
COMBINATORIAL CLASSIFICATION TO 
SEPARATE HOMOGENEOUS

SUBSETS OF HETEROGENEOUS PROJECTION 
SETS

Gabor T. Herman and
Miroslaw Kalinowski



Introduction/Background



  

Introduction/Background
3D reconstruction procedure

The 3D reconstruction procedure.
A set of 2D projection images is used to produce a 3D model of the 

object from which these projections images were obtained

projection set 3D model 

Reconstruction
Procedure



  

Introduction/Background
Single Particle Reconstruction

Process of obtaining projections.
Many identical randomly oriented molecules are simultaneously projected



  

Introduction/Background
Single Particle Reconstruction

EM micrograph.
Each dark spot is a 2D projection of the molecule



  

Introduction/Background
Heterogeneity

Conformation A Conformation B Conformation C Conformation D

Heterogeneity - deformations of 3D structure.



  

Introduction/Background
Heterogeneity

Conformation A Conformation B

Heterogeneity - bound and unbound molecule



  

Introduction/Background
Reconstruction from Heterogeneous Sets

...

heterogeneous
projection set

3D
models

Heterogeneous
Reconstruction

Procedure

Reconstruction procedure returns 3D models of all conformations 
represented in the projection set.



  

Introduction/Background
Classification Based Approach

classification

Homogeneous
Reconstruction

Procedure

...

heterogeneous
projection set

3D
models

homogeneous
projection sets

Homogeneous
Reconstruction

Procedure



  

Introduction/Background
Classification Based Approach (Cont.)
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Classification Based Approach (Cont.)

 

 

 
  

 S6 S6x  S7



  

Introduction/Background
Objectives

Demonstrate feasibility of classification based approach.
Develop a reconstruction procedure that is capable of handling a wide 
variety of reconstruction problems, including those for which no prior 
knowledge is  available.
By utilizing mathematical properties of the projection images and 
combinatorial optimization techniques, construct  an appropriate 
unsupervised image classification procedure.
Demonstrate that an implementation of the proposed method, efficient 
enough to handle classification problems encountered in 3D-EM, is 
possible.



Projection Image Dissimilarity 
Measure



  

Projection Image Dissimilarity Measure
Mathematical Background

Two projections and of object S6.



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

The 10 x 10 image and its two 1D projections.
Circular mask and 1D projections of 2D image (the values of pixels with centers 

outside of the masking circle are set to zero).

N1
X l

x y

Y m

N

1



  

Projection Image Dissimilarity Measure
Definition

.

Let  L be the number of evenly distributed lines at which we will look in
each projection plane p, we index them by l ,1≤l≤L . 
 

On each of them we pick  N  points (these points are picked at matching
distances). 

For each projection image  x  and for each such line  l  we define an  N-
dimensional  vector  X l  whose  n-th  component  (for  1≤n≤N )  is  the
estimated line integral in the projection image along the line perpendicular
to l going through the n-th point.

If errors due to noise and discretization are ignored, then two projection
images  x  and  y  of the same 3D object must have identical vectors  X l

and Y m  for some pair of indexes l and m.



  

Projection Image Dissimilarity Measure
Definition

In reality, due to discretization error and noise, there is practically no pair of
indexes l and m for which vectors X l  and Y m  are identical. 

However there is an increased probability of finding two ‘similar’ vectors  X l

and Y m , if the projections x  and y  came from the same object.

Let us assume that ‘dissimilarity’ of vectors can be measured by a function  s
that returns 0 given a pair of identical vectors and a positive value indicative of
the differences between the vectors otherwise.

Definition

We define the dissimilarity of any two projection images x  and y  as

s x ,y = min
1≤l ,m≤L

s  X l ,Y m .



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

x y

YX

Image x ,  its 1D
projections are in X

Image y ,  its 1D
projections are in Y

Search for most similar 1D
projections in X  and Y

Image 

y,

 its 1D projections are in 

Y

Process of calculating the value of dissimilarity measure for two
images x  and y .



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

Matching line in the sinograms of two noiseless projections images 
that originate from the same 3D object.



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

The sinograms of two noiseless projections images that 
originate from different 3D object.



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

The sinograms of two noiseless projections images that 
originate from different 3D object.



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

The sinograms of two noisy projections images that 
originate from different 3D objects



  

Projection Image Dissimilarity Measure
Application to EM Projection Images

For current work 

s x , y=∥x− y∥2

(the squared 2-norm of the difference) was chosen.

Vector Dissimilarity Measure



Projection Image Classification as 
Optimization Problem



  

Histograms of distances between pairs of projection images in a heterogeneous 
set for the pairs originating from the same and from different conformations.

Projection Image Classification as Optimization Problem
Similarity of EM Projection Images



  

Definition

Let  V denote the heterogeneous projection set. For any positive integer
K, a K-partition A of V is a set {A1 , ... , AK }  of K nonempty subsets of V
such that the union of these subsets is the whole of V and no two subsets
have any element in common.

Projection Image Classification as Optimization Problem
Formal Statement of the Optimization Problem



  

GIVEN a set V of 2D projections and a positive integer K,

FIND a K-partition A={A1 , ... , AK }  of V,

SUCH THAT

∑
k=1

K

∑
x ,y∈Ak

s x , y                         (3.1)

is as small as possible.

Projection Image Classification as Optimization Problem
Formal Statement of the Optimization Problem
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Graph
Classified 
projection 

images

Unclassified 
projection 

images

Classification by graph cutting.
Images represented by nodes of each graph component belong to the same class.

Projection Image Classification as Optimization Problem
Graph Theoretical Interpretation



  

When  the  projections  in  V  are  represented  by  nodes  of  a  complete
weighted graph G , and the weight of the edge between nodes x  and y  is
the distance s x ,y  , then the edges between the nodes
representing projections of the same object are more likely to have lower
weights.

The problem of separating the homogeneous subsets of a heterogeneous
projection sets becomes a graph cutting problem, in which the objective
is  to  find  a  separation  of  the  graph  G  into  K  complete  subgraphs
G1 , ... ,G K  such  that  the  sum  of  all  edge  weights  in  the  subgraphs
G1 , ... ,G K  is minimal. 

This problem is known as Max k-Cut, and in case K = 2 it is equivalent to
the maximum capacity cut problem.

Projection Image Classification as Optimization Problem
Graph Theoretical Interpretation



  

Projection Image Classification as Optimization Problem
Computational Complexity

Both Max k-Cut and maximum capacity cut problems have been 
shown to be NP-complete.

It also has been demonstrated that finding even approximately 
optimal solution to the Max k-Cut is NP-complete.

The estimated run time for solving the 5,000 node instance of the 
graph cutting problem using DSDP algorithm is approximately one 
month.

However, an efficient algorithm capable of producing good (from our 
classification problem perspective) estimates of Max k-Cuts for 
graphs originating from 3D-EM can be constructed!



Construction of the Distance Graph



  

Since the topology our graphs is fixed the process of constructing them is 
simple (only the weights of the edges must be calculated).

However, the number of edge weights that need to be calculated is large (for 
a graph with 5,000 nodes, 12,497,500 edge weights must be calculated).

A significant amount of computer time must be dedicated to calculating edge 

weighs in a realistically sized graph. (without optimizations) it takes 24 
hours on a single processor (Intel Xeon 1.7 GHz) to construct a graph for a 
data set that contains 5,000 images. 

Since the calculations of edge weights between different nodes of the graph 
are mutually independent, the task of constructing the graph can be easily 
parallelized. However, the cost of constructing such graphs increases 
proportionally to the square of the number of projection images.

For larger datasets that contain tens of thousands projection images 
significant resources are required to the corresponding graphs. 

Construction of the Distance Graph
Construction Cost



Graph Cutting Algorithm



  

Graph Cutting Algorithm
Concept

Initial graph cut (partitioning) is generated randomly.
In each step of the algorithm reclassification of each node (2D 
projection) is considered.
A new value of the objective function is calculated for each 
reclassification.
Best or least harmful reclassification which is not prohibited by 
the taboo list is selected and executed.
Reclassified node along with better of two objective function 
values (before and after reclassification) is used to update taboo 
list.
Algorithm stops after executing specified number of steps.



  

Graph Cutting Algorithm
Concept

Taboo list operation - checking
 

Reclassification is allowed if affected node is not on the list.

The reclassification of the node is prohibited if it results in the 
value of the objective function worst than recorded for this 
node on the list.



  

Graph Cutting Algorithm
Concept

Taboo list operation - updating
 

If 2D projection is already on the list the objective function 
value associated with this projection is updated.

Otherwise,  2D projection with associated value is placed at the 
end of the list and if the list is full causes removal of the first 
projection from the list.



  

Graph Cutting Algorithm
Parameters

K: Number of classes

I: Number of iterations
 
t: Length of tabu list



  

Graph Cutting Algorithm
Multiple Runs

?

T

F

 

?

F
C G ,M minC final

M final=Mmin ; C final=C G , Mmin

r= r1

Execute a single run that returns       
 

Return M final

T

C final=∞ ; r=1

Start

rR

Mmin

The cut produced by our algorithm is an 
approximation of the Max k-Cut that 
depends on the initial random 
classification of the nodes.
The chances of finding a good 
approximation of the Max k-Cut can be 
significantly increased by running the core 
algorithm several times. 
Since each of the runs starts from different 
randomly selected initial cut, the 
likelihood that all of them are many 
reassignments away from a good 
approximations decreases.



Evaluation



  

Evaluation
Experiments with Aligned Projection Images

Datasets

Randomly selected projections of 2 or 3 objects
(S6, S6x, S7)

Representation ratios: 50:50, 35:65, 20:80, 33:33:33

SNR = 0.1

Perfectly alligned images



  

Evaluation
Experiments with Aligned Projection Images (50:50)

Center: 3D model obtained by reconstructing from heterogeneous projection set 
that contains aligned projection images of objects S6x and S7.
Left, Right: 3D models obtained by reconstructing from the aligned projection 
images of objects S6x, S7 classified by the proposed method.



  

Evaluation
Experiments with Aligned Projection Images (50:50)

Center: 3D model obtained by reconstructing from heterogeneous projection set 
that contains aligned projection images of objects S6x and S7.
Left, Right: 3D models obtained by reconstructing from perfectly classified aligned 
projection images of objects S6x and S7.



  

Evaluation
Experiments with Aligned Projection Images (50:50)

Differences between 3D models obtained by reconstructing from perfectly classified 
aligned projection images of objects S6x, S7 and corresponding 3D models 
obtained by reconstructing from these images classified by the proposed method.



  

Projections No of projections

of assigned to

object Class 1 Class 2

S6x 33 2467

S7 2499 1

Example of the results from the two-class classification experiments with
conformation representation ratio 50:50.

Evaluation
Experiments with Aligned Projection Images (50:50)



  

Evaluation
Experiments with Aligned Projection Images (35:65)

Center: 3D model obtained by reconstructing from heterogeneous projection set 
that contains aligned projection images of objects S6x and S7.
Left, Right: 3D models obtained by reconstructing from the aligned projection 
images of objects S6x, S7 classified by the proposed method.



  

Evaluation
Experiments with Aligned Projection Images (35:65)

Center: 3D model obtained by reconstructing from heterogeneous projection set 
that contains aligned projection images of objects S6x and S7.
Left, Right: 3D models obtained by reconstructing from perfectly classified aligned 
projection images of objects S6x and S7.



  

Example of the results from the two-class classification experiments with
conformation representation ratio 35:65.

Projections No of projections

of assigned to

object Class 1 Class 2

S6x 0 1750

S7 2559 691

Evaluation
Experiments with Aligned Projection Images (35:65)



  

Example of the results from the three-class classification experiment with
conformation representation ratio 35:65.

Projections No of projections

of assigned to

object Class 1 Class 2 Class 3

S6x 18 95 1637

S7 1674 1575 1

Evaluation
Experiments with Aligned Projection Images (35:65)



  

Evaluation
Experiments with Aligned Projection Images (35:65)

3D models obtained by reconstructing from the aligned projection images
of objects S6x, S7 classified by the proposed method into three classes.



  

Evaluation
Experiments with Aligned Projection Images (35:65)

3D models obtained by reconstructing from the aligned projection 
images of objects S6x, S7 classified by the proposed method into three 
classes. The classes corresponding to the same object were merged.



  

Evaluation
Experiments with Aligned Projection Images (35:65)

Differences between 3D models obtained by reconstructing from perfectly classified 
aligned projection images of objects S6x, S7 and corresponding 3D models 
obtained by reconstructing from these images classified by the proposed method.



  

Example of the results from the two-class classification experiments with
conformation representation ratio 20:80.

Projections No of projections

of assigned to

object Class 1 Class 2

S6x 8 992

S7 2535 1465

Evaluation
Experiments with Aligned Projection Images (20:80)



  

Example of the results from the five-class classification experiment with
conformation representation ratio 20:80.

Projections No of projections

of assigned to

object Class 1 Class 2 Class 3 Class 4 Class 5

S6x 958 1 3 35 3

S7 9 1015 1004 961 1011

Evaluation
Experiments with Aligned Projection Images (20:80)



  

Evaluation
Experiments with Aligned Projection Images (33:33:33)

3D models obtained by reconstructing from the aligned projection 
images of objects S6, S6x, S7 classified by the proposed method into 
three classes.



  

Example of the results from the three-class classification experiment with
three equally-represented conformations.

Projections No of projections

of assigned to

object Class 1 Class 2 Class 3

S6 24 1637 6

S6x 7 29 1631

S7 1654 12 0

Evaluation
Experiments with Aligned Projection Images (33:33:33)



  

Evaluation
Experiments with Aligned Projection Images (33:33:33)

Differences between 3D models obtained by reconstructing from perfectly classified 
aligned projection images of objects S6, S6x, S7 and corresponding 3D models 
obtained by reconstructing from these images classified by the proposed method.



  

Evaluation
Experiments with Misaligned Projection Images

Datasets

Randomly selected projections of 2 or 3 objects
(S6, S6x, S7)

Representation ratios: 50:50, 35:65, 20:80, 33:33:33

SNR = 0.1

Misalligned images



  

Evaluation
Experiments with Misaligned Projection Images (50:50)

Center: 3D model obtained by reconstructing from heterogeneous projection set 
that contains misaligned projection images of objects S6 and S7.
Left, Right: 3D models obtained by reconstructing from the misaligned projection 
images of objects S6, S7 classified by the proposed method.



  

Evaluation
Experiments with Misaligned Projection Images (50:50)

Center: 3D model obtained by reconstructing from heterogeneous projection set 
that contains misaligned projection images of objects S6 and S7.
Left, Right: 3D models obtained by reconstructing from perfectly classified 
misaligned projection images of objects S6 and S7.



  

Evaluation
Experiments with Misaligned Projection Images (50:50)

Differences between 3D models obtained by reconstructing from perfectly classified 
misaligned projection images of objects S6, S7 and corresponding 3D models 
obtained by reconstructing from these images classified by the proposed method.



  

Evaluation
A Case Study Involving Externally Obtained Projection Data

Examples of Simian Virus 40 large T-antigen projection images.



  

Evaluation
A Case Study Involving Externally Obtained Projection Data

Center: 3D model obtained by reconstructing from heterogeneous projection set.
Left, Right: 3D models obtained by reconstructing from perfectly classified 
projection images.



  

Evaluation
A Case Study Involving Externally Obtained Projection Data

Center: 3D model obtained by reconstructing from heterogeneous projection set.
Left, Right: 3D models obtained by reconstructing from the projection images 
classified by the proposed method.



  

Evaluation
A Case Study Involving Externally Obtained Projection Data

Differences between 3D models obtained by reconstructing from perfectly 
classified projection images and corresponding 3D models obtained by 
reconstructing from the images classified by the proposed method.



Conclusions



  

Conclusions
Contributions

Proposed an optimization based unsupervised classification procedure to 
separate homogeneous subsets of heterogeneous projection sets was 
proposed.

Demonstrated  that  incorporated into a heterogeneous reconstruction 
procedure, proposed method produces representative 3D models of various 
conformations represented in heterogeneous projection set.

Proposed a new dissimilarity measure, specifically designed to deal with 2D 
projections of 3D objects.

Constructed an algorithm that efficiently finds good (from the classification 
perspective) approximate Max k-Cuts for graphs that represent instances of 
heterogeneous projection sets.
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