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Life based on molecular machines

DNA replication Protein synthesis Dynein motion



Molecular machines
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F1-ATPase: Abrahams et al., 1994 Dutch windmill



Studying these machines

• The different states tell much about the
way these machines work!

• Different conformations of (chemically
identical) molecules are very hard to purify

• Biophysical techniques that study the bulk, 
“average-out” information about these 
conformations



The promise of 3D-EM

• In 3D Electron Microscopy individual 
molecules are visualized

• Trapped in ice, these molecules are free to
adapt many conformations



An electron microscope



Inconveniences in 3D-EM

• The experimental signal-to-noise ratio is ~1/10

• We collect 2D-images, while often we want to
know about our molecules in 3D

• The molecules adopt unknown orientations on
the experimental support

• The molecules may adopt distinct
conformations



Quite a problem

• Fight the noise by averaging

• BUT, this requires:
– alignment: determine the unknown orientations
– classification: separate distinct conformations

average over

2,000 copies



Classification

alignment & cla
ssific

ation are str
ongly intertw

ined!

noise forms a serious problem!



Structural heterogenity

• Our approach:

– Combine classification & alignment in a single 
optimization process

• multi-reference refinements

– Use maximum-likelihood principles



Why maximum likelihood?



Conventional data models
No noise term considered

Maximum cross-correlation (~least squares)

ki VPX ϕ=

=
?



Conventional data models

Maximum cross-correlation (~least squares)

kii VPCTFX ϕ∗=

=
?

But what about
experimental noise ?!



Statistical data models
Introducing a “simple” additive noise term

Maximum likelihood

=
?

iki NVPX += ϕ

White, stationary, 
Gaussian

noise



Statistical model

Each image is a 
projection of one of K
underlying 3D objects k

with addition of
white Gaussian noise

k = 1 k = 3k = 2

Unknowns: the 3D objects
k, orientations



Statistical model

Aj Xj

σ

for each pixel j:

( )(Xj – Aj)2

-2σ2P(Xj|Aj)∞exp

White noise = 
independence between pixels!
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P(data image|model image) ~
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Log-likelihood function

• Adjust model to maximize the log-likelihood of
observing the entire dataset:
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The model comprises: • estimates for the underlying objects
• estimate for the amount of noise (σ)
• statistical distributions of k & orient.



Two cases

• Alignment & classification in 2D:
– align images and calculate 2D averages for the

distinct classes

• Alignment & classification in 3D
– align images and calculate 3D reconstructions

for the distinct classes



The 2D algorithm

estimates for K
2D objects

( )rot,|image kP i

for each image, calculate all

k=1 k=2

sampled rotations 360°

calculate new 2D average
as probability weighted
averages



ML2D classification

Scheres et al. (2005) J. Mol. Biol., 348, 139-149
Scheres et al. (2005) Bioinformatics 21 (Suppl. 2), ii243-ii244



ML2D classification



The 3D algorithm

estimates for K
3D objects

project into all
(discretely sampled) 
orientations

( )modelorient.,,|image kP i

for each image, calculate all

k=1 k=2

calculate new 3D estimates
as probability weighted
3D reconstructions

(kindly provided by Haixao Gao 
& Joachim Frank)



Prelim. ribosome reconstruction
91,114 particles; 9.9 Å resolution

fragmented

blurred

(depicted at a 
lower threshold)

(kindly provided by Haixao
Gao & Joachim Frank)



Seed generation

80 Å
filter

4 random subsets; 1 iter ML



ML3D-classification
• 4 references
• 91,114 particles
• 64x64 pix (6.2Å/pix)
• 25 iterations
• 10° angular sampling

6 CPU-months



ML-derived classes

no ratcheting; no EF-G; 3 tRNAs
differences: overall rotations

ratcheting, 
EF-G, 1 tRNA



ML3D classification

Scheres et al. (2007) Nat Methods, 4, 27-29



Statistical model

Aj Xj

σ

for each pixel j:

( )(Xj – Aj)2

-2σ2P(Xj|Aj)∞exp

White noise = 
independence between pixels!

j

P(data image|model image) ~

Π P(Xj|Aj)

NOT TRUE!

da
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m
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: A



An improved data model

Maximum likelihood

ikii NVPCTFX +∗= ϕ

=
? spatially

stationary
Gaussian

noise,

Coloured noise!,…



Coloured noise model
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resolution-dependent noise model!



Simulated data

(3,000 images)



Archaeal helicase MCM
(4,042 images)



Simulated data



70S E.coli ribosome

(kindly provided by Haixao Gao & Joachim Frank)
(20,000 images)



Coloured noise!!
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SV40 large T-antigen

(7,718 sub-images)



Future plans

• Improve robustness: Outliers!

• Decrease computational burdens

• Overcome model bias!!!!!!!!!!

– One of the most serious problems in the field



MLF3D: A new approach that
complements previous methods

• Like 2D/3D classification
– by “Quantitative Self Organizing Maps” (KerDenSOM)

• Like new factorization schemes oriented to provide
“factors” more directly understandable than PCA 
factors: 
– non-smooth Non-Negative Matrix Factorization (ns-NMF)



Exploring data:  Smoothly Distributed
Kernel Probability Density Estimator

• In the context of “Exploratory Data Analysis”, it would 
be interesting to work with a new SOM optimized to 
preserve the estimation of the pdf of the input in the 
mapped (output) space

• Results:
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Pascual et al., Pattern Rec. 
2001, J.Struct.Biol. 2002, 
2003, 
PCT and US Patents



Application in 2D analysis:

Original T-Antigen double hexamers
cryo-electron single particle images.



KerDenSOM in 2D
Self-organizing map 

mt MCM

Class average images

6-fold 7-fold 8-fold Open 
Ring

Gómez-Llorente et al, J.Biol.Chem., 2005



KerDenSOM in 3D 
Subtomogram averaging: Insect Flying Muscle 

(K.Taylor collaboration) 
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Non-negative matrix 
factorization
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NMF as a latent variable model

…
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V: Data matrix

W : basis matrix (prototypes)

H : encoding matrix (in low 

dimension)

CONSTRAINTS:
, , 0i ia aV W Hµ µ ≥ Daniel D. Lee & H. Sebastian Seung. NATURE |VOL 401 | 21 OCTOBER 1999

Pascual-Montano et al., IEEE PAMI, 2006



Example with NMF:

Original data

k Factors (W)

Encoding 
vector

Original 
image

Reconstructed 
image
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Lee, D.D. and Seung, H.S., Nature, 1999. 401 (6755): p. 788-91 



ns-NMF (on mt MCM)
ns-NMF factors:

Classes after classification:

Explained variance: 75,92%

Pascual-Montano el al. IEEE PAMI, 2006; Chagoyen et al., BMC Bioinformatics, 2006a,b; Carmona et al., BMC Bioinformatics, 2006
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