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Introduction

The Schramm-Loewner Evolution (SLE) is a stochastic process of
random conformal maps that has received a lot of attention over
the last decade. A number of two-dimensional lattice models have
been proved to converge to SLE with different parameters, thanks
to the work by Schramm, Lawler, Werner, Smirnov, Sheffield, and
many others.
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Introduction

SLE = Loewner’s differential equation 4+ random driving function.
We are mainly concerned with the chordal Loewner equation:

2
gt(z) = A(t)’

where z € C, and A € C([0, T),R) is called the driving function.
Fix k > 0, and let B(t) be a standard Brownian motion. The
solution of the chordal Loewner equation with \(t) = \/kB(t) is
called chordal SLE,.

Orgt(z) = g(z) = z,
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Introduction

Rohde and Schramm showed that chordal SLE,; generates a
random curve called the trace: 5(t), 0 < t < oo, in the closure of
the upper half plane, which satisfies 5(0) = 0 and

lim: 00 B(t) = 0.

The simplest case is k € (0,4], in which 3 is a simple curve with

B(t) €e H= {lmz > 0} for t > 0, and for every t > 0,

Conf
gt - H\ 5(0,t] — H.
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Adding a minus sign to the (forward) chordal Loewner equation,
we get the backward chordal Loewner equation:

—2
Ot (z) = ; fo(z) = z.
t

(2) = A1)’
Setting A(t) = /kB(t), we then get the backward chordal SLE,.

The backward and forward Loewner equations are related as
follows. Fix Tg such that X is defined on [0, Tg]. Let
A1, (t) = X(To—t), 0 <t < Tp. Itis easy to check

A
f%o—to(f%g)il = 8t Tov 0<t< TO'

AT,

Taking t = Ty, we get (1"’7%‘0)*1 =gr,’-
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Introduction

A half-open simple curve (as a set) in H is called an H-simple
curve, if its open side approaches a single point on R. If 5 is an
SLE, (r < 4) trace, then §(0, t] is an H-simple curve for every t.

Suppose « € (0,4] and A(t) = v/kB(t). Then A, (t) — A(To) has
the same distribution as A(t), 0 < t < Tp. This together with

(f%‘o)_1 = g;oTO and the property of the forward SLE, trace shows

that the backward chordal SLE,; generates a family of H-simple
Conf
curves ((3¢) such that, for every t, f; : H 2 H\ 5:.
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Fix to > 0, and let f; s, t > to, be the solution of
=2
feto(2) — A(t)’

Conf . .
If to > t;, then fp, ¢, :H — H\ Bt,r, where B, ¢ is an H-simple

curve. We have f;, , o fy, = f;,, and so0 B¢, = Be, 1, U fop 1, (Bry)-

Otfe1y(2) =

ftmto(z) =Z.
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Fix to > 0, and let f; s, t > to, be the solution of
B -2
feto(2) — A(t)

Conf . .
If to > t;, then fp, ¢, :H — H\ Bt,r, where B, ¢ is an H-simple

curve. We have f;, , o fy, = f;,, and so0 B¢, = Be, 1, U fop 1, (Bry)-

Otfe.1y(2) fio t(2) = 2.

When a forward Loewner process and a backward Loewner process
both generate H-simple curves, they look very similar at any fixed
time. However, if we let time evolve, the difference will be clear.
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Introduction

The backward chordal SLE, does not naturally generate a single
curve because (f3;) is not an increasing family. We will study a
different object: the conformal lamination.
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Introduction

The backward chordal SLE, does not naturally generate a single
curve because (f3;) is not an increasing family. We will study a
different object: the conformal lamination.

Every f; has a continuous extension from H to H, which maps two
real intervals with common end point 0 onto the two sides of ;. If
ft(x1) = fr(x2) € Bt, then we write x3 ~¢ xo. If t1 < to, from

fty.t, © fyy = fr, we see that x; ~y xo implies that x; ~¢, x. Thus,
we may define a global relation: x; ~ x» if there exists t > 0 such
that x; ~¢ xp. In fact, x; ~ xp iff that the solutions f;(x;) and
fi(x2) blow up at the same time, i.e., 7(x1) = 7(x2).
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It holds that almost surely, 7(x) < oo for every x € R. So we get a
random self-homeomorphism ¢ of R such that ¢(0) =0,

¢(£00) = Foo, and y = ¢(x) implies x ~ y. We call such ¢ a
backward chordal SLE,, lamination.
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Introduction

It holds that almost surely, 7(x) < oo for every x € R. So we get a
random self-homeomorphism ¢ of R such that ¢(0) =0,

¢(£00) = Foo, and y = ¢(x) implies x ~ y. We call such ¢ a
backward chordal SLE,, lamination.

A fundamental property of the forward chordal SLE is reversibility.
For k < 8, the law of the SLE,, trace is invariant under the
automorphism z — —1/z of H, modulo time parametrization. This
was first proved for k < 4 (Z, 2007), and later for 4 < k < 8
(Miller and Sheffield, 2012). It is false for x > 8.
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Our main theorem is that the backward chordal SLE, lamination
has the following reversibility property.

Let x € (0,4], and ¢ be a backward chordal SLE,; lamination. Then
P(x) := —1/¢71(—1/x) has the same distribution as ¢.
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Sheffield recently proved that, for x € (0,4), there is a coupling of
a backward chordal SLE, with a free boundary Gaussian free field
in H, such that the GFF determines the backward SLE and a
quantum length on R, and for x < 0 <y, ¢(x) = y iff [x,0] and
[0, y] have the same quantum length.

Sheffield’s theorem seems to be closely related to our main
theorem. However, so far we have not found a way to connect
these two results. Instead, the proof of our theorem uses an idea in
the proof of the reversibility of forward chordal SLE,, for x € (0, 4].
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Let x € (0,4]. Although a backward chordal SLE,; process does
not naturally generate a single trace, we may still define a
normalized global backward SLE, trace as follows.
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Let x € (0,4]. Although a backward chordal SLE,; process does
not naturally generate a single trace, we may still define a
normalized global backward SLE, trace as follows.

Recall that, for each ¢, f, : H 5 H\ 8, and £(0) is the tip of 5.
We may find a¢, by € C such that F; = a;f; + b; fixes both 0 and /.
As t — oo, F; converges to a conformal map F,, defined on H,
which also fixes 0 and 7. It turns out that Fo(H) = C\ 3, where
is a simple curve, which joins 0 with oo, and avoids /, and F, is a
realization of the lamination ¢ in the sense that y = ¢(x) implies
that Foo(x) = Foo(y) € 8. We call this § a normalized global
backward SLE,; trace. We have the following reversibility of
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Let k € (0,4), and 3 be a normalized global backward chordal SLE,
trace. Let h(z) = —1/z. Then h(B) has the same distribution as .
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Let k € (0,4), and 3 be a normalized global backward chordal SLE,
trace. Let h(z) = —1/z. Then h(B) has the same distribution as .

This theorem follows from the main theorem and the fact that the
SLE, trace is conformally removable, thank to the work by
Jones-Smirnov (a Hdélder curve is conformally removable) and
Rohde-Schramm (an SLE,; trace is a Holder curve).
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Conformal Transformation

We now define the conformal transformation of a backward
Loewner process via a conformal map with suitable conditions. For
this purpose, we introduce some definitions.

> A relatively closed subset K of H is called an H-hull, if K is
bounded and H \ K is simply connected.

Now assume K is an H-hull. Let Izx(z) = Z be the reflection
about R.

» The base of K: Bk = KNR.
» The double of K: K9'® = K U Ig(K) U Bk.
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Conformal Transformation

v

. i Conf
gk is the unique gk : H\ K — H such that
gk(z)=z+o0(l/z) as H > z — .

v

gk extends to a conformal map defined on C \ Kd9oub.

The support of K: Sk = C\ gx(C \ K%U) Cc R.

The H-capacity of K: hcap(K) = lim,_ z(gk(z) — z) > 0.
fk = g;l is defined on C\ Sk or its subset H.

v

v

v
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Conformal Transformation

Every H-simple curve is an H-hull, whose base is a single point,
and whose support is a real interval. An H-simple curve 3 induces
a lamination ¢g, which is a self-homeomorphism of Sz swapping
its two end points, such that y = ¢(x) implies that f3(x) = f3(y).
Note that f3 maps the two end points of Sg to the base of :
BNR, and maps the only fixed point of ¢ to the tip of 3.

Let x € (0,4], and (B¢) be the H-simple curves generated by a
backward SLE, process. Then f; = f, for every t and [ S5, = R.
The SLE, lamination ¢ satisfies ¢!55t = ¢, for each t.
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Conformal Transformation

Let K and L be two H-hulls. If L C K, we define another H-hull:
K/L=gi(K\ L), call it a quotient hull of K, and write K/L < K.

Fact: If M < K, then hcap(M) < hcap(K) and Sy C Sk.
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Conformal Transformation

Let K and L be two H-hulls. If L C K, we define another H-hull:
K/L=gi(K\ L), call it a quotient hull of K, and write K/L < K.

Fact: If M < K, then hcap(M) < hcap(K) and Sy C Sk.

S
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Conformal Transformation

Proposition

Let (8¢) be a family of H-simple curves. Then they are generated
by a backward chordal Loewner equation if and only if

(i) t1 < tp implies that B, < ft,;
(i) (Bt) is normalized such that hcap(f;:) = 2t for each t.

Moreover, if (i) holds, then ¢, extends ¢g, if t2 > t1, so (Bt)
induces a lamination ¢, which is a self-homeomorphism of USgt,
and satisfies that ¢[s, = ¢, for each t.
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Conformal Transformation

Proposition

Let (8¢) be a family of H-simple curves. Then they are generated
by a backward chordal Loewner equation if and only if

(i) t1 < tp implies that B, < ft,;
(i) (Bt) is normalized such that hcap(f;:) = 2t for each t.

Moreover, if (i) holds, then ¢, extends ¢g, if t2 > t1, so (Bt)
induces a lamination ¢, which is a self-homeomorphism of USgt,
and satisfies that ¢[s, = ¢, for each t.

Remark' From /8f2 - 61‘2,!‘1 U ftz,t1(5t1)r we get Btl - 6[‘2/6&,1’1-
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Conformal Transformation

Theorem

Let W be a conformal map with domain Q. Suppose Q and W are
symmetric in the sense that Ig(Q2) = Q and Wolg = lgo W. Let K
be an H-hull such that Sk C Q. Then there is a unique symmetric
conformal map WK defined on QX := fx(Q\ Sk)U K9P such that
WK o fK = fWK(K) o W holds in © \ SK, and SwK(K) = W(SK)
Moreover, if Ki < K and Sk, C Q, then WK1 (Ky) < WHe(Ky).
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Conformal Transformation

Theorem

Let W be a conformal map with domain Q. Suppose Q and W are
symmetric in the sense that Ig(Q2) = Q and Wolg = lgo W. Let K
be an H-hull such that Sk C Q. Then there is a unique symmetric
conformal map WK defined on QX := fx(Q\ Sk)U K9P such that
WK o fK = fWK(K) o W holds in © \ SK, and SwK(K) = W(SK)
Moreover, if Ki < K and Sk, C Q, then WK1 (Ky) < WHe(Ky).

We use W*(K) to denote WX (K), which is also an H-hull.
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Conformal Transformation

To prove the theorem, we first consider the case that K is an
analytic H-simple curve. Some result on conformal welding is used
in this case. Then we use analytic H-simple curves to approximate
a general H-hull in the Carathéodory topology.
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Conformal Transformation

To prove the theorem, we first consider the case that K is an
analytic H-simple curve. Some result on conformal welding is used
in this case. Then we use analytic H-simple curves to approximate
a general H-hull in the Carathéodory topology.

Now we explain why the theorem is useful. If K = g is an
H-simple curve, then so is W*(/3). Now 8 and W*(/3) induce
laminations ¢ and ¢y+(5), which are self-homeomorphisms of Sz
and Syy+(5) = W(S3), respectively. From W¥ o fg = fiy«(5)0 W
we get dy+(g) = Woggo w-1t.
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Conformal Transformation

Suppose (f:) are generated by a backward Loewner equation such
that Sg, C Q2 for every t. If t; < to, then B, < f3t,, so

W*(By,) < W*(5t,). But (W*(5¢)) may not be normalized by
hcap(W*(3:)) = 2t. This can be handled with a time-change. Let
u(t) = hcap(W*(B¢))/2. Then u is continuous and increasing with
u(0) =0, and (W*(B,-1(¢))) is normalized, and so are generated
by a backward Loewner equation. We call (W*(B,-1(4))) the
conformal transformation of (3;) via W.
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Conformal Transformation

Suppose (f:) are generated by a backward Loewner equation such
that Sg, C Q2 for every t. If t; < to, then B, < f3t,, so

W*(By,) < W*(5t,). But (W*(5¢)) may not be normalized by
hcap(W*(3:)) = 2t. This can be handled with a time-change. Let
u(t) = hcap(W*(B¢))/2. Then u is continuous and increasing with
u(0) =0, and (W*(B,-1(¢))) is normalized, and so are generated
by a backward Loewner equation. We call (W*(B,-1(4))) the
conformal transformation of (3;) via W.

Let ¢ and ¢y be the laminations induced by (/3;) and
(W*(By-1(t))), respectively. Then they are self-homeomorphisms
of S:=JSs and Sw = {J Sw+(g,), respectively, and we have
Sw=W(S)and pyy = Wogpo w1,
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Conformal Transformation

Now we define backward chordal SLE(k; p) process, where p € R.
Let x # y € R. Suppose A(t) and p(t) solve the equations

d\(t) = /kdB(t) + OE ()dt, A0) = x;
dp(t) = o= A(t)dt p(0) =

Then we call the backward chordal Loewner process driven by A
the backward chordal SLE(k; p) process started from (x;y).
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Conformal Transformation

Proposition

Let W be a conformal automorphism of H such that W(0) # oc.
Let x € (0,4] and (f:) be backward chordal SLE,; traces. Suppose
W1(cc) & S, for 0 < t < T. Then the conformal transformation
of (Bt)o<t<T via W is a backward chordal SLE(k; —k — 6) process.
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Conformal Transformation

This theorem is similar to the work by Schramm and Wilson, who
showed that the image of a forward chordal SLE, process under a
conformal automorphism of H is an SLE(k; k — 6) process. The
resemblance makes us to believe that the backward SLE, can be
understood as SLE with negative parameter —x. It is known that
the central charge of SLE,, is W € (—o0,1], so we guess
that backward SLE, has central charge
(8—3(—k))(—x—6) (84 3k)(k+6)

() = o € [25, 00).
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Radial SLE

Radial SLE is another important version of SLE. For radial SLE,
the unit disc D = {|z| < 1} plays the role of H, the center 0 plays
the role of 0o, and the unit circle T = {|z| = 1} plays the role of
R. We have a very similar theory.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination



Radial SLE

Radial SLE is another important version of SLE. For radial SLE,
the unit disc D = {|z| < 1} plays the role of H, the center 0 plays
the role of 0o, and the unit circle T = {|z| = 1} plays the role of
R. We have a very similar theory.

The forward radial Loewner equation is

eiA(t) + gi(z
Oege(z) = g(z) - e"/\(t)—gttgz;’ go(z) = z.

If \(t) = /kB(t), we get the radial SLE,, process. In the case
k € (0,4], there is a random simple curve 3, called the radial SLE,,
trace, with 5(0) =1, 5(t) € D\ {0} for t > 0, and

Conf
lim:_00 5(t) = 0, such that for every t, g; : D\ 3(0, t] 2 D.
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Radial SLE

Adding a minus sign, we get the backward radial Loewner equation

e Mt) ft(Z)

%fi(2) = ~h(2) - 5o )

fo(z) = z.
If \(t) = \/kB(t), we get the backward radial SLE,, process. In

the case k € (0, 4], the process generates a family of D-simple

Conf
curves () such that for each t, f; : D 5D \ B¢. Here a

D-simple curve is a half-open simple curve in D\ {0}, whose open
end approaches a single point on T.
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Radial SLE

A relatively closed subset K of D is called a D-hull, if 0 ¢ K and
D\ K is simply connected. Let K be a D-hull. Let Bx = KNT be
the base of K. Let K9P = K U Ir(K) U Bk be the double of K,
where Ip(z) = 1/Z is the reflection of T. There is a unique

Conf
gk 1D\ K — D such that gg(0) = 0 and g, (0) > 0, and gk

extends to gx : C\ K9oub Cg?f C\ Sk, where Sk C T is compact,
called the support of K. Let the D-capacity of K be

dcap(K) = Ingc(0) > 0. Let fx = g be defined on C\ Sk or its
subset D.
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Radial SLE

Every D-simple curve is a D-hull, whose support is an arcon T. A
D-simple curve 3 induces a lamination ¢g, which is a
self-homeomorphism of Sg swapping its two end points, such that
y = ¢p(x) implies that f3(x) = f3(y). Note that f3 maps the two
end points of S to the base of j3: BNT, and maps the only fixed
point of ¢g to the tip of (5.

Suppose (B:) are the D-simple curves generated by a backward
radial Loewner equation. Then f; = f3, for every t.
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Radial SLE

Let K and L be two D-hulls. If L C K, we define another D-hull:
K/L =g (K\ L), call it a quotient hull of K, and write K/L < K.
If M < K, then dcap(M) < dcap(K) and Sy C Sk.
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Radial SLE

Let K and L be two D-hulls. If L C K, we define another D-hull:
K/L =g (K\ L), call it a quotient hull of K, and write K/L < K.
If M < K, then dcap(M) < dcap(K) and Sy C Sk.

Proposition

Let (B:) be a family of D-simple curves. Then they are generated
by a backward radial Loewner equation if and only if

(i) t1 < tp implies that B, < ft,;

(i) (Bt) is normalized such that dcap(pB;:) = t for each t.
Moreover, if (i) holds, then ¢, extends ¢g, if to > t1, so (Bt)
induces a lamination ¢, which is a self-homeomorphism of | Sg,,
and satisfies that ¢[s, = ¢, for each t.
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Radial SLE

Theorem

Let W be a conformal map with domain Q. Suppose Q and W are
symmetric in the sense that Ip(Q2) = Q and Wolp = lpo W. Let
K be a D-hull such that Sk C Q. Then there is a unique symmetric
conformal map WK defined on QX := f(Q\ Sk)U K9P such that
WK o fK = fWK(K) o W holds in © \ SK, and SwK(K) = W(SK)
Moreover, if Ki < K and Sk, C Q, then WK1 (Ky) < WHe(Ky).

We use W*(K) to denote WX(K), which is also a D-hull.
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Radial SLE

If K = 3 is an D-simple curve, then so is W*(3). Now /3 and

W* () induce laminations ¢5 and ¢+ (g), which are
self-homeomorphisms of Sg and Sy« (3) = W(Sg), respectively.
From W¥ o f3 = fiy(5) 0 W we see that dyy«(5y = W o ggo WL,
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Radial SLE

If K = 3 is an D-simple curve, then so is W*(3). Now /3 and

W* () induce laminations ¢5 and ¢+ (g), which are
self-homeomorphisms of Sg and Sy« (3) = W(Sg), respectively.
From W¥ o f3 = fiy(5) 0 W we see that dyy«(5y = W o ggo WL,

Suppose (B:) is generated by a backward radial Loewner equation,
then W*(5y,) < W*(By,) if t1 < to. Let u(t) = dcap(W*(5t)).
Then (W*(B,-1(¢))) is normalized, and so is generated by a
backward radial Loewner process. We call this process the
conformal transformation of (3;) via W. Let ¢ and ¢\ be the
laminations induced by (8¢) and (W*(8,-1(¢))), respectively. Then
they are self-homeomorphisms of S :=J S, and Sw = U Sw+(3,),
respectively, and we have Sy = W(S) and ¢y = Wogpo WL
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Couplings

Let p € R. Let x,y € R be such that e* # e”. Suppose A(t) and
p(t) solve the equations

{ d\(t) = /kdB(t) — § cot((A(t) — p(t))/2)dt, A(0) = x;
dp(t) = —cot((p(t) — A(t))/2)dt, p(0) =y.

Then we call the backward radial Loewner process driven by A the
backward radial SLE(k; p) process started from (e™; e").
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Couplings

If W is a conformal map from H onto D, then we may similarly
define the conformal transformation of a backward chordal Loewner
process via W, and get a backward radial Loewner process. The
theorem below also resembles Schramm-Wilson's result.
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Couplings

If W is a conformal map from H onto D, then we may similarly
define the conformal transformation of a backward chordal Loewner
process via W, and get a backward radial Loewner process. The
theorem below also resembles Schramm-Wilson's result.

Proposition

Suppose W maps H conformally onto D. Let x € (0, 4] and (f;) be
backward chordal SLE,, traces. Then the conformal transformation
of (B:) via W is a backward radial SLE(k; —k — 6) process started
from (W(0); W(c0)).
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Couplings

The above backward radial SLE(k; —x — 6) process started from
(W(0); W(o0)) induces a lamination ¢/, which is a
self-homeomorphism of T \ {W(oo)} with one fixed point: W(0).
If ¢ is the lamination induced by (f;), then ¢y = W o ¢o WL
We may extend ¢y to a self-homeomorphism of T, which has two
fixed points: W/(0) and W/(c0).
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Couplings

The above backward radial SLE(k; —x — 6) process started from
(W(0); W(o0)) induces a lamination ¢/, which is a
self-homeomorphism of T \ {W(oo)} with one fixed point: W(0).
If ¢ is the lamination induced by (f;), then ¢y = W o ¢o WL
We may extend ¢y to a self-homeomorphism of T, which has two
fixed points: W/(0) and W/(c0).

Fix z # z» € T. To prove the main theorem, it suffices to show
that, we may couple a backward radial SLE(x; —k — 6) process
started from (z1; z2) with a backward radial SLE(k; —k — 6)
process started from (zp; z1), such that the two processes induce
the same lamination.
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Theorem

Let k € (0,4] and z; # z € T. There exists a coupling of two

families of D-simple curves (1) and (82) such that the following

hold.

(i) For j=1,2, (B)) is a backward radial SLE(x; —k — 6) process
started from (zj; z3—;);

(i) Let t; < co be a stopping time for (87), f2 = fﬁfz’ and Ti(t2)
be the first time such that Ss1 intersects 5g2 . Then the

2

transformation of (3})o<¢<7(s,) via f2 is a backward radial
SLE(k; —k — 6) process started from (f2(z1); 86?2)' A similar
result holds if the indices “1" and “2" are switched.
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Note that the transformation of (81 )o<t<7y(1,) Via f2 is well
defined because for t < Ti(t2), Sg1 is contained in C\ Sz, which
t ty

is the domain of £2.
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Note that the transformation of (81 )o<t<7y(1,) Via f2 is well
defined because for t < Ti(t2), Sg1 is contained in C\ Sz, which
t ty

is the domain of £2.

For j = 1,2, let ¢/ be the lamination induced by (). Assume that
the above theorem holds true, and the two backward radial

SLE(k; —k — 6) processes are coupled according to the theorem.
We will show that ¢! = ¢?, which then implies the main theorem.
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Let t be fixed. Since the transformation of (8} )o<t< T, (1) Via 2 is
a backward radial SLE(x; —k — 6) process started from
(f2(z1); 85?2)' the union of the supports of (f2)*(5}),

0<t< Ti(t2), is T\ Bgz . Since f2 maps T\ Sz onto T \ Bg
t) ty t)
the union of the supports of 8}, 0 < t < Ty(t2), is T\ Sz . This
o]
shows that S5 and Sz share two end points. Since both ¢!
ﬁTl(t2) By

and ¢? flip these two end points, they agree on these two points.
Letting t» vary, we conclude that ¢! = ¢?.
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Z]_ ZZ
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It remains to prove the above theorem. To construct the coupling,
we use the idea in the proof of the reversibility of forward chordal
SLE,, for x € (0,4]. First, we construct local couplings. Let /; and
I be two closed arcs on T such that dist(/1, ) > 0 and the
interior of /; contains z;, j = 1,2. We call (h, k) a disjoint pair.
Let (8), j = 1,2, be a backward radial SLE(x; —x — 6) process
started from (ZJ,Z3 _j)- Let T;(/;) be the first time that S 5] is not
contained in the interior of /;, j = 1,2. We say that the two
processes are well coupled W|th|n (/1, l) if the following holds.
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» If to < To(h) is a stopping time for (3?), then the
transformation of (3})o<¢<T,(1) Via f2 is a stopped backward
radial SLE(k; —r — 6) process started from (f2(z1); Bs ). A
similar result holds if the indices “1” and “2” are switched.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination



Couplings

» If to < To(h) is a stopping time for (3?), then the
transformation of (3})o<¢<T,(1) Via f2 is a stopped backward
radial SLE(k; —r — 6) process started from (f2(z1); Bs ). A
similar result holds if the indices “1” and “2” are switched.

Such coupling can be constructed by weighting an independent
coupling of two backward radial SLE(x; —k — 6) processes by a
suitable Radon-Nikodym derivative, which is obtained by a
standard argument on Loewner equations.
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Then we are able to show that, for any finitely many disjoint pairs
(", 13"), 1 < m < n, there is a coupling of two backward radial
SLE(k; —k — 6) processes, such that for any m, the two processes
are well coupled within (/{”, IJ"). Such coupling is obtained by
weighting an independent coupling of two backward radial

SLE(k; —k — 6) processes by a RN derivative, which is related with
the RN derivatives for a good coupling within each (47, 1").
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Now let (", IJ")men be a sequence of disjoint pairs, which is dense
in the space of disjoint pairs. For every n € N, the above result
shows that there is a coupling of two backward radial

SLE(k; —+ — 6) processes, which are well coupled within (1, J"),
for m from 1 up to n. Let pu, denote the distribution of such
coupling. The sequence (u,) converges in some suitable topology
to a measure p, which is exactly the coupling of two backward
radial SLE(k; —k — 6) processes that we are looking for.
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Thank you!
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