Imaging with the Helmholtz equation

 $\langle 2 | 2 \rangle$

Frank Natterer Fachbereich Mathematik Universität Münster

Ultrasound Tomography

 $\langle \downarrow | \downarrow \rangle$

Kaczmarz with plane wave stacking in medical imaging

original

reconstruction

 $\langle \cdot | \cdot \rangle$

Computing time <1 minute on a 3Ghz double processor PC

Rays for the SLC breast phantom

 $\langle \downarrow | \downarrow \rangle$

Role of parameter k:

ín)

i) k determines the resolution $\lambda=2\pi/k$

ii) k large makes it difficult to solve the Helmholtz equation numerically

Usual treatment by X-ray transform: For $\gamma r \sup |f(x)| < \lambda \qquad \lambda = 2\pi/k$ |x| < rf(x) = 0 for |x| > rwe have $u(x) \approx \frac{k}{2i} \int f(x + se_3) ds$

Goal of this talk: Exact (iterative) solution without any approximation, such as Born, Rytov, WKB,...

Initial Value Problem for the Helmholtz Equation

 $\langle \mathbf{1} | \mathbf{1} \rangle$

 x_1

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + k^2 u = 0 \qquad u(x_1, 0) = u_0(x_1), \ \frac{\partial u}{\partial x_2}(x_1, 0) = u_1(x_1)$$

Fourier transform with respect to x_1 : $\hat{u}(\xi_1, x_2) = (2\pi)^{-1/2} \int \exp(-ix_1\xi_1)u(x_1, x_2)dx_1$

Ordinary differential equation in x_2 : $\frac{d^2 \hat{u}(\xi_1, x_2)}{dx_2^2} + (k^2 - \xi_1^2) \hat{u}(\xi_1, x_2) = 0$ Cauchy data

 x_2

Solution:

$$\hat{u}(\xi_{1}, x_{2}) = \hat{u}_{0}(\xi_{1})\cos(\kappa(\xi_{1})x_{2}) + \frac{\hat{u}_{1}(\xi_{1})}{\kappa(\xi_{1})}\sin(\kappa(\xi_{1})x_{2}), \ \kappa(\xi_{1}) = \sqrt{k^{2} - \xi_{1}^{2}}$$

Stable as long as $\xi_{1}^{2} \le k^{2}$

Û

Stability estimates for the Cauchy problem of the inhomogeneous Helmholtz equation

x'

€

 X_1

 X_n

Cauchy data

$$\Delta u + k^2 (1+f)u = r, \quad x_n > 0, \quad f \ge 1 + m_1, \ m_1 > -1$$

$$u(x',0) = 0, \quad \frac{\partial u(x',0)}{\partial x_n} = 0, \quad x' \in \mathbb{R}^{n-1}$$

 u_{κ} = low pass filtered (in x') version with cut - off κ of u

$$\|u_{\kappa\vartheta}(x',x_n)\|_{L^2(R^{n-1})} \le \frac{c(x_n)}{\kappa\vartheta} \|r\|_{L^2(R^{n-1}\times[0,x_n])}, \quad \kappa = k(1+m_1), \quad 0 < \vartheta < 1$$

ín)

Stable marching for the Helmholtz equation

Compute a preliminary value $U_{l,j+1}$ from $-4u_{l,j} + U_{l,j+1} + u_{l,j-1} + u_{l+1,j} + u_{l-1,j} + h^2 k^2 (1 + f_{l,j}) = 0$

Compute $u_{l,j+1}$ by low pass filtering of $U_{l,j+1}$ with respect to l

n

n

Exact (finite difference time domain, followed by Fourier transform)

LUNEBERG LENSE

 $f(x) = (1 - |x|^2)_+$

Initial value technique

Kaczmarz' method for Helmholtz equation in frequency domain

Define $R_{\theta}(f) = u|_{\Gamma_{\theta}^{+}}$ where *u* solution of

$$\Delta u + k^2 (1+f)u = 0, \ u = g_{\theta}^-, \ \frac{\partial u}{\partial \theta} = \frac{\partial g_{\theta}^-}{\partial \theta} \text{ on } \Gamma_{\theta}^-$$

Solve $R_{\theta}(f) = g_{\theta}$ for all measured directions θ iteratively:

Update: $f \leftarrow f - \alpha (R'_{\theta}(f))^* (R_{\theta}(f) - g_{\theta})$

Evalutation of $(R'_{\theta}(f))^* r$: $(R'_{\theta}(f))^* r = \overline{z}\overline{u}$

 $\Delta z + k^2 (1+f)z = 0$ $z = 0, \ \frac{\partial z}{\partial v} = \overline{r} \text{ on } \Gamma_{\theta}^+$

time reversal backpropagation backprojecton adjoint differentiation migration $\langle 1 | 1 \rangle$

Example for Kaczmarz' method for simple object R R \mathfrak{I} \mathfrak{I} 32 superimposed backpropagated fields object 16 superimposed backpropagated fields scattered field .2 time reversed backpropagated field data

Original wavelength

Reconstruction from waves (full range)

Reconstruction from line integrals (full range)

00

Data

range 120°

Conclusions

Imaging from waves is possible Algorithms roughly as efficient as ART in ET Resolution corresponds to wavelength Limited angle for waves easier than for ET