## Molecular Electron Microscopy to Biophysical Analysis

### Chandrajit Bajaj

### http://www.cs.utexas.edu/~bajaj







Computational Visualization Center Institute for Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

# Acknowledgements

#### **Group Members** ٠

- Albert Chen (CS, Ph.D)
- Rezaul Chowdhury (PostDoc)
- Ajay Gopinath (BME,Ph.D)
- Andrew Gillete (Math, Ph.D.)
- R. Inkulu (PostDoc)
- Alex Kim (CS, Ugrad)
- Bongjune Kwon (BME,Ph.D)
- **Oliver Martin (CS, Ugrad)**
- Maysam Mousallem (CS,PhD)
- Joe Rivera (Res. Scientist)
- Aditi Saha (CS, MS)
- Jesse Sweet (Math, MS)
- Dongjin Suh (CS, MS)
- Samrat Goswami (PostDoc)
- Zeyun Yu (UCSD)\*\*
- Xiaoyu Zhang (CSU)\*\*
- Wengi Zhao (CAM, Ph.D.)

#### Senior Collaborators

- Manfred Auer (LBL,UCB)
- Tim Baker, M. Ellisman (UCSD)
- Nathan Baker (WashU)
- Wah Chiu, Steve Ludtke (Baylor)
- Inderjit Dhillon (UT, CS)
- Ron Elber, Peter Rossky (UT, ICES)
- Joachim Frank (Suny Albany, Columbia)
- Kristen Harris, Dan Johnston (UT, ILM)
- Tom Hughes, Tinsley Oden (UT, ICES)
- Justin Kiney, Tom Bartol, Terry Sejnowski (Salk)
- Andy McCammon, Michael Holst (UCSD)
- Art Olson, Michel Sanner, David Goodsell (TSRI)
- Alberto Paoluzzi, Antonio DiCarlo(Roma)
- Sriram Subramaniam (NIH-NCI)
- Sponsored by
  - NIH: P20-RR020647, R01-GM074258, R01-0783087, R01-EB004873 NSF: ITR-IIS-032550, DDDAS-CNS-0540033 UT: HTDS



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin



### Molecular Structure Elucidation from Electron Microscopy



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin







# Step #1 : Anisotropic Filtering

Bilateral filtering

$$h(x,\xi) = e^{-\frac{(x-\xi)^2}{2\sigma_d^2}} \times e^{-\frac{(f(x)-f(\xi))^2}{2\sigma_r^2}}$$

where  $\sigma_d$  and  $\sigma_r$  are parameters

and f(.) is the image intensity value.



C. Bajaj, G. Xu, ACM Transactions on Graphics, (2003),22(1), pp. 4- 32.

Anisotropic diffusion filtering

$$\partial_t \phi - \operatorname{div}(a(|\nabla \phi_{\sigma}|) \nabla \phi) = 0$$

where **a** stands for the diffusion tensor

determined by local curvature estimation.



Center for Computational Visualization http://www Institute of Computational and Engineering Sciences Department of Computer Sciences



W. Jiang, M. Baker, Q. Wu, C. Bajaj, W. Chiu, Journal of Structural Biology, 144, 5,(2003), Pages 114-122

http://www.ices.utexas.edu/CCV

University of Texas at Austin

## Step #2: Critical Point Detection

- For smooth data:
  - zeroes of the gradient vector field
  - simple, easy to implement
- For noisy data:
  - Gradient vector diffusion
  - higher time complexity but robust to noise



- Gradient vector diffusion:
  - smoothing the vector fields
  - diffusion to flat regions

$$\begin{cases} \frac{\partial u}{\partial t} = \mu \times div(g(\alpha)\nabla u) \\ \frac{\partial v}{\partial t} = \mu \times div(g(\alpha)\nabla v) \end{cases}$$

where  $g(\alpha)$  is a decreasing function  $\alpha$  is the angle between the central pixel and its surrounding pixels.

Z. Yu, C. Bajaj Proc. ICPR 2002, vol 2, 941- 944 and IEEE Transactions on Image Processing, 2005, 14, 9, 1324-1337





Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin

### Critical Points, their Indices, and their Manifolds

Critical Point of a smooth function is a point where the gradient of the function vanishes.

Index of a critical point is the number of independent directions in which the function decreases.

In 3D, four types of critical points

- 1. Minima index 0
- 2. Saddle of index 1
- 3. Saddle of index 2
- 4. Maxima index 3



From EHNP SoCG'03

Integral curve : A path in the domain of the function on which at every point the tangent to the curve equals the gradient of the function.

Stable Manifold of a critical point is the union of all integral curves ending at the critical point.

<u>Unstable Manifold</u> of a critical point is the union of all integral curves starting at the critical point.



# Step #3: Symmetry Detection

• Asymmetric subunits in an icosahedra



- Two-fold vertices
- Three-fold vertices
- Five-fold vertices



Local symmetry (RDV)

(260 trimers or 720 proteins)



Critical Point Correlation search, addtly sped up by Spherical FFT:

Find best c, minimizing:

$$\sum_{\vec{r}\in D_0} (f(\vec{r}) - f(R_{2\pi/n}(c) \times \vec{r}))^2$$



Z. Yu, C. Bajaj IEEE Transactions on Image Processing, 2005, 14, 9, 1324-1337



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin

## Results of Automatic Symmetry Detection in Virus and Phage Capsid Shells



## Step #4: Subunit Segmentation

#### Multi-seed Fast Marching Method

- Classify the critical points based on local symmetry into separate groups.
- Each seed initializes one contour, with its group's membership.
- Contours march simultaneously. Contours with same membership are merged, while contours with different membership stop each other.

Zeyun, Bajaj IEEE Trans on Imag. Proc., 2005, Baker, Yu, Chiu, Bajaj, J S B 2006



## Capsid and Subunit Segmentation



### Subunit Segmentation



## Step #4b: Subunit Alignment

- Motivation
  - Similarity scores
  - Averaged subunit
  - Map Refinement
  - Structural fitting
- General alignment problem
  - Six degrees of freedom
- Assumptions
  - Subunits are segmented
  - Subunits have an n-fold symmetry
  - Symmetry axes are known
     Rotation r
     Translation t

 $\bigcup_{n \to 2\pi/n}$ 





Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences



University of Texas at Austin

## Subunit Alignment (RDV map refinement)





A single RDV trimer

#### Similarity table

| Similarity<br>scores | 1     | 2     | 3     | 4     | 5     |
|----------------------|-------|-------|-------|-------|-------|
| 1                    | 0.955 | 0.900 | 0.894 | 0.911 | 0.848 |
| 2                    |       | 0.934 | 0.885 | 0.889 | 0.848 |
| 3                    |       |       | 0.856 | 0.880 | 0.845 |
| 4                    |       |       |       | 0.926 | 0.854 |
| 5                    |       |       |       |       | 0.872 |



Averaged trimer



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin



## Step #5: Secondary Structure Identification

- Motivation
  - One more step towards quasiatomic modeling
- Two types of secondary structures
  - Alpha-helices (cylindrical shape)
  - Beta-sheets (planar shape)

- Alpha-helix detection (Jiang et al,

- Beta-sheet detection (Kong et al,





Prior work

2001)

2003)

•

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin Janu

## Step #5A: Secondary Structure Identification

Gradient tensor

Property of local structure tensor



Line structure

















http://www.ices.utexas.edu/CCV Center for Computational Visualization Institute of Computational and Engineering Sciences January 2008 **Department of Computer Sciences** University of Texas at Austin





Step 2: Identification of Interior Medial Axis M.

#### Step 3:

3.a: Identification of Critical points of distance function from Vor/Del(P).

3.b: Selection of Critical points only on M.

[By DGRS2005, Critical points are either near S or near M]

#### Step 4: Classification of Medial Axis via

- 4.a:  $U_1 Unstable Manifold of index 1 saddle point on M$
- 4.b: U<sub>2</sub> <u>Unstable Manifold of index 2 saddle</u> point on M.

Step 5: Width Test to select the subsets of  $U_1$  ( $\beta$ -sheets) and  $U_2$  ( $\alpha$ -helices).



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin January 2008







- $U_1$  and  $U_2$  give superset of sheets and helices.
- $\alpha$ -helix: width 2.5 A and pitch-length 1.5 A [Branden-Tooze]
- $\beta$ -sheet: thickness 1.5 A [Branden-Tooze]
- h<sub>P</sub> values of Voronoi elements constituting U<sub>1</sub> and U<sub>2</sub> help select the subset that passes the width and thickness test.





- Build adjacency relation between two finite maxima if they share a common boundary.
- Compute the Transitive Closure of this relation. This gives a clustering of the maxima and the index-2 saddles.



# Step #6: Structure Fitting/Modeling

• PDB-based approach — vector matching



## Step #6: Structure Fitting/Modeling

**Rice Dwarf Virus** 



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Flexible fitting?

### Analytic Molecular Models with extensions to Flexible Models/Coarse Grained Models



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences Un

University of Texas at Austin



## Helical: Tobacco Mosaic Virus (1EI7)



## Proteins

- Amino acids contain an amide, a residue and a carboxyl group
- Proteins are polypeptide chains, made from amino acids combined via peptide bonds.



R

Η

Computational Visualization Center Institute for Computational and Engineering Sciences Department of Computer Sciences

 $\bigcirc$ F

University of Texas at Austin

 $C\alpha C'$ 

Η

January 2008

Η

Ca

Η

## Stability of Macromolecules in Solution

#### d(CCAACGTTGG)



B-form DNA in water A-form Tsui and Case, 2000

A-form DNA in ethyl



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

### Molecules in Solvent (Implict Model)

Solvent molecule modeled as a sphere. Water: radius 1.4A



SAS: solvent accessible surface: locus of probe center VDW: van der Waals surface: Union of spheres with VDW radii SES/SCS: solvent excluded/contact surfaces



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

## Molecular Models I: Implicit Solvation Surface for the Hard Sphere Model

Lee-Richard (LR) surface is decomposed into three kinds of patches:

convex spherical, toroidal, and concave spherical patches





Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

#### Problem with LR: Singularities

University of Texas at Austin

## Molecular Models II: Analytic Atomic Shape Parameters

**Isotropic Quadratic Kernel:**  $G_i$ ٠

$$(\boldsymbol{X}) = \boldsymbol{e}^{-\frac{\beta}{r_i^2}\left((\boldsymbol{x}-\boldsymbol{x}_i)^2 - r_i^2\right)}$$

- $\boldsymbol{G}_{i}(\boldsymbol{x}) = \boldsymbol{e}^{-\beta(|\boldsymbol{x}-\boldsymbol{x}_{i}|-\boldsymbol{r}_{i})}$ **Isotropic Linear Kernel:** ٠
  - $\succ$  where
    - > The decay  $\beta$  controls the shape of the Gaussian function.
    - The van der Waal's radius is r<sub>i</sub>
    - > The center of the atom is  $\mathbf{x}_{c}$ .



**Anisotropic Kernels** 

 $\beta = 2.3, r = 1.8 \text{ Å}$  $\beta$  values suggested in (Boys 50), (Grant Pickup 99) Center for Computational Visualization Institute of Computational and Engineering Sciences **Department of Computer Sciences** University of Texas at Austin



## <u>Modeling Flexibility:</u> FCC Cluster Hierarchy

Clustering of atoms is based on

- biochemical units
- preserving molecular shape feature



## FCC Models of Ribosome and Viral Capsid















Computational Visualization Center Institute for Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

## **Modeling Flexibility**

Conformational changes occur due to

- changes in torsional angles:  $\varphi$ ,  $\psi$  and  $\chi$
- hinge-type bending and shearing movements



# **Conformational changes in Calmodulin:** open (1CLL.PDB) closed (2BBM.PDB)



Center for Computational Visualization Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin



## <u>Modeling Flexibility:</u> Identifying Domains using Normal Mode Analysis



## <u>Modeling Flexibility:</u> <u>Motions at Flexors</u>

We apply three types of motions at flexors:

□ <u>Shear</u>: a lateral movement applied along the interface of two domains if

- they share a large number of short connectors, and / or
- they have a large interface area

Bending: applied when the domains are connected by at least one connector

- applied around three orthogonal axes
- <u>hinge point</u>: geometric center of the shortest connector
- <u>primary axis</u>: normal to the plane containing the geometric centers of the two domains and of the shortest connector
- <u>secondary axis</u>: orthogonal to the primary axis and the line connecting the two domain centers
- <u>third axis</u>: line through the domain centers

**<u>Twist</u>**: applied when only a single connector exists between the domains

- the torsion angles along the backbone are updated





Suppose we want to generate N global conformations.

- conformations are allocated to flexors
- each flexor f is assigned a weight  $w_f$  (= sum of the domain weights)
- number of conformations allocated to f is  $N^{wf}/\Sigma^{wf}$
- <u>conformations are generated by applying motions to the flexors</u>



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences Unive

University of Texas at Austin

## **Modeling Flexibility: Domain Decomposition of Adenylate Kinase** <u>(4AKE.PDB)</u>



Domains: red / green / blue

□ Connectors: yellow

Flexible Loops: light domain color



**Domains:** 

- <u>Core</u>: 93 residues, 12 segments, 12 loops
- <u>AMP-binding</u>: 52 residues, 9 segments, 4 loops
- ATP-lid: 36 residues, 4 segments, 3 loops

#### **Connectors and Interface Area:**



- <u>Core and AMP-binding</u>: 3, 508 Å Institute of Computational and Engineering Science TP **Department of Computer Sciences** Texas at Austin

## <u>Modeling Flexibility:</u> <u>Motion Graph of Adenylate Kinase</u>



Domains:

- <u>Core</u>: 93 residues, 12 segments, 12 loops
- <u>AMP-binding</u>: 52 residues, 9 segments, 4 loops
- ATP-lid: 36 residues, 4 segments, 3 loops

**Connectors and Interface Area:** 

- Core and AMP-binding: 3, 508 Å
- Core and ATP-lid: 2, 2 Å







### Search and Scoring for Flexible Docking (F3Dock)

Docking score is based on

- Shape complementarity:
  - Lennard Jones potential
  - Curvature complementarity
- **Electrostatic interactions** 
  - Long range
  - Short range
    - Hydrogen bonds
    - Salt bridges
  - Hydrophobic patches
- **Desolvation free energy**
- Free Energy change due to conformational changes



### Fast Computation of Protein Binding Energetics and Forces







Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

## **Binding Energy of Macromolecules**

In structure based drug design, binding of a drug (ligand) to a receptor (protein/nucleic acid), usually causes the ligand to either enhance or inhibit the activity of the receptor.



## Free Energy of a Single Molecule in Solvent

Total free energy :  $G = E_{MM} + G_{sol} - TS$ 

$$E = E_b + E_{\varphi} + E_{\varphi} + E_{vdw} + E_{elec}$$

$$G_{sol} = G_{cav} + G_{sol}$$

$$g$$

$$air (\varepsilon = 1)$$

$$G_{sol}$$

$$G_{sol} = G_{cav} + G_{sol}$$



Computational Visualization Center Institute for Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

## Free Energy of a Single Molecule in Solvent • bonded $\begin{cases} E_b = \sum_b k_b (r_b - r_b^0)^2 & r, r_0 : \text{covalent bond variation} \\ E_\theta = \sum_a k_a (\theta_a - \theta_a^0)^2 & \theta, \theta_0 : \text{valence angle variation} \\ E_\varphi = \sum_t k_t (1 + \cos n(\varphi_t - \varphi_t^0)) & \varphi, \varphi_0 : \text{torsion angle variation} \end{cases}$ $\mathcal{F}, \mathcal{F}_0$ : covalent bond variation $\left(\begin{array}{c} E_{vdw} = \sum_{i < j} \frac{C_{ij}}{r_{ij}^{12}} - \frac{D_{ij}}{r_{ij}^{6}} & C, D : \text{Lennard-Jones parameters} \\ r_{ij} & i \text{ distance between atoms} \end{array}\right)$ • nonbonded $E_{elec} = \sum_{i < j} \frac{q_i q_j}{r_{ii}}$ q : atomic charge $\gamma\,,S\,$ : surface tension and surface area $G_{\rm cav} + G_{\rm vdw} = \gamma S$ **Computational Visualization Center** Institute for Computational and Engineering Sciences

University of Texas at Austin

January 2008

**Department of Computer Sciences** 

## How to Compute $G_{\text{pol}}$ ?

Poisson-Boltzmann (PB) Theory 

$$G_{\text{pol}} = \frac{1}{2} \int [\phi_{\text{solvent}}(\mathbf{r}) - \phi_{\text{air}}(\mathbf{r})] \rho(\mathbf{r}) dV$$

$$-\nabla \left[ \varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r}) \right] = 4\pi \rho(\mathbf{r}) + 4\pi \lambda(\mathbf{r}) \sum_{j=1}^{\infty} c_j^{\infty} q_j \exp(-q_j \phi(\mathbf{r}) / k_B T)$$

finite difference, finite element -- APBS, DELPHI, ....

- ASMS Boundary Element [Bajaj, Chen 2007]
- Generalized Born (GB) Theory
  - Born formula (Born 1920) Born formula (Born 1920) generalized Born formula (Still 1990) methods to compute the Born radii:  $G_{pol} = -\frac{\tau}{2} \sum_{ij} \frac{q_i q_j}{[r_{ij}^2 + R_i R_j \exp(-\frac{r_{ij}^2}{4R_i R_j})]^{\frac{1}{2}}}$
  - methods to compute the Born radii:
    - pairwise summation : fast but not easy for force calculation
    - ASMS, nFFT, and higher order quadrature [Bajaj, Zhao 2006]

$$R_i^{-1} = \frac{1}{4\pi} \int_{\Gamma} \frac{(\mathbf{r} - \mathbf{x}_i) \cdot \mathbf{n}(\mathbf{r})}{|\mathbf{r} - \mathbf{x}_i|^4} \ dS$$



Center for Computational Visualization Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

January 2008

- dielectric constant 3 electrostatic potential solute charge density
- ion accessibility parameter
- ion bulk concentration  $c_j^{\infty}$ 
  - ion charge

T

- $q_{j}$ Boltzmann's constant  $k_{B}$ 
  - temperature

### **Generalized Born Energy**

Generalized Born method

$$G_{\rm pol} = -\frac{\tau}{2} \sum_{i,j} \frac{q_i q_j}{[r_{ij}^2 + R_i R_j \exp(-\frac{r_{ij}^2}{4R_i R_j})]^{\frac{1}{2}}}$$
(1)

where *q* is the atomic charge, *r* is the distance between atom pairs, and *R* is the atom's **effective Born radius** which reflects how deeply the atom is buried in a molecule:

$$R_i^{-1} = \frac{1}{4\pi} \int_{\Gamma} \frac{(\mathbf{r} - \mathbf{x}_i) \cdot \mathbf{n}(\mathbf{r})}{|\mathbf{r} - \mathbf{x}_i|^4} dS$$
(2)

IISC Dec 2007

8/34

where  $\Gamma$  is the molecular surface of the solute, **x** is the atomic center, and **n** is the unit surface normal.

# Fast Computation of Born Radii $R_i$ $R_i^{-1} = \frac{1}{4\pi} \int_{\Gamma} \frac{(\mathbf{r} - \mathbf{x}_i) \times \mathbf{n}(\mathbf{r})}{|\mathbf{r} - \mathbf{x}_i|^4} dS \approx \frac{1}{4\pi} \sum_{k=1}^N w_k \frac{(\mathbf{r}_k - \mathbf{x}_i) \times \mathbf{n}(\mathbf{r}_k)}{|\mathbf{r}_k - \mathbf{x}_i|^4}, \quad \mathbf{r}_k \in \Gamma$

Algorithm:

- 1. Generate a smooth A-spline model for the molecular surface  $\Gamma$ .
- 2. Cubature: choose  $w_k$  and  $\mathbf{r}_k$  properly so that higher order of accuracy can be obtained for small N.
- 3. Fast summation using non-uniform FFT to evaluate  $R_i$ , i = 1, ..., M.



•[Zhao, Xu, Bajaj, ACM SPM 2006]



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin



 $S := \{ \mathbf{p}(b_1, b_2, b_3, \lambda) : F(b_1, b_2, b_3, \lambda) = 0, \mathbf{p} \in D_{ijk} \} \text{ where }$ 



- $D_{ijk} = \{\mathbf{p}(b_1, b_2, b_3, \lambda) : \mathbf{p} = b_1 \mathbf{v}_i(\lambda) + b_2 \mathbf{v}_j(\lambda) + b_3 \mathbf{v}_k(\lambda), \lambda \in I_{ijk}\}$
- $I_{ijk}$  is an interval containing 0

• 
$$F(b_1, b_2, b_3, \lambda) = \sum_{i+j+k=n} b_{ijk}(\lambda) B_{ijk}^n(b_1, b_2, b_3)$$

• 
$$B_{ijk}^{n}(b_1, b_2, b_3) = \frac{n!}{i! j! k!} b_1^{i} b_2^{j} b_3^{k}$$

• n>2 so that S is smooth. We consider the case n=3.  $b_{ijk}(\lambda)$  are determined so that C<sup>1</sup> continuity is obtained across the patch boundaries.



Computational Visualization Center Institute for Computational and Engineering Sciences Department of Computer Sciences •[Bajaj, Xu CAGD 2002]

University of Texas at Austin

## Fast Summation via Error bounded Non-uniform Fast Fourier Transforms

To evaluate forms like 
$$I(x_i) = \sum_{k=1}^{N} c_k K(x_i - r_k), \quad i = 1, \dots, M, \quad K \in C^p(-\frac{1}{2}, \frac{1}{2})$$
  
 $K(x_i - r_k) \approx \sum_{\omega = -n/2}^{n/2} b_{\omega} e^{2\pi i \omega (x_i - r_k)} \coloneqq K_F$   
 $I(x_i) \approx \sum_{k=1}^{N} c_k K_F(x_i - r_k) = \sum_{k=1}^{N} c_k \sum_{\omega = -n/2}^{n/2-1} b_{\omega} e^{2\pi i \omega (x_i - r_k)} = \sum_{\omega = -n/2}^{n/2-1} b_{\omega} a_{\omega} e^{2\pi i \omega x_i} \quad \text{NFFT}$   
where  $a_{\omega} = \sum_{k=1}^{N} c_k e^{-2\pi i \omega r_k} \quad \text{NFFT}^T$   
Time complexity:  
 $a_{\omega} : O(mn + N \log N) \quad b_{\omega} : O(n \log n) \quad I : O(mM + n \log n) \quad m < n/2$   
overall:  $O(mM + mn + N \log N + n \log n)$  (trivial method:  $O(MN)$ )



University of Texas at Austin

### ASMS: Algebraic Spline Molecular Surfaces



atomic/quasi-atomic structure



molecular surface triangulation





coarse mesh

A-Spline



#### atomic structure







A-Spline

atomic structure asymmetric subunit P8

A-Spline



Computational Visualization Center Institute for Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

## **Force Calculation**

The electrostatic force acting on atom  $\alpha$  which is part of the forces driving Molecular dynamics is

$$\begin{split} \mathbf{F}_{\alpha}^{\text{elec}} &= -\frac{\partial G_{\text{pol}}}{\partial \mathbf{x}_{\alpha}} \\ \frac{\partial G_{\text{pol}}}{\partial \mathbf{x}_{\alpha}} &= \sum_{i} \sum_{j \neq i} \frac{\partial G_{\text{pol}}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial \mathbf{x}_{\alpha}} + \sum_{i} \frac{\partial G_{\text{pol}}}{\partial R_{i}} \frac{\partial R_{i}}{\partial \mathbf{x}_{\alpha}} \\ R_{i}^{-1} &= \frac{1}{4\pi} \int_{\text{ex}} \frac{1}{|\mathbf{r} - \mathbf{x}_{i}|^{4}} \ dV \ \text{, or } R_{i}^{-1} &= \frac{1}{4\pi} \int_{\Gamma} \frac{(\mathbf{r} - \mathbf{x}_{i}) \cdot \mathbf{n}(\mathbf{r})}{|\mathbf{r} - \mathbf{x}_{i}|^{4}} \ dS \end{split}$$

The integration domain depends on  $\boldsymbol{X}_{\alpha}$  .



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

January 2008

Force Calculation  

$$-\frac{1}{R_{i}^{2}}\frac{\partial R_{i}}{\partial \mathbf{x}_{\alpha}} = \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\partial}{\partial \mathbf{x}_{\alpha}}\frac{\bar{\varrho}(\mathbf{r},\{\mathbf{x}_{j}\})}{|\mathbf{r}-\mathbf{x}_{i}|^{4}} dV$$

$$\frac{\partial R_{i}}{\partial \mathbf{x}_{\alpha}} = -\frac{R_{i}^{2}}{4\pi}\left(\left|\int_{\mathbb{R}^{3}}\frac{\partial}{\partial \mathbf{x}_{\alpha}}\frac{\bar{\varrho}(\mathbf{r},\{\mathbf{x}_{j}\})}{|\mathbf{r}-\mathbf{x}_{i}|^{4}} dV\right| + \int_{ex}\frac{\partial}{\partial \mathbf{x}_{\alpha}}\frac{1}{|\mathbf{r}-\mathbf{x}_{i}|^{4}} dV\right)\right|$$

$$= -4\mathbf{x}_{i}3\int_{\Gamma}\frac{(\mathbf{r}-\mathbf{x}_{i})\cdot\mathbf{n}(\mathbf{r})}{|\mathbf{r}-\mathbf{x}_{i}|^{6}} dS$$

$$\frac{\partial}{\partial \mathbf{x}_{\alpha}}\bar{\varrho} = -\frac{\partial}{\partial \mathbf{x}_{\alpha}}\tilde{\varrho} = \frac{\partial\varrho_{\alpha}}{\partial \mathbf{x}_{\alpha}}(1-\sum_{j}\varrho_{j}+\sum_{j
Molecular surface  
Since  $\frac{\partial\rho_{\alpha}}{\partial \mathbf{x}_{\alpha}}\neq 0$  only if  $a_{\alpha} - w < |\mathbf{r}-\mathbf{x}_{\alpha}| < a_{\alpha} + w$  Molecular skin  

$$\int_{\mathbb{R}^{3}}\frac{\partial}{\partial \mathbf{x}_{\alpha}}\bar{\rho}[\mathbf{r},\{\mathbf{x}_{j}\}]}{|\mathbf{r}-\mathbf{x}_{i}|^{4}} dV = \int_{|\mathbf{r}-\mathbf{x}_{\alpha}|=a_{\alpha}-w}\frac{\partial\rho_{\alpha}}{\partial \mathbf{x}_{\alpha}}\frac{1-\sum_{j}\rho_{j}+\sum_{j$$$$

### **Molecular Solvation Forces**



Figure: (a) The atomic model of protein 1PPE (436 atoms); (b) The piecewise algebraic surface of 1PPE. $G_{pol} = -825.33$  kcal/mol.

; (c) The solvation forces of protein 1PPE shown as function on surface

500



# Acknowledgements

#### **Group Members** ٠

- Albert Chen (CS, Ph.D)
- Rezaul Chowdhury (PostDoc)
- Ajay Gopinath (BME,Ph.D)
- Andrew Gillete (Math, Ph.D.)
- R. Inkulu (PostDoc)
- Alex Kim (CS, Ugrad)
- Bongjune Kwon (BME,Ph.D)
- **Oliver Martin (CS, Ugrad)**
- Maysam Mousallem (CS,PhD)
- Joe Rivera (Res. Scientist)
- Aditi Saha (CS, MS)
- Jesse Sweet (Math, MS)
- Dongjin Suh (CS, MS)
- Samrat Goswami (PostDoc)
- Zeyun Yu (UCSD)\*\*
- Xiaoyu Zhang (CSU)\*\*
- Wengi Zhao (CAM, Ph.D.)

#### Senior Collaborators

- Manfred Auer (LBL,UCB)
- Tim Baker, M. Ellisman (UCSD)
- Nathan Baker (WashU)
- Wah Chiu, Steve Ludtke (Baylor)
- Inderjit Dhillon (UT, CS)
- Ron Elber, Peter Rossky (UT, ICES)
- Joachim Frank (Suny Albany, Columbia)
- Kristen Harris, Dan Johnston (UT, ILM)
- Tom Hughes, Tinsley Oden (UT, ICES)
- Justin Kiney, Tom Bartol, Terry Sejnowski (Salk)
- Andy McCammon, Michael Holst (UCSD)
- Art Olson, Michel Sanner, David Goodsell (TSRI)
- Alberto Paoluzzi, Antonio DiCarlo(Roma)
- Sriram Subramaniam (NIH-NCI)
- Sponsored by
  - NIH: P20-RR020647, R01-GM074258, R01-0783087, R01-EB004873 NSF: ITR-IIS-032550, DDDAS-CNS-0540033 UT: HTDS



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin