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i Open questions

= How many distinct locations within cells
can proteins be found in?

= What are they?
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i Determining protein location

= The primary method
used to determine the
subcellular location of a
protein is to “tag” it with
a fluorescent probe and
then image its
distribution within cells
using fluorescence
microscopy
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i Automated Interpretation

= [raditional analysis of fluorescence
microscope images has occurred by
visual inspection

= Our goal over the past twelve years has
to been to automate interpretation with
the ultimate goal of fully automated
learning of protein location from images

Carnegie Mellon



Approach

_

1.

Image Acquisition

Combine fluorescence
microscopy with pattern
recognition techniques
to automatically
determine protein
patterns

2. Image Processing

= Segmentation

= Denoising

= Deconvolution

= Signal unmixing

3. Feature Extraction

5. Classification
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Initial goal: Learn to recognize all
jor subcellular patterns
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Classification Results:
Computer vs. Human
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Notes: Even better results using MR methods by Kovacevic group

Even better results for 3D images




Issue Microarrays
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Test Dataset from Human
Protein Atlas

= Selected set of 10 proteins from the Atlas that are similar
to 2D Hel a dataset used to establish our methods
(Nucleus, Nucleolar, 2 Golgi, ER, Endosome, Lysosome,
Mitochondria, Actin Cytoskeleton, Tubulin Cytoskeleton)

= ~45 tissue types for each class (e.g. liver, muscle, skin)
= ~120 images per class

= Goal: Train classifier to recognize each subcellular pattern
across all tissue types

Insulin in islet cells
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Subcellular Pattern Classification
over 45 tissues

Prediction

MCM DKC GOL TRI HSP TFR LAM SYN TuB ACT
MCM | 92.9 0 7.1 0 0 0 0 0 0 0
DKC 0 94.9 0 0 0 2.6 0 2.6 0 0
GOL 0 49 854 0 0 7.3 0 2.4 0 0
TRI 0 0 0 100 0 0 0 0 0 0
HSP 0 0 0 0 97.7 0 2.3 0 0 0
TFR 0 2.6 2.6 0 0 94.7 0 0 0 0
LAM 0 0 0 0 0 0 100 0 0 0
SYN 0 0 3 0 3 0 0 93.9 0 0
TUB 0 0 0 26 26 0 0 0 86.8 7.9
ACT 0 0 0 0 0 0 0 0 18.6 81.4

Overall accuracy 92.8%
Accuracy for 60% of images with highest confidence: 97%



yeastgfp.ucsf.edu < Go > >> info

, - 4 >> faqg
YEAST GFP FUSION LOCALIZATION DATABASE yal00lc [ go | e

Welcome to yeastgfp.ucsf.edu

The database of our global analysis of protein localization studies
in the budding yeast, S. cerevisiae.

> quick case-insensitive searches of the database may be performed on
yeast orf names (yal001c) or gene names (TFC3)

> separate multiple orfs/genes vith a space (e.g. yal001c zwfl bud2 etc.)

> more advanced searching and dovnloading can be done in Advanced Query
> GFP-tagged strains can be obtained from Invitrogen.

> TAP-tagged strains can be obtained from Open Biosystems.

> more details available in >>info >>faqg >> help

This web site supports Huh, et a/., Naturs 425, 686-651 (2003).] <pdf>
The quantitation data presented here is published in Ghaemmaghami, et al., Nature 425, 737-741 (2003).| <pdf>
Detailed collection construction methods can be found in Hovson et al., Comp Funct Genem 6, 2-16 (2005).

<pdf>

This research is the work of the laboratories of Erin O'Shez and Jonathan W

1an Weissman at the University of California San Francisco
Please direct comments, concerns, and questions to <jan.ihmels@gmail.com=>

© Copyright 2001 - 2006 University of California Regents. All rights reserved.
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Annotations of Yeast GFP Fusion
Localization Database

= Contains images of 4156 proteins (out of 6234 ORFs in
all 16 yeast chromosomes).

= GFP tagged immediately before the stop codon of each
ORF to minimize perturbation of protein expression.

= Annotations were done manually by two scorers and co-
localization experiments were done for some cases
using mRFP.

= Each protein is assigned one or more of 22 location
categories.

Carnegie Mellon



Chen et al 2006

Cell Image Segmentation
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DNA potential, a function of one pixel p;
The likelihood of a pixel to be foreground/background _> Gen;rate 1EEL

boundary potential, a function of two neighboring pixels p; and P;
The likelihood that there is a cell boundary between p; and p;
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Chen et al 2007

Classification of Yeast
Subcellular Patterns

= Selected only those assigned to single unambiguous
location class (21 classes)

= [rained classifier to recognize those classes
= 81% agreement with human classification

x» 94.5% agreement for high confidence assignments
(without using colocalization!)

= Examination of proteins for
which methods disagree
suggests machine classifier
IS correct in at least some
cases

Carnegie Mellon Shann-Ching (Sam) Chen & Geoff Gordon



Example of Potentially Incorrect
Label

ORF Name
YALOO9W

UCSF Location
nucleus

Automated Prediction
vacuole (52%)
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Example of Potentially Incorrect
Label

ORF Name
YGR130C

UCSF Location
punctate _composite

Automated Prediction
cell_periphery (60.67%)

Carnegie Mellon



Graphical models for multi-cell

i Images

= Cells with same location pattern are often
close to each other.

= Considering multiple cells may improve the
classification accuracy.

= Propose a novel graphical model to describe
the relationship between cells such that the
classification of a cell is influenced by other
neighboring cells.

Carnegie Mellon



Each cell is well-segmented Each cell is a
: : random variable
Given a multi-cell Image < : : »
Given single-cell classifiers to
L provide likelihood for each cell Base accuracy
- q
is calculated

Connect cells if they are close enough (by d_.#)
(either in physical space or feature space)

Graph Construction

Inference by Prior Updating (PU)

v

For each cell, update the priors by
the likelihoods of neighboring cells

!

Use the new priors and likelihood to calculate
posterior probability and classify the cell

v

Iterate until no label changes
Calculate the new classification accuracy

Measure accuracy improvement

Carnegie Mellon



| Evaluating PU

= Use the single-cell images
In 10 class 2D Hela data
set to create synthetic multi-
cell images

= Each cell is well-segmented

= Single-cell classifiers are
trained

= Simulate fields containing
only two Iocatlo_n patterns in G 0020 (L0, B0, 80 (5, B (6T
various proportions of cells  n1+Nn2=12 # of Class = 10

Carnegie Mellon



Results
- Closeness in Feature Space

18 Base accuracy: 90.1%
With PU: 95.7%._
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Belief Propagation in Factor Graph

1.Messages from variable to factor
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Belief Propagation in Factor Graph

1.Messages from variable to factor 2.Messages from factor to variable
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Infe

EIPP
LBPP
EIVP
PUVP

rence Methods

Exact Inference with Potts Potential

Loopy Belief Propagation with Potts Potential
Exact Inference with Voting Potential
Prior Updating with Voting Potential

Results in small graphs (Considering Closeness in Feature Space)

Base accuracy: 88.29%

Accuracy
Improvement

EIPP LBPP EIVP PUVP

1.58% 1.58% 2.84% 3.04%

(N1,N2)=(4,4) #ofClass=5 (Chen, Gordon, Murphy, 2006)




Results of Large Graphs

Base accuracy: 91.22%
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‘ Inference Time vs. Graph Size

3F

N
T

1L
<
o
O

Iog1q (Inference Time) (sec)
L\
o
]
& b
U -
C W
< U
U U

2t
_3 1 1 1 1 1 1 1
8 10 12 14 16 18 20
Size of the Graph (number of nodes)
# of Class =4 (Chen, Gordon, Murphy, 2006)

Carnegie Mellon



Image resolution and pattern

i discrimination

= What effect does image resolution have on
our ability to discriminate subcellular
patterns?

= Start from high-resolution images of HelLa
cells and downsample

= Determine how accuracy decreases

= Determine which patterns can still be

determined (merge patterns to achieve
original accuracy)

Carnegie Mellon
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Supervised vs. Unsupervised

i Learning

= This work demonstrated the feasibility
of using classification methods to
assign all proteins to known major
classes

= Do we know all locations? Are
assignments to major classes enough?

= Need approach to discover classes

Carnegie Mellon



Location Proteomics

= [ag many proteins (many methods available; we use CD-
tagging (developed by Jonathan Jarvik and Peter Berget):
Infect population of cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

= Isolate separate clones, each of which produces express one
tagged protein

Jarvik Use RT-PCR to identify tagged gene in each clone

et al Collect many live cell images for each clone using spinning
2002 {isk confocal fluorescence microscopy

Carnegie Mellon
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Chen et al 2003

Chen and Murphy 2005
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C D_tag g | n g . Garcia3 Osuna et al 2007

|project

= Running ~100
clones/wk

= Automated
|mag|ng

Elvira Garcia Osuha
Carnegie Mellon Resuifs for 225 clones




Subcellular Location Families

and Generative Models

= Rather than using words (e.g., GO
terms) to describe location patterns,
can make entries in protein
databases that give its Subcellular
Location Family - a specific node in
a Subcellular Location Tree

Provides necessary resolution that
Is difficult to obtain with words

How do we communicate patterns:
Use generative models learned

from images to capture patiern and
variation in pattern

Carnegie Mellon



Generative Model
Components T

Nucleus

Medial axis
| 4
Cell Model
membrane parameters
Filtered
Protein
objects Zhao &
Murphy
Carnegie Mellon 2007




Synthesized Images

Lysosomes Endosomes

= Have XML design for capturing model parameters
®hiave rastable tool for generating images from model



Evaluation of synthesized
Images

Classification of synthesized images by a classifier
trained on real images. Classification based on
features that made 94% of real images distinguishable

True Output of Classifier
Classification | DNA ER Actin Gia Gpp Lyso.  Mit. Nuc  Endo. Tub.
DNA 100 0 0 0 0 0 0 0 0 0
Gia 0 0 0 31 54 13 0 1 1 0
Gpp 0 0 0 24 62 11 0 2 1 0
Lyso. 0 0 0 7 4 50 7 0 32 0
Mit. 0 0 0 0 0 2 18 0 80 0
Nuc. 1 0 0 4 15 0 0 80 0 0
Endo. 0 2 0 0 0 1 2 0 91 4

Carnegie Mellon



Combining Models for Cell

Simulations

Protein 1

Cell Shape

Nuclear Model

Protein 2

4

Cell Shape

Nuclear Model

Simulation
for multiple
proteins

Protein 3

N

\.

Cell Shape

Shared
Nuclear
and Cell

Shape

Nuclear Model

Carnegie Mellon

Integrating with Virtual Cell (University of Connectiicut))
and M-Cell (Pittsburgh Supercomputing Center)




PSLID: Protein Subcellular
Location Image Database

= Version 4 to be released January 2008

= Adding ~50,000 analyzed images (~1,000 clones, ~350,000 cells)
from 3T3 cell random tagging project

= Adding ~7,500 analyzed images (~2,500 genes, ~40,000 cells) from
UCSF yeast GFP database

= Adding ~400,000 analyzed images (~3,000 proteins, 45 tissues) from
Human Protein Atlas

= Adding generative models to describe subcellular patterns consisting
of discrete objects (e.g., lysosomes, endosomes, mitochondria)

= Return XML file with real images that match a query

= Return XML file with generative model for a pattern

= Connecting to MBIC TCNP fluorescent probes database
= Connecting to CCAM TCNP Virtual Cell system

Carnegie Mellon



The future of subcellular

‘ location analysis

Cell Type
(Order 102)

Condition
(Order 102)

Protein (Order 104)

ll m%m i

Plus: Time scale from subsecond
Carnegie Mellon to years



How do we really analyze

i subcellular location?

= Scope of problem argues for
cooperation on grand scale

= Need intelligent (optimized) data
collection: probabilistic methods to
integrate available data, make
predictions, suggest experiments and
iterate

Carnegie Mellon



Automated Science

‘ (Active Learning)

Experimental / < Automate_d /)ther Data/
Data / Interpretation

A
\ 4
hat new data is Modelin
eeded the most? 9

Carnegie Mellon




Efficient Acquisition and Learning
of Fluorescence Microscope Data
Models - with Jelena Kovacevic

2.
l Intelligent Acquisition |

No

Y
9% , 1 Model Yes
l ‘ﬂ/i Model Building | atisfactory? Model

Develop a mathematical framework and algorithms
to build accurate models of fluorescence microscope data sets
as well as design intelligent acquisition systems based on those models

1. Use all the input from the 2. Choose acquisition
microscope to model the requests that allow us to
data set construct an accurate model
in the shortest amount of time

Carnegie Mellon



Intelligent Acquisition -

I

Predict object
distribution

|

Acquire most
likely pixels

l

Prior belief «—

Observe actual
object locations

'

Update motion

models

Carnegie Mellon

Unknown Motion Model

Model likelihood

Model likelihood
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Intelligent Acquisition - Frame
Rate

= Acquire frame if confidence in object’s location falls below
95%
= We acquire less frequently when motion model is learned

Confidence
1 11

oosr 3 LT iR} T

DB-% ; éé ?ié éé % S K Constant |

0.85 ' Adaptive
TSRS

Charles Jackson 0BsL Do
06f = i Z

s I i G

05 x| 1 1 1 1 1 1 | 1
0 20 40 60 80 100 120 140 160 180 200

Carnegie Mellon Frame nurber



i More Challenges

= Models and conditional models for
subcellular patterns

= Estimating model confidence in active
learning of nested models

Carnegie Mellon
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Carnegie Mellon v
blecular Biosensor and Imaging

Mission

To develop fluorescence detection technologies for biomedical research and NASA space
exploration.
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NATIONAL CENTER FOR INTEGRATIVE BIOMEDICAL INFORMATICS

you are here: home

National Center for Integrative Biomedical Informatics (NCIBI)
by plone — last modified 2005-09-29 09:29 AM

B

About NCIBI

Computational Mission

Technology

Driving Biological The mission of the NCIBI is to facilitate scientific exploration of complex disease processes on a much larger scale than is
Problems currently feasible.

Resources and

Software The Center develops and interactively integrates analytical and modeling technologies to acquire or create context-

Education and Training
Working With NCIBI

appropriate molecular biology information from emerging experimental data, international genomic databases, and the
published literature.

Publications
Sponsors and The NCIBI supports information access and data analysis workflow of collaborating biomedical researchers, enabling them to
Collaborators build computational and knowledge models of biological systems validated through focused work on specific diseases. The
St SCEEC St initial driving biological problems are prostate cancer progression, organ-specific complications of type 1 diabetes, genetic
i::sts and metabolic heterogeneity of type 2 diabetes, and genetic susceptibility and phenotypic subclassification of bipolar
depressive disease.
[IEEEMEEEEEl]l 2 The Center also has outreach, training, and education programs.

Collaboration Portal

Wik Current NCIBI Collaborators

University of Michigan

Carnegie Mellon
University

Institute for
Systems Biology

Stanford University Broad Institute

National Center for
Supercomputing
Applications (NCSA)

University of
Southern California

Aerospace
Corporation

NCIBI presents at

the NIH New NCBC
Kickoff in Bethesda
2005-12-23

UM Press Release

for NCIBI
2005-09-30

RO1 Collaboration

Opportunity with NCIBI
2005-09-28

More news...

Carnegie Mellon
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Brian Athey (UMich), CMU: Bob Murphy



RAY AND STEPHANIE LANE
Center for Computational Biology

Carnegie Mellon

Our mission:;

To realize the potential of
machine learning for
understanding complex
biological systems

To advance cancer
diagnosis and treatment




