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Ultrasound Tomography
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Δu(x) + k 2 (1+ f (x))u(x) = 0,
u(x) = exp(ikx ⋅θ) + us(x).
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Inverse problem: Find f from
u(x) for Γθ ,  θ ∈S1
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c0
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c
,

c = c(x) local speed of sound
c0 speed of sound in ambient medium
α =α(x) attenuation
k =ω / c0 wavenumber

Ultrasound tomography



original reconstruction

Computing time <1 minute on a 3Ghz double processor PC

Kaczmarz with plane wave stacking in medical imaging



Rays for the SLC breast phantom
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f(x) = f1(x) + if2(x)

∆2u + k2(1 + f)u = 0
θ

plane wave

object

tilt angle

lens

detector Γ gθ = u|Γ

+radiation condition



kRole of parameter :

i) k determines the resolution λ = 2π/k

ii)        large makes it difficult to solve the Helmholtz
equation numerically

k



Usual treatment by X-ray transform:

For

we have

λ = 2π/k

u(x) ≈
k

2i

∫
f(x + se3)ds

γr sup
|x|<r

|f(x)| < λ

f(x) = 0 for |x| > r



Goal of this talk:

Exact (iterative) solution without any approximation, such as
Born, Rytov, WKB,...



Initial Value Problem for the Helmholtz Equation
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∂2u
∂x1

2 +
∂2u
∂x2

2 + k 2u = 0

€ 

u(x1,0) = u0 (x1 ), ∂u
∂x2

(x1,0) = u1(x1 )

€ 

Fourier transform with respect to x1:

ˆ u (ξ1,x2 ) = 2π( )−1/2 exp(−ix1ξ1)u(x1∫ ,x2 )dx1

€ 

Ordinary differential equation in x2:
d 2 ˆ u (ξ1,x2 )

dx2
2 + (k 2 − ξ1

2 ) ˆ u (ξ1,x2 ) = 0

€ 

Solution:

ˆ u (ξ1,x2 ) = ˆ u 0 (ξ1)cos(κ (ξ1 )x2 ) +
ˆ u 1(ξ1)
κ (ξ1 )

sin(κ (ξ1 )x2 ),  κ(ξ1) = k 2 − ξ1
2

Stable as long as ξ1
2 ≤ k 2
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Cauchy data



Stability estimates for the Cauchy problem
of the inhomogeneous Helmholtz equation

€ 

Δu + k 2(1+ f )u = r,      xn > 0,     f ≥1+ m1,  m1 > −1

u( ′ x ,0) = 0,    ∂u( ′ x ,0)
∂xn

= 0,   ′ x ∈Rn−1

uκ =  low pass filtered (in ′ x ) version with cut - off κ of u

uκϑ ( ′ x ,xn )
L2 (R n−1)

≤
c(xn )
κϑ

r L2 (R n−1×[0 ,xn ]) ,   κ = k(1+ m1),   0 <ϑ <1
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Stable marching for the Helmholtz equation

€ 

Compute a preliminary value Ul , j+1 from

−4ul , j +Ul , j+1 + ul , j−1 + ul+1, j + ul−1, j + h2k 2 (1+ fl , j ) = 0

€ 

Compute ul , j+1 by low pass filtering of Ul , j+1

with respect to l
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x1,l

€ 

x2 , j

€ 

∂u
∂x2

(x1,0) = i(2π )−1/2 k 2 −ξ1
2∫ ˆ u (ξ1,0)exp(−ix1ξ1)dξ1

€ 

Ul, j+1



Exact (finite 
difference time
domain, followed
by Fourier
transform)

Initial value
technique

LUNEBERG
LENSE

f(x) = (1 − |x|2)+



Vertical cross section

through real part

green: exact

red: initial value technique

focal point



Kaczmarz‘ method for Helmholtz equation in 
frequency domain

€ 

Define Rθ ( f ) = u Γθ
+  where u solution of

 Δu + k 2(1+ f )u = 0,  u = gθ
− ,   ∂u

∂θ
=
∂gθ

−

∂θ
 on Γθ−

Solve Rθ ( f ) = gθ  for all measured directions θ iteratively:

Update: f ← f −α( ′ R θ ( f ))∗(Rθ ( f ) − gθ )

Evalutation of ( ′ R θ ( f ))∗r:        ( ′ R θ ( f ))∗r = z u  

Δz + k 2(1+ f )z = 0

z = 0, ∂z
∂ν

= r  on Γθ
+

time reversal
backpropagation
backprojecton
adjoint differentiation
migration



Example for Kaczmarz‘ method for simple object

object

scattered field

data
time reversed
backpropagated
field

16 
superimposed
backpropagated
fields

32
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Original

Reconstruction
from waves
(full range)

Reconstruction 
from line integrals

(full range)

range 120°

Data

 wavelength



Original

Reconstruction



Future:
Going 3D?

Backscatter?



Conclusions

Imaging from waves is possible

Algorithms roughly as efficient as ART in ET

Resolution corresponds to wavelength

Limited angle for waves easier than for ET


