content
Can we sample at close to information rate??
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The Setting

Compressed Sensing assumes the signal/image has a
sparse representation in some basis

Discrete Setting

x ∈ IRN with N large

We are able to ask n non-adaptive questions about x

Question (sample) is an inner product v · x, v ∈ IRN

Any such sampling is given by is an n×N matrix Φ : the
entries in y = Φx are the answers to our questions

We are interested in the good / best matrices Φ, i.e.
what are the best questions to ask??

Two issues: (i) Enough information in y to determine x;
(ii) How to extract this information: Decoder
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What is going on?

Since Φ : IRN → IRn many x give the same
measurements y
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The setsF(y)

F (y 1 )
F (y 2 )

F (y k )
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What is going on?

Since Φ : IRN → IRn many x are encoded with same y

N := {η : Φη = 0} the null space of Φ

F(y) := {x : Φx = y} = x0 + N for any x0 ∈ F(y)

The hyperplanes F(y) with y ∈ IRn stratify IRN

Decoder is any (possibly nonlinear) mapping ∆ from
IRn → IRN

x̄ := ∆(Φ(x)) is our approximation to x from the
information extracted

Pessimism: all x ∈ F(y) are approximated by the same
x̄
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Structure

With no additional information about x it is doubtful what
we can say

Fortunately the x we are interested in have structure

Namely we are assuming that x can be well represented
by a sparse linear combination of certain building blocks
- for our purposes these building blocks are a basis

In some(many) problems we do not necessarily know
the right basis. However the basis needs to be known
for the decoding

For the most part we shall assume the basis is known
to us

We will discuss three models for sparsity - progressively
more demanding
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First Model for Signals: Sparse

To begin with we shall assume x is sparse with respect
to the canonical basis on IRN

Any other basis could be handled by transformation (if
the basis is known)

The support of x is supp(x) := {i : xi 6= 0}
Σk := {x : #supp(x) ≤ k}

Note that Σk is a union of k dimensional subspaces:
Σk = ∪#(T )=kXT where XT = {x : supp(x) ⊂ T}

First Question: Given k, N what is the smallest n for
which there is (Φ,∆) such each vector in Σk is captured
exactly ∆(Φ(x)) = x, x ∈ Σk
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the basis is known)

The support of x is supp(x) := {i : xi 6= 0}
Σk := {x : #supp(x) ≤ k}

Note that Σk is a union of k dimensional subspaces:
Σk = ∪#(T )=kXT where XT = {x : supp(x) ⊂ T}

First Question: Given k, N what is the smallest n for
which there is (Φ,∆) such each vector in Σk is captured
exactly ∆(Φ(x)) = x, x ∈ Σk

Answer n = 2k
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What matrices do the job?

Φ = [v1, . . . , vN ], v1, . . . , vN columns of Φ

We say Φ has the independence property (IP) of order
k if all choices of k column vectors are independent

If T = {i1, . . . , im} is a set of column indices

ΦT = [vi1 , . . . , vim ] is the n × #(T ) submatrix of Φ
formed from these columns

IP means Φ∗
T ΦT := (〈vi, vj〉)i,j∈T is invertible (positive

eigenvalues) whenever #(T ) = k
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Φ = [v1, . . . , vn], v1, . . . , vN columns of Φ

We say Φ has the independence property (IP) of order
k if all choices of k column vectors are independent

If T = {i1, . . . , im} is a set of column indices

ΦT = [vi1 , . . . , vim ] is the n × #(T ) submatrix of Φ
formed from these columns

IP means Φ∗
T ΦT := (〈vi, vj〉)i,j∈T is invertible (positive

eigenvalues) whenever #(T ) = k

Theorem: If Φ is any n × N matrix and 2k ≤ n, then the
following are equivalent:

(i) There is a ∆ such that ∆(Φ(x)) = x, for all x ∈ Σk,
(ii) Σ2k ∩N (Φ) = {0},
(iii) the matrix ΦT has the independence property of
order 2k. IPAM(2008) – p. 10/28



Optimal Matrices

Given k can we construct matrices Φ of size 2k × N with
the properties of the theorem?
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Optimal Matrices

Given k can we construct matrices Φ of size 2k × N with
the properties of the theorem?

We need N vectors in IR2k such that any 2k of them are
linearly independent

Vandermonde matrix. Choose x1 < x2 < · · · < xN

Φ :=





















1 1 · · · 1

x1 x2 · · · xN

· · · ·
· · · ·
· · · ·

x2k−1
1 x2k−1

2 · · · x2k−1
N




















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Naive Decoding

∆(y) := Argmin
z∈Σk

‖y − Φ(z)‖ℓn
2

XT := {z : supp(z) ⊂ T}

xT := Argmin
z∈XT

‖y − Φz‖ℓn
2
→xT = [Φ∗

T ΦT ]−1ΦT y

T ∗ := Argmin#(T )=k ‖y − Φ(xT )‖ℓn
2

∆(y) := xT ∗

IPAM(2008) – p. 12/28



Trouble in LA

Have we solved our first problem?
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Trouble in LA

Have we solved our first problem?

None of us will be alive when the decoding is finished

Moreover, the decoding is also unstable

The first problem has an easy fix. We can take the first
2k rows of the discrete Fourier matrix and build a
decoder which uses only O(N + k3) operations:

However the stability problem is more substantial - no
quick fix

Suppose we had any matrix Φ and we knew the support
T of x then x = xT = [Φ∗

T ΦT ]−1ΦT y

Need ‖[Φ∗
T ΦT ]−1‖ controlled

We would need this norm controlled for any T of size k
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Optimal Stable Systems

Candes-Romberg-Tao; Donoho: Compressed Sensing
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≤ ‖Φ(x)‖2
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2
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Decode by ℓ1 minimization
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‖x‖ℓN

1
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ℓ1 ball meets the setF(y)
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Optimal Stable Systems

Candes-Romberg-Tao; Donoho: Compressed Sensing

Two important discoveries: good matrices, decoding

Restricted Isometry Property (RIP) of order k: There
exists 0 < δ = δk < 1 such that

(1 − δ)‖x‖2
ℓN
2

≤ ‖Φ(x)‖2
ℓn
2

≤ (1 + δ)‖x‖2
ℓN
2

, x ∈ Σk

Equivalently the eigenvalues of Φ∗
T ΦT are in [1 − δ, 1 + δ]

Decode by ℓ1 minimization
∆(y) := inf

x∈F(y)
‖x‖ℓN

1

Candes-Tao: If Φ satisfies the RIP of order 3k then
given any x ∈ Σk we have ∆(Φ(x)) = x for the ℓ1

minimization decoder. Moreover, the decoding is stable
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Building matrices

How can we build matrices that satisfy RIP for the
largest value of k

Given n,N we can construct such matrices for any
k ≤ c0n/ log(N/n)

The additional log(N/n) is the price we pay for stability

How can we construct such Φ?

We want to create a lot of vectors v1, . . . , vN in IRn such
that any choice of k of them are far from being linearly
dependent
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Three constructions

We choose at random N vectors from the unit sphere in
IRn and use these as the columns of Φ

We choose each entry of Φ independently and at
random from the Gaussian distribution with mean 0 and
variance n−1

We use Bernouli process and create a matrix with
entries −1, 1 (or 0, 1)

With high probability each of these random
constructions yields a matrix Φ with RIP of order k for
any k ≤ c0n/ log(N/n)
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Three constructions

We choose at random N vectors from the unit sphere in
IRn and use these as the columns of Φ

We choose each entry of Φ independently and at
random from the Gaussian distribution with mean 0 and
variance n−1

We use Bernouli process and create a matrix with
entries −1, 1 (or 0, 1)

With high probability each of these random
constructions yields a matrix Φ with RIP of order k for
any k ≤ c0n/ log(N/n)

Probability is only used to prove existence of Φ. The
sensing algorithm is constructive (not probabilistic)
once we find a Φ.
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Verification of RIP

In general it is difficult to check whether a given matrix
satisfies RIP

It is much easier to show that a random family
Φ(ω) = (φi,j(ω)), ω ∈ Ω of matrices has RIP with high
probability

However, one then does not know specifically which of
these matrices is favorable

The primitive property is the concentration inequality

Prob(|‖Φ(ω)x‖2
ℓn
2

− ‖x‖2
ℓN
2

| ≥ δ‖x‖2
ℓN
2

) ≤ Ce−c(δ)n

From this one can use operator ideas to verify RIP
(Baraniuk,Davenport, DeVore, Wakin)
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Second Model for Signals: Compressible

The sparse signal classes do not represent real signals:
signals will typically have all entries nonzero but most
will be small

A compressible signal x is one that can be
approximated well by elements from Σk:
σk(x)X := inf

z∈Σk

‖x − z‖X

Typical signal classes are U(ℓN
p ) and typical X = ℓN

q

‖x‖ℓN
p

:=
(

∑N
i=1 |xi|p

)1/p

If x ∈ U(ℓN
p ) then σk(x)ℓN

q
≤ k1/q−1/p, p < q

Example (q = 2, p = 1): σk(x)ℓN
2

≤ k−1/2

What is the best performance we can obtain on
compressible signal classes?
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Optimality on Models II

These problems were solved in the late 1970’s by
Functional Analysts

Deepest results are due to Kashin and Gluskin

They say that with n measurements we can almost
achieve the same performance as n term approximation

Example (p = 1, q = 2)

C0

√

log(N/n)
n ≤ En(U(ℓN

1 ))ℓN
2

≤ C1

√

log(N/n)
n

These results do not provide practical
encoding/decoding schemes

Candes-Tao: RIP + ℓ1 minimization give near optimal
performance for q = 2, p ≤ 1
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Third Model for Signals: Arbitrary

We say (Φ,∆) is Instance-Optimal of order k for X if for
an absolute constant C > 0 (independent of k, n,N )

‖x − ∆(Φ(x))‖X ≤ Cσk(x)X

We will be interested in X = ℓN
q

Problem: for a given X and size n × N find the largest
values of k for which we have instance-optimality and
the encoder-decoder pairs (Φ,∆) which admit these
values of k

Cohen-Dahmen-DeVore solve the instance-optimal
problem for measuring error in X = ℓN

q for all 1 ≤ q ≤ 2
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Good News

Let X = ℓN
1 and let Φ satisfy RIP for 3k, i.e. δ3k < 1 then

there is a decoder such that (Φ,∆) is instance optimal
for k:

‖x − ∆(Φ(x))‖ℓN
1

≤ C0σk(x)ℓN
1

Given n we can have instance optimality if
k ≤ c0n/ log(N/n)

Bonus: Decoding can be done by ℓ1 Minimization

Although not explicitly stated there this result is easily
derived from the work of Candes-Tao
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Bad News

Let X = ℓN
2 , then in order to have instance optimality for

k = 1 we need n ≥ c0N

Here c0 depends on the instance optimality constant C

OOPS: Instance Optimality is not a Viable Concept in
ℓN
2
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Instance-Optimality in Probability

We saw that Instance-Optimality for ℓN
2 is not viable

Suppose Φ(ω) is a collection of random matrices

We say this family satisfies RIP of order k with
probability 1 − ǫ if a random draw {Φ(ω)} will satisfy RIP
of order k with probability 1 − ǫ

We say {Φ(ω)} is bounded with probability 1 − ǫ if given
any x ∈ IRN with probability 1 − ǫ a random draw {Φ(ω)}
will satisfy

‖Φ(ω)(x)‖ℓN
2

≤ C0‖x‖ℓN
2

with C0 an absolute constant

Our earlier analysis showed that Gaussian and Bernouli
random matrices have these properties with ǫ = e−cn
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Theorem: Cohen-Dahmen-DeVore

If {Φ(ω)} satisfies RIP of order 3k and boundedness
each with probability 1 − ǫ then there are decoders ∆(ω)

such that given any x ∈ ℓN
2 we have with probability

1 − 2ǫ

‖x − ∆(ω)Φ(ω)(x)‖ℓN
2

≤ C0σk(x)ℓN
2

Instance-optimality in probability

Range of k is k ≤ c0n/ log(N/n)

Decoder is impractical
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Decoding

By far the most intriguing part of Compressed Sensing
is the decoding
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Decoding

By far the most intriguing part of Compressed Sensing
is the decoding

There are continuing debates as to which decoding is
numerically fastest

Some common decoders
ℓ1 minimization: Long history (Donoho;
Candes-Romberg)
Greedy algorithms - find support of a good
approximation vector and then decode using ℓ2

minimization (Gilbert-Tropp; Needel-Vershynin)
Iterative Reweighted Least Squares (Osborne,
Daubechies-DeVore-Fornasier-Gunturk)

Current Numerical winnner: ℓ1 minimization via
Bregman iteration: Yin-Osher-Goldfarb-Darbon
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Deterministic construction of matrices
Constructions that satisfy RIP are know only for
k ≤ C

√
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These constructions are similar to coding theory
Can we find deterministic constructions which break
the

√
n limitation?
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