EXPLORING THE CONFORMATIONAL FLEXIBILITY OF MACROMOLECULAR NANOMACHINES

- (st. (m, O)), bet up (O V ha

THE WAS A SECTION OF STREET

2(0) = 2 // (A, 14, 0, 0), (a, 0), (a,

 $L(\Theta)$

Life based on molecular machines

Molecular machines

Studying these machines

- The different states tell much about the way these machines work!
- Different conformations of (chemically identical) molecules are very hard to purify
- Biophysical techniques that study the bulk, "average-out" information about these conformations

The promise of 3D-EM

 In 3D Electron Microscopy *individual* molecules are visualized

• Trapped in ice, these molecules are free to adapt many conformations

.

An electron microscope

Inconveniences in 3D-EM

- The experimental signal-to-noise ratio is ~1/10
- We collect 2D-images, while often we want to know about our molecules in 3D
- The molecules adopt unknown orientations on the experimental support
- The molecules may adopt distinct conformations

Quite a problem

Fight the noise by averaging

- alignment: determine the unknown orientations
- classification: separate distinct conformations

Structural heterogenity

• Our approach:

 Combine classification & alignment in a single optimization process

• multi-reference refinements

- Use maximum-likelihood principles

Why maximum likelihood?

 $\mathcal{L}(m) = \sum_{i=1}^{n} lm \sum_{i=1}^{n} \int_{\mathcal{T}} \mathcal{L}(i, i) = m_{i} m_{i} \mathcal{O}(i) \mathcal{L}(m_{i}, m_{i}) \mathcal{O}(i) dm$

 $-\mathcal{L}(\Theta) = \sum \ln \sum \int f(X_{\tau} | \kappa, \omega, \Theta) f(\kappa, \varphi) \Theta \langle d\omega \rangle$

 $\mathcal{J}(\mathbf{x}, \varphi, \Theta^{(n)}) = \frac{\mathcal{J}(\mathbf{x}, [\mathbf{x}, \varphi, \Theta^{(n)}) / (\mathbf{x}, \varphi, \Theta^{(n)})}{\sum \left[\mathcal{J}(\mathbf{x}, [\mathbf{x}, \varphi, \Theta^{(n)}) / (\mathbf{x}, \varphi, \Theta^{(n)})\right]}$

 $L(\mathcal{O}) = \sum_{i=1}^{n} \ln \sum_{\kappa=1}^{n} \int f(X_i \mid \kappa, \varphi, \Theta) f(\kappa, \varphi \setminus \Theta) d\varphi$

 $f(X_1 | \kappa, \varphi, \Theta^{(n)}) f(\kappa, \varphi \setminus \Theta^{(n)})$

Conventional data models No noise term considered Maximum cross-correlation (~least squares) $X_i = P_{\varphi}V_k$

1x-10/0/2. X

Yel O

Statistical data models Introducing a "simple" additive noise term Maximum likelihood

 $X_i = P_{\varphi}V_k + N_i$

White, stationary, Gaussian noise

Statistical model

Each image is a projection of one of *K* underlying 3D objects *k*

with addition of white Gaussian noise

Unknowns: the 3D objects k, orientations

Statistical model

model: A

for each pixel j:

White noise = independence between pixels!

⇔ Ծ

P(data image|model image) ~

 $\prod P(X_j|A_j)$

 $P(X_j|A_j) \propto exp\left(\frac{(X_j - A_j)^2}{-2\sigma^2}\right)$

Log-likelihood function

- Adjust model to maximize the log-likelihood of observing the entire dataset:
- $L(\text{model}) = \sum_{i=1}^{N} \ln P(\text{image}_i | \text{model})$ $= \sum_{i=1}^{N} \ln \sum_{i=1}^{K} \sum_{j=1}^{K} P(\text{image}_{i} \mid k, \text{orient.}, \text{model}) P(k, \text{orient.} \mid \text{model})$ k=1 orient

The model comprises: • estimates for the underlying objects

- estimate for the amount of noise (σ)
- statistical distributions of k & orient.

Optimization algorithm: Expectation Maximization

Two cases

• Alignment & classification in 2D:

 align images and calculate 2D averages for the distinct classes

Alignment & classification in 3D

 align images and calculate 3D reconstructions for the distinct classes

The 2D algorithm

estimates for *K* 2D objects

sampled rotations 360°

for each image, calculate all $P(\text{image}_i | k, \text{rot})$

calculate new 2D average as *probability weighted averages*

ML2D classification

Scheres *et al.* (2005) *J. Mol. Biol.*, **348**, 139-149 Scheres *et al.* (2005) *Bioinformatics* **21** (Suppl. 2), ii243-ii244

ML2D classification

no d00001.xmpno d00002.xmpno d00003.xmpno d00004.xmpno d00005.xmpno d00006.xmpno d00007.xmpno d00008.xmpno d00009.xmp

The 3D algorithm

estimates for *K* 3D objects

project into all (discretely sampled) orientations

for each image, calculate all $P(\text{image}_i | k, \text{orient., model})$

calculate new 3D estimates as probability weighted 3D reconstructions

(kindly provided by Haixao Gao & Joachim Frank)

Prelim. ribosome reconstruction 91,114 particles; 9.9 Å resolution

(kindly provided by Haixao Gao & Joachim Frank)

Seed generation

ML3D-classification

- 4 references
- 91,114 particles
- 64x64 pix (6.2Å/pix)
- 25 iterations
- 10° angular sampling

ML-derived classes

ML3D classification

 $Z(\mathcal{O}) = \sum_{i=1}^{n} \ln \sum_{\kappa=1, j} \int f(X_i \mid \kappa, \varphi, \Theta) f(\kappa, \varphi \setminus \Theta) d\varphi$

Scheres et al. (2007) Nat Methods, 4, 27-29

Statistical model

An improved data model

Maximum likelihood

 $X_i = CTF_i * P_{\varphi}V_k + N_i$

spatially stationary Gaussian noise,

Coloured noise!,.

Coloured noise model

Assuming independence of noise between all Fourier terms:

$$P(X_i \mid k, \varphi, \Theta) = \prod_{h=1}^{H} \frac{1}{2\pi(\sigma^h)^2} \exp\left(\frac{\left|CTF_i^h \left[P_{\varphi}V_k\right]^h - X_i^h\right|^2}{-\left(2(\sigma^h)^2\right)}\right)$$

resolution-dependent noise model!

Simulated data

Archaeal helicase MCM

(4,042 images)

Simulated data

 $Z(\Theta) = \sum_{r=1}^{\infty} \ln \sum_{r=1}^{\infty} \int f(X_r | \kappa, \omega, \Theta) f(\kappa, \varphi \setminus \Theta) d\omega$ $f(X_r | \kappa, \omega, \Theta^{(m)}) f(\kappa, \varphi \setminus \Theta^{(m)})$

 $\sum_{i=1}^{n} \int f(X_{i} | \kappa_{i} \varphi_{i} \Theta^{(m)}) f(\kappa_{i} \varphi_{i} \Theta^{(m)})$

 $Z(\mathcal{O}) = \sum_{i=1}^{n} ln \sum_{\kappa=1, j} \int f(X_i \mid \kappa, \varphi, \Theta) f(\kappa, \varphi \setminus \Theta) d\varphi$

 $f(X_1 | \kappa, \varphi, \Theta^{(m)}) f(\kappa, \varphi \setminus \Theta^{(m)})$

70S E.coli ribosome

(kindly provided by Haixao Gao & Joachim Frank)

(20,000 images)

Coloured noise!!

SV40 large T-antigen

 $\sum \int (X_1 | \kappa, \varphi, \Theta^{(n)}) f(\kappa, \varphi \setminus \Theta^{(n)})$

Future plans

Improve robustness: Outliers!

Decrease computational burdens

Overcome model bias!!!!!!!!

- One of the most serious problems in the field

MLF3D: A new approach that complements previous methods

- Like 2D/3D classification
 - by "Quantitative Self Organizing Maps" (KerDenSOM)
- Like new factorization schemes oriented to provide "factors" more directly understandable than PCA factors:
 - non-smooth Non-Negative Matrix Factorization (ns-NMF)

Exploring data: Smoothly Distributed Kernel Probability Density Estimator

- In the context of "Exploratory Data Analysis", it would be interesting to work with a new SOM optimized to preserve the estimation of the pdf of the input in the mapped (output) space $\int_{\Sigma_1}^{c} \left(1 \sum_{i=1}^{c} \chi(x_i - x_i) \right)^{\frac{q}{2}} dx$
- Results:

P

$$\max\left\{\sum_{i=1}^{c}\ln\left(\frac{1}{c}\sum_{j=1}^{c}K(X_{i}-V_{j};\alpha)\right)-\frac{\mathcal{G}}{2\alpha}tr(V^{T}DV)\right\}$$

K_{\alpha};Kernel(Parzen)Calculation of U_{ij}
$$U_{ji} = \frac{K(X_i - V_j; \alpha)}{\sum_{k=1}^{c} K(X_i - V_k; \alpha)}$$
Maximum LikelihoodIterative calculation of V_j $V_j = \frac{\sum_{i=1}^{n} U_{ji}^m X_i + 9\overline{V_j}}{\sum_{i=1}^{n} U_{ji}^m + 9}$ Maximum LikelihoodIterative calculation of V_j $V_j = \frac{\sum_{i=1}^{n} U_{ji}^m X_i + 9\overline{V_j}}{\sum_{i=1}^{n} U_{ji}^m + 9}$

Application in 2D analysis:

Original T-Antigen double hexamers cryo-electron single particle images.

KerDenSOM in 2D

Self-organizing map *mt* MCM

	۲	۲
0		
		۲
		۲

Class average images

6-fold 7-fold

Open Ring

8-fold

 $\mathcal{L}(\mathcal{O}) = \sum \ln \sum \int f(X_1 \mid \kappa, \varphi, \Theta) f(\kappa, \varphi \setminus \Theta) d\varphi$

Gómez-Llorente et al, J.Biol.Chem., 2005

KerDenSOM in 3D

Subtomogram averaging: Insect Flying Muscle (K.Taylor collaboration)

Non-negative matrix factorization

 $\mathbf{V} \approx \mathbf{W}\mathbf{H}$ $(\mathbf{V})_{i\mu} \approx (\mathbf{W}\mathbf{H})_{i\mu} = \sum_{a=1}^{r} W_{ia} H_{a\mu}$

- V: Data matrix
- W: basis matrix (prototypes)
- H : encoding matrix (in low dimension)

CONSTRAINTS:

• NMF as a latent variable model

Daniel D. Lee & H. Sebastian Seung. NATURE |VOL 401 | 21 OCTOBER 1999 Pascual-Montano et al., IEEE PAMI, 2006

Example with NMF:

Lee, D.D. and Seung, H.S., Nature, 1999. 401 (6755): p. 788-91

 $f(X, | \kappa, \varphi, \Theta^{(m)}) f(\kappa, \varphi \setminus \Theta^{(m)})$

ns-NMF (on *mt* MCM)

ns-NMF factors:

Classes after classification:

Pascual-Montano el al. IEEE PAMI, 2006; Chagoyen et al., BMC Bioinformatics, 2006a,b; Carmona et al., BMC Bioinformatics, 2006

The Biocomputing "cluster" J.M.Carazo (CNB)

Structural biology of helicases

Dr.Mikel Valle (CNB) * (Biogune-Bilbao)
Roberto Melero (CNB)
Dr.Carmen San Martín (CNB)
Yacob Gómez (CNB)
Marta Rajkiew (CNB)
Dr. Rafael Núñez (CNB)
Dr. Isabel Cuesta (CNB)

Structural biology of the centrosome

•Dra.Rocio González (CNB) •Dr.Johan Busselez (CNB)

Methods development in 3DEM

Dr. Sjors Scheres (CNB)
Dr. Javier Velázquez (CNB) *UCSF
Dr. Roberto Marabini (UAM)

Ignacio Arganda (UAM)
Ana Iriarte (UAM)

Dr. Carlos Oscar Sánchez (CEU)

·Computational and data Grid

•Dr. José Ramón Macías (PCM/INB) •Eng. Alfredo Solano (CNB) National Institute for Bioinformatics

Dr.Natalia Jiménez-Lozano
 Joan Segura

•Gene Expression Data Analysis-UCM (Dr. Alberto Pascual)

•Dr. Federico Abascal •Dr. Monica Chagoyen (CNB)

Main external collaborators

Prof. Gabor Herman (NYU)
Prof. Ellen Fanning (Vanderbilt)
Prof. Xiojiang Cheng (USC)
Prof. Juan Carlos Alonso (CNB)
Prof. J. Frank (Albany/Columbia)
Dr.Sergio Marco (Curie)

•Integromics S.L., Integromics International Inc., Varbanov Soft Ltd

•Madrid, Granada, Rousse and Philadelphia