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Open questions
 How many distinct locations within cells

can proteins be found in?
 What are they?



Determining protein location
 The primary method

used to determine the
subcellular location of a
protein is to “tag” it with
a fluorescent probe and
then image its
distribution within cells
using fluorescence
microscopy



Automated Interpretation
 Traditional analysis of fluorescence

microscope images has occurred by
visual inspection

 Our goal over the past twelve years has
to been to automate interpretation with
the ultimate goal of fully automated
learning of protein location from images



Approach
2.    I m a g e    P r o c e s s i n g

3.    F e a t u r e    E x t r a c t i o n 4.    F e a t u r e    S e l e c t i o n 5.    C l a s s i f i c a t i o n

Combine fluorescence
microscopy with pattern
recognition techniques
to automatically
determine protein
patterns

 Segmentation
 Denoising
 Deconvolution
 Signal unmixing

1.    I m a g e    A c q u i s i t i o n
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Initial goal: Learn to recognize all
major subcellular patterns



Classification Results:
Computer vs. Human
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Notes: Even better results using MR methods by Kovacevic group

Even better results for 3D images

Murphy et al 2000;
Boland & Murphy
2001; Murphy et al
2003; Huang &
Murphy 2004



Tissue Microarrays

Courtesy http://www.beecherinstruments.com
Courtesy www.microarraystation.com



Human Protein Atlas

Courtesy www.proteinatlas.org



Test Dataset from Human
Protein Atlas

 Selected set of 10 proteins from the Atlas that are similar
to 2D HeLa dataset used to establish our methods
(Nucleus, Nucleolar, 2 Golgi, ER, Endosome, Lysosome,
Mitochondria, Actin Cytoskeleton, Tubulin Cytoskeleton)

 ~45 tissue types for each class (e.g. liver, muscle, skin)
 ~120 images per class
 Goal: Train classifier to recognize each subcellular pattern

across all tissue types

Justin Newberg

Insulin in islet cells



Subcellular Pattern Classification
over 45 tissues
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Overall accuracy 92.8%
Accuracy for 60% of images with highest confidence: 97%





Annotations of Yeast GFP Fusion
Localization Database

 Contains images of 4156 proteins (out of 6234 ORFs in
all 16 yeast chromosomes).

 GFP tagged immediately before the stop codon of each
ORF to minimize perturbation of protein expression.

 Annotations were done manually by two scorers and co-
localization experiments were done for some cases
using mRFP.

 Each protein is assigned one or more of 22 location
categories.



Cell Image Segmentation

DNA potential, a function of one pixel pi
The likelihood of a pixel to be foreground/background

boundary potential, a function of two neighboring pixels pi and pj
The likelihood that there is a cell boundary between pi and pj

Generate Mask

Chen et al 2006

GFP image DNA image DIC image



Classification of Yeast
Subcellular Patterns

 Selected only those assigned to single unambiguous
location class (21 classes)

 Trained classifier to recognize those classes
 81% agreement with human classification
 94.5% agreement for high confidence assignments

(without using colocalization!)
 Examination of proteins for

which methods disagree
suggests machine classifier
is correct in at least some
cases

Chen et al 2007

Shann-Ching (Sam) Chen & Geoff Gordon



Example of Potentially Incorrect
Label

ORF Name
YAL009W

UCSF Location
nucleus

Automated Prediction
vacuole (52%)
cytoplasm (44%)
Mitochondrion (4%)

DNA  GFP  Segmentation



Example of Potentially Incorrect
Label

ORF Name
YGR130C

UCSF Location
punctate_composite

Automated Prediction
cell_periphery (60.67%)
cytoplasm (30%)
ER (9.33%)

DNA  GFP  Segmentation



 Cells with same location pattern are often
close to each other.

 Considering multiple cells may improve the
classification accuracy.

 Propose a novel graphical model to describe
the relationship between cells such that the
classification of a cell is influenced by other
neighboring cells.

Graphical models for multi-cell
images



Given a multi-cell Image

Each cell is well-segmented

Given single-cell classifiers to 
provide likelihood for each cell

Connect cells if they are close enough (by dcutoff)
(either in physical space or feature space)

x1

x2

x3

x4

x5

x6

Each cell is a 
random variable

Base accuracy
is calculated

For each cell, update the priors by 
the likelihoods of neighboring cells

Graph Construction
Inference by Prior Updating (PU)

Use the new priors and likelihood to calculate 
posterior probability and classify the cell

Iterate until no label changes
Calculate the new classification accuracy Measure accuracy improvement



Evaluating PU

 Use the single-cell images
in 10 class 2D HeLa data
set to create synthetic multi-
cell images

 Each cell is well-segmented
 Single-cell classifiers are

trained
 Simulate fields containing

only two location patterns in
various proportions of cells

(N1,N2) є {(0,12), (1,11), (2,10), (3,9), (4,8), (5,7), (6,6)}
N1 + N2 = 12 # of Class = 10



(N1,N2) є {(0,12), (1,11), (2,10), (3,9), (4,8), (5,7), (6,6)}
N1 + N2 = 12 # of Class = 10

Results
- Closeness in Feature Space

dissimilar classes

similar classes

overall accuracy

Base accuracy: 90.1% 
With PU:            95.7% 

(Chen and Murphy, 2006)



Belief Propagation in Factor Graph
1.Messages from variable to factor



Belief Propagation in Factor Graph
1.Messages from variable to factor

When converge

2.Messages from factor to variable



Belief Propagation in Factor Graph
1.Messages from variable to factor

When converge

2.Messages from factor to variable

Posterior Probabilities can be calculated by

1. (Naïve) Exact Inference
2. (Loopy) Belief Propagation



Belief Propagation in Factor Graph
1.Messages from variable to factor

When converge

2.Messages from factor to variable

Posterior Probabilities can be calculated by

1. (Naïve) Exact Inference
2. (Loopy) Belief Propagation
3. Prior Updating (with Voting Potential) 



Inference Methods
EIPP   Exact Inference with Potts Potential
LBPP   Loopy Belief Propagation with Potts Potential
EIVP   Exact Inference with Voting Potential
PUVP   Prior Updating with Voting Potential

Base accuracy: 88.29%

1.58%
EIPP

1.58%
LBPP

2.84%
EIVP

3.04%
PUVPAccuracy

Improvement

Results in small graphs

(N1,N2) = (4,4)      # of Class = 5

(Considering Closeness in Feature Space)

(Chen, Gordon, Murphy, 2006)



Results of Large Graphs

PUVP

LBPP

Base accuracy: 91.22%

(N1,N2) = (6,6)      # of Class = 10 (Chen, Gordon, Murphy, 2006)



Inference Time vs. Graph Size

EIPP

EIVP

LBPP

PUVP

# of Class = 4 (Chen, Gordon, Murphy, 2006)



Image resolution and pattern
discrimination
 What effect does image resolution have on

our ability to discriminate subcellular
patterns?

 Start from high-resolution images of HeLa
cells and downsample

 Determine how accuracy decreases
 Determine which patterns can still be

determined (merge patterns to achieve
original accuracy)



14 µ/p

3 µ/p

0.2 µ/p



Supervised vs. Unsupervised
Learning
 This work demonstrated the feasibility

of using classification methods to
assign all proteins to known major
classes

 Do we know all locations? Are
assignments to major classes enough?

 Need approach to discover classes



Location Proteomics
 Tag many proteins (many methods available; we use CD-

tagging (developed by Jonathan Jarvik and Peter Berget):
Infect population of cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

 Isolate separate clones, each of which produces express one
tagged protein

 Use RT-PCR to identify tagged gene in each clone
 Collect many live cell images for each clone using spinning

disk confocal fluorescence microscopy

Jarvik
et al
2002



What
Now?

Group
~90

tagged
clones

by
pattern



Solution: Group them
automatically

Chen et al 2003;
Chen and Murphy 2005

Nucleolar
proteins

Uniform
punctate
proteins

Punctate
nuclear

proteins

Vesicular
proteins

Uniform
proteins

Nuclear w/
punctate

cytoplasm



CD-tagging
project

 Running ~100
clones/wk

 Automated
imaging

Elvira Garcia Osuna

 
Results for 225 clones

Garcia Osuna et al 2007



Subcellular Location Families
and Generative Models

 Rather than using words (e.g., GO
terms) to describe location patterns,
can make entries in protein
databases that give its Subcellular
Location Family - a specific node in
a Subcellular Location Tree

 Provides necessary resolution that
is difficult to obtain with words

 How do we communicate patterns:
Use generative models learned
from images to capture pattern and
variation in pattern

 



Generative Model
Components
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objects

Model
parameters

Zhao &
Murphy
2007



Synthesized Images

Lysosomes Endosomes

 Have XML design for capturing model parameters
 Have portable tool for generating images from model



Evaluation of synthesized
images

Classification of synthesized images by a classifier
trained on real images. Classification based on
features that made 94% of real images distinguishable

Output of Classifier True 

Classificati o n  DNA ER Actin Gia Gpp Lyso. Mit. Nuc Endo. Tub. 

DNA 100 0 0 0 0 0 0 0 0 0 

Gia 0 0 0 31 54 13 0 1 1 0 

Gpp 0 0 0 24 62 11 0 2 1 0 

Lyso. 0 0 0 7 4 50 7 0 32 0 

Mit. 0 0 0 0 0 2 18 0 80 0 

Nuc. 1 0 0 4 15 0 0 80 0 0 

Endo. 0 2 0 0 0 1 2 0 91 4 

 



Combining Models for Cell
Simulations

Protein 1
Cell Shape

Nuclear Model

Protein 2
Cell Shape

Nuclear Model

Protein 3
Cell Shape

Nuclear Model

XML

Shared
Nuclear
and Cell

Shape

Simulation
for multiple

proteins

Integrating with Virtual Cell (University of Connectiicut))
and M-Cell (Pittsburgh Supercomputing Center)



PSLID: Protein Subcellular
Location Image Database

 Version 4 to be released January 2008
 Adding ~50,000 analyzed images (~1,000 clones, ~350,000 cells)

from 3T3 cell random tagging project
 Adding ~7,500 analyzed images (~2,500 genes, ~40,000 cells) from

UCSF yeast GFP database
 Adding ~400,000 analyzed images (~3,000 proteins, 45 tissues) from

Human Protein Atlas
 Adding generative models to describe subcellular patterns consisting

of discrete objects (e.g., lysosomes, endosomes, mitochondria)
 Return XML file with real images that match a query
 Return XML file with generative model for a pattern
 Connecting to MBIC TCNP fluorescent probes database
 Connecting to CCAM TCNP Virtual Cell system



The future of subcellular
location analysis

Protein (Order 104 )

Condition
(Order 102)

Cell Type
(Order 102)

Plus: Time scale from subsecond
to years



How do we really analyze
subcellular location?
 Scope of problem argues for

cooperation on grand scale
 Need intelligent (optimized) data

collection: probabilistic methods to
integrate available data, make
predictions, suggest experiments and
iterate



Automated Science
(Active Learning)

Experimental
Data

Automated
Interpretation

Modeling

Other Data

What new data is 
needed the most?



as well as design intelligent acquisition systems based on those models

Develop a mathematical framework and algorithms
to build accurate models of fluorescence microscope data sets

Efficient Acquisition and Learning
of Fluorescence Microscope Data
Models - with Jelena Kovacevic

2.  Choose acquisition
requests that allow us to
construct an accurate model
in the shortest amount of time

1. Use  all the input from the
microscope to model the
data set

2.
Intelligent Acquisition

1.
Model Building ModelModel 

satisfactory?
Yes

No



Intelligent Acquisition -
Unknown Motion Model

Predict object
distribution

Acquire most
likely pixels

Observe actual
object locations

Update motion
models

Prior belief

Model

Model likelihood



Intelligent Acquisition - Frame
Rate

 Acquire frame if confidence in object’s location falls below
95%

 We acquire less frequently when motion model is learned

20157

10

Charles Jackson



More Challenges
 Models and conditional models for

subcellular patterns
 Estimating model confidence in active

learning of nested models
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Our mission:

To realize the potential of
machine learning for
understanding complex
biological systems

To advance cancer
diagnosis and treatment

Recruiting postdocs and faculty!


