Reversibility of Backward SLE Lamination

Dapeng Zhan

Michigan State University

IPAM, May 23, 2013

Joint work with Steffen Rohde

イロン イヨン イヨン イヨン

The Schramm-Loewner Evolution (SLE) is a stochastic process of random conformal maps that has received a lot of attention over the last decade. A number of two-dimensional lattice models have been proved to converge to SLE with different parameters, thanks to the work by Schramm, Lawler, Werner, Smirnov, Sheffield, and many others.

・ 同 ト ・ ヨ ト ・ ヨ ト

SLE = Loewner's differential equation + random driving function. We are mainly concerned with the chordal Loewner equation:

$$\partial_t g_t(z) = rac{2}{g_t(z) - \lambda(t)}, \quad g_0(z) = z,$$

where $z \in \mathbb{C}$, and $\lambda \in C([0, T), \mathbb{R})$ is called the driving function. Fix $\kappa > 0$, and let B(t) be a standard Brownian motion. The solution of the chordal Loewner equation with $\lambda(t) = \sqrt{\kappa}B(t)$ is called chordal SLE_{κ}.

Rohde and Schramm showed that chordal ${\rm SLE}_{\kappa}$ generates a random curve called the trace: $\beta(t)$, $0 \le t < \infty$, in the closure of the upper half plane, which satisfies $\beta(0) = 0$ and $\lim_{t\to\infty} \beta(t) = \infty$.

The simplest case is $\kappa \in (0, 4]$, in which β is a simple curve with $\beta(t) \in \mathbb{H} = \{ \text{Im } z > 0 \}$ for t > 0, and for every t > 0, $g_t : \mathbb{H} \setminus \beta(0, t] \xrightarrow{\text{Conf}} \mathbb{H}$.

4 / 53

(日本) (日本) (日本)

Adding a minus sign to the (forward) chordal Loewner equation, we get the backward chordal Loewner equation:

$$\partial_t f_t(z) = rac{-2}{f_t(z) - \lambda(t)}, \quad f_0(z) = z.$$

Setting $\lambda(t) = \sqrt{\kappa}B(t)$, we then get the backward chordal SLE_{κ}.

The backward and forward Loewner equations are related as follows. Fix T_0 such that λ is defined on $[0, T_0]$. Let $\lambda_{T_0}(t) = \lambda(T_0 - t)$, $0 \le t \le T_0$. It is easy to check

$$f_{T_0-t}^{\lambda}\circ (f_{T_0}^{\lambda})^{-1}=g_t^{\lambda}{}^{ au_0},\quad 0\leq t\leq T_0.$$

Taking $t = T_0$, we get $(f_{T_0}^{\lambda})^{-1} = g_{T_0}^{\lambda_{T_0}}$.

ヘロン 人間 とくほど くほとう

6 / 53

A half-open simple curve (as a set) in \mathbb{H} is called an \mathbb{H} -simple curve, if its open side approaches a single point on \mathbb{R} . If β is an SLE_{κ} ($\kappa \leq 4$) trace, then $\beta(0, t]$ is an \mathbb{H} -simple curve for every t.

Suppose $\kappa \in (0, 4]$ and $\lambda(t) = \sqrt{\kappa}B(t)$. Then $\lambda_{T_0}(t) - \lambda(T_0)$ has the same distribution as $\lambda(t)$, $0 \le t \le T_0$. This together with $(f_{T_0}^{\lambda})^{-1} = g_{T_0}^{\lambda_{T_0}}$ and the property of the forward SLE_{κ} trace shows that the backward chordal SLE_{κ} generates a family of \mathbb{H} -simple curves (β_t) such that, for every t, $f_t : \mathbb{H} \xrightarrow{\text{Conf}} \mathbb{H} \setminus \beta_t$.

Fix $t_0 \ge 0$, and let f_{t,t_0} , $t \ge t_0$, be the solution of

$$\partial_t f_{t,t_0}(z) = \frac{-2}{f_{t,t_0}(z) - \lambda(t)}, \quad f_{t_0,t_0}(z) = z.$$

If $t_2 > t_1$, then $f_{t_2,t_1} : \mathbb{H} \xrightarrow{\text{Conf}} \mathbb{H} \setminus \beta_{t_2,t_1}$, where β_{t_2,t_1} is an \mathbb{H} -simple curve. We have $f_{t_2,t_1} \circ f_{t_1} = f_{t_2}$, and so $\beta_{t_2} = \beta_{t_2,t_1} \cup f_{t_2,t_1}(\beta_{t_1})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

8 / 53

Fix $t_0 \ge 0$, and let f_{t,t_0} , $t \ge t_0$, be the solution of

$$\partial_t f_{t,t_0}(z) = \frac{-2}{f_{t,t_0}(z) - \lambda(t)}, \quad f_{t_0,t_0}(z) = z.$$

If $t_2 > t_1$, then $f_{t_2,t_1} : \mathbb{H} \xrightarrow{\text{Conf}} \mathbb{H} \setminus \beta_{t_2,t_1}$, where β_{t_2,t_1} is an \mathbb{H} -simple curve. We have $f_{t_2,t_1} \circ f_{t_1} = f_{t_2}$, and so $\beta_{t_2} = \beta_{t_2,t_1} \cup f_{t_2,t_1}(\beta_{t_1})$.

When a forward Loewner process and a backward Loewner process both generate \mathbb{H} -simple curves, they look very similar at any fixed time. However, if we let time evolve, the difference will be clear.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Conformal Transformation

Radial SLE Couplings

(日) (四) (注) (注) (注) (注)

(日) (四) (注) (注) (注) (注)

(日) (四) (注) (注) (注) (注)

<ロ> (四) (四) (三) (三) (三)

13 / 53

The backward chordal SLE_{κ} does not naturally generate a single curve because (β_t) is not an increasing family. We will study a different object: the conformal lamination.

- 4 回 2 - 4 □ 2 - 4 □

The backward chordal SLE_{κ} does not naturally generate a single curve because (β_t) is not an increasing family. We will study a different object: the conformal lamination.

Every f_t has a continuous extension from \mathbb{H} to $\overline{\mathbb{H}}$, which maps two real intervals with common end point 0 onto the two sides of β_t . If $f_t(x_1) = f_t(x_2) \in \beta_t$, then we write $x_1 \sim_t x_2$. If $t_1 < t_2$, from $f_{t_2,t_1} \circ f_{t_1} = f_{t_2}$ we see that $x_1 \sim_{t_1} x_2$ implies that $x_1 \sim_{t_2} x_2$. Thus, we may define a global relation: $x_1 \sim x_2$ if there exists t > 0 such that $x_1 \sim_t x_2$. In fact, $x_1 \sim x_2$ iff that the solutions $f_t(x_1)$ and $f_t(x_2)$ blow up at the same time, i.e., $\tau(x_1) = \tau(x_2)$.

14/53

It holds that almost surely, $\tau(x) < \infty$ for every $x \in \mathbb{R}$. So we get a random self-homeomorphism ϕ of \mathbb{R} such that $\phi(0) = 0$, $\phi(\pm \infty) = \mp \infty$, and $y = \phi(x)$ implies $x \sim y$. We call such ϕ a backward chordal SLE_{κ} lamination.

・ 同 ト ・ ヨ ト ・ ヨ ト

It holds that almost surely, $\tau(x) < \infty$ for every $x \in \mathbb{R}$. So we get a random self-homeomorphism ϕ of \mathbb{R} such that $\phi(0) = 0$, $\phi(\pm \infty) = \mp \infty$, and $y = \phi(x)$ implies $x \sim y$. We call such ϕ a backward chordal SLE_{κ} lamination.

A fundamental property of the forward chordal SLE is *reversibility*. For $\kappa \leq 8$, the law of the SLE_{κ} trace is invariant under the automorphism $z \mapsto -1/z$ of \mathbb{H} , modulo time parametrization. This was first proved for $\kappa \leq 4$ (Z, 2007), and later for $4 \leq \kappa \leq 8$ (Miller and Sheffield, 2012). It is false for $\kappa > 8$.

15/53

Our main theorem is that the backward chordal SLE_{κ} lamination has the following reversibility property.

Theorem

Let $\kappa \in (0, 4]$, and ϕ be a backward chordal SLE_{κ} lamination. Then $\psi(x) := -1/\phi^{-1}(-1/x)$ has the same distribution as ϕ .

・ロン ・回と ・ヨン ・ヨン

Sheffield recently proved that, for $\kappa \in (0, 4)$, there is a coupling of a backward chordal SLE_{κ} with a free boundary Gaussian free field in \mathbb{H} , such that the GFF determines the backward SLE and a quantum length on \mathbb{R} , and for x < 0 < y, $\phi(x) = y$ iff [x, 0] and [0, y] have the same quantum length.

Sheffield's theorem seems to be closely related to our main theorem. However, so far we have not found a way to connect these two results. Instead, the proof of our theorem uses an idea in the proof of the reversibility of forward chordal SLE_{κ} for $\kappa \in (0, 4]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\kappa \in (0, 4]$. Although a backward chordal SLE_{κ} process does not naturally generate a single trace, we may still define a normalized global backward SLE_{κ} trace as follows.

・ 同 と く ヨ と く ヨ と

Let $\kappa \in (0, 4]$. Although a backward chordal SLE_{κ} process does not naturally generate a single trace, we may still define a normalized global backward SLE_{κ} trace as follows.

Recall that, for each t, $f_t : \mathbb{H} \xrightarrow{\text{Conf}} \mathbb{H} \setminus \beta_t$ and $f_t(0)$ is the tip of β_t . We may find $a_t, b_t \in \mathbb{C}$ such that $F_t = a_t f_t + b_t$ fixes both 0 and *i*. As $t \to \infty$, F_t converges to a conformal map F_∞ defined on \mathbb{H} , which also fixes 0 and *i*. It turns out that $F_\infty(\mathbb{H}) = \mathbb{C} \setminus \beta$, where β is a simple curve, which joins 0 with ∞ , and avoids *i*, and F_∞ is a realization of the lamination ϕ in the sense that $y = \phi(x)$ implies that $F_\infty(x) = F_\infty(y) \in \beta$. We call this β a normalized global backward SLE_{κ} trace. We have the following reversibility of β

Theorem

Let $\kappa \in (0, 4)$, and β be a normalized global backward chordal SLE_{κ} trace. Let h(z) = -1/z. Then $h(\beta)$ has the same distribution as β .

(4回) (4回) (4回)

æ

Theorem

Let $\kappa \in (0, 4)$, and β be a normalized global backward chordal SLE_{κ} trace. Let h(z) = -1/z. Then $h(\beta)$ has the same distribution as β .

This theorem follows from the main theorem and the fact that the SLE_{κ} trace is conformally removable, thank to the work by Jones-Smirnov (a Hölder curve is conformally removable) and Rohde-Schramm (an SLE_{κ} trace is a Hölder curve).

(4月) (1日) (日)

We now define the conformal transformation of a backward Loewner process via a conformal map with suitable conditions. For this purpose, we introduce some definitions.

A relatively closed subset K of III is called an III-hull, if K is bounded and III \ K is simply connected.

Now assume K is an \mathbb{H} -hull. Let $I_{\mathbb{R}}(z) = \overline{z}$ be the reflection about \mathbb{R} .

- The base of K: $B_K = \overline{K} \cap \mathbb{R}$.
- The double of K: $K^{\text{doub}} = K \cup I_{\mathbb{R}}(K) \cup B_K$.

・ロト ・回ト ・ヨト ・ヨト

•
$$g_K$$
 is the unique $g_K : \mathbb{H} \setminus K \xrightarrow{\text{Conf}} \mathbb{H}$ such that $g_K(z) = z + o(1/z)$ as $\mathbb{H} \ni z \to \infty$.

- g_K extends to a conformal map defined on $\mathbb{C} \setminus K^{\text{doub}}$.
- The support of K: $S_K = \mathbb{C} \setminus g_K(\mathbb{C} \setminus K^{\mathsf{doub}}) \subset \mathbb{R}$.
- ▶ The \mathbb{H} -capacity of K: hcap $(K) = \lim_{z \to \infty} z(g_K(z) z) \ge 0$.
- $f_{\mathcal{K}} = g_{\mathcal{K}}^{-1}$ is defined on $\mathbb{C} \setminus S_{\mathcal{K}}$ or its subset \mathbb{H} .

・ロン ・回 と ・ ヨン ・ ヨン

Every \mathbb{H} -simple curve is an \mathbb{H} -hull, whose base is a single point, and whose support is a real interval. An \mathbb{H} -simple curve β induces a lamination ϕ_{β} , which is a self-homeomorphism of S_{β} swapping its two end points, such that $y = \phi_{\beta}(x)$ implies that $f_{\beta}(x) = f_{\beta}(y)$. Note that f_{β} maps the two end points of S_{β} to the base of β : $\overline{\beta} \cap \mathbb{R}$, and maps the only fixed point of ϕ_{β} to the tip of β .

Let $\kappa \in (0, 4]$, and (β_t) be the \mathbb{H} -simple curves generated by a backward SLE_{κ} process. Then $f_t = f_{\beta_t}$ for every t and $\bigcup S_{\beta_t} = \mathbb{R}$. The SLE_{κ} lamination ϕ satisfies $\phi|_{S_{\beta_t}} = \phi_{\beta_t}$ for each t.

24 / 53

Let K and L be two \mathbb{H} -hulls. If $L \subset K$, we define another \mathbb{H} -hull: $K/L = g_L(K \setminus L)$, call it a quotient hull of K, and write $K/L \prec K$.

Fact: If $M \prec K$, then $hcap(M) \leq hcap(K)$ and $S_M \subset S_K$.

소리가 소문가 소문가 소문가

æ

Let *K* and *L* be two \mathbb{H} -hulls. If $L \subset K$, we define another \mathbb{H} -hull: $K/L = g_L(K \setminus L)$, call it a quotient hull of *K*, and write $K/L \prec K$.

Fact: If $M \prec K$, then $hcap(M) \leq hcap(K)$ and $S_M \subset S_K$.

イロト イポト イヨト イヨト

æ

25 / 53

Proposition

Let (β_t) be a family of \mathbb{H} -simple curves. Then they are generated by a backward chordal Loewner equation if and only if (i) $t_1 < t_2$ implies that $\beta_{t_1} \prec \beta_{t_2}$; (ii) (β_t) is normalized such that $hcap(\beta_t) = 2t$ for each t. Moreover, if (i) holds, then $\phi_{\beta_{t_2}}$ extends $\phi_{\beta_{t_1}}$ if $t_2 > t_1$, so (β_t) induces a lamination ϕ , which is a self-homeomorphism of $\bigcup S_{\beta_t}$, and satisfies that $\phi|_{S_{\beta_t}} = \phi_{\beta_t}$ for each t.

(ロ) (同) (E) (E) (E)

Proposition

Let (β_t) be a family of \mathbb{H} -simple curves. Then they are generated by a backward chordal Loewner equation if and only if (i) $t_1 < t_2$ implies that $\beta_{t_1} \prec \beta_{t_2}$; (ii) (β_t) is normalized such that $hcap(\beta_t) = 2t$ for each t. Moreover, if (i) holds, then $\phi_{\beta_{t_2}}$ extends $\phi_{\beta_{t_1}}$ if $t_2 > t_1$, so (β_t) induces a lamination ϕ , which is a self-homeomorphism of $\bigcup S_{\beta_t}$, and satisfies that $\phi|_{S_{\beta_t}} = \phi_{\beta_t}$ for each t.

Remark. From $\beta_{t_2} = \beta_{t_2,t_1} \cup f_{t_2,t_1}(\beta_{t_1})$, we get $\beta_{t_1} = \beta_{t_2}/\beta_{t_2,t_1}$.

(ロ) (同) (E) (E) (E)

Theorem

Let W be a conformal map with domain Ω . Suppose Ω and W are symmetric in the sense that $I_{\mathbb{R}}(\Omega) = \Omega$ and $W \circ I_{\mathbb{R}} = I_{\mathbb{R}} \circ W$. Let Kbe an \mathbb{H} -hull such that $S_K \subset \Omega$. Then there is a unique symmetric conformal map W^K defined on $\Omega^K := f_K(\Omega \setminus S_K) \cup K^{\text{doub}}$ such that $W^K \circ f_K = f_{W^K(K)} \circ W$ holds in $\Omega \setminus S_K$, and $S_{W^K(K)} = W(S_K)$. Moreover, if $K_1 \prec K_2$ and $S_{K_2} \subset \Omega$, then $W^{K_1}(K_1) \prec W^{K_2}(K_2)$.

(本間) (本語) (本語)

Theorem

Let W be a conformal map with domain Ω . Suppose Ω and W are symmetric in the sense that $I_{\mathbb{R}}(\Omega) = \Omega$ and $W \circ I_{\mathbb{R}} = I_{\mathbb{R}} \circ W$. Let Kbe an \mathbb{H} -hull such that $S_K \subset \Omega$. Then there is a unique symmetric conformal map W^K defined on $\Omega^K := f_K(\Omega \setminus S_K) \cup K^{\text{doub}}$ such that $W^K \circ f_K = f_{W^K(K)} \circ W$ holds in $\Omega \setminus S_K$, and $S_{W^K(K)} = W(S_K)$. Moreover, if $K_1 \prec K_2$ and $S_{K_2} \subset \Omega$, then $W^{K_1}(K_1) \prec W^{K_2}(K_2)$.

We use $W^*(K)$ to denote $W^K(K)$, which is also an \mathbb{H} -hull.

(4 同) (4 回) (4 回)

・ロ・ ・回・ ・ヨ・ ・ヨ・

Ξ.

To prove the theorem, we first consider the case that K is an analytic \mathbb{H} -simple curve. Some result on conformal welding is used in this case. Then we use analytic \mathbb{H} -simple curves to approximate a general \mathbb{H} -hull in the Carathéodory topology.

- 4 回 ト 4 ヨ ト 4 ヨ ト

To prove the theorem, we first consider the case that K is an analytic \mathbb{H} -simple curve. Some result on conformal welding is used in this case. Then we use analytic \mathbb{H} -simple curves to approximate a general \mathbb{H} -hull in the Carathéodory topology.

Now we explain why the theorem is useful. If $K = \beta$ is an \mathbb{H} -simple curve, then so is $W^*(\beta)$. Now β and $W^*(\beta)$ induce laminations ϕ_{β} and $\phi_{W^*(\beta)}$, which are self-homeomorphisms of S_{β} and $S_{W^*(\beta)} = W(S_{\beta})$, respectively. From $W^{\beta} \circ f_{\beta} = f_{W^*(\beta)} \circ W$ we get $\phi_{W^*(\beta)} = W \circ \phi_{\beta} \circ W^{-1}$.

Suppose (β_t) are generated by a backward Loewner equation such that $S_{\beta_t} \subset \Omega$ for every t. If $t_1 < t_2$, then $\beta_{t_1} \prec \beta_{t_2}$, so $W^*(\beta_{t_1}) \prec W^*(\beta_{t_2})$. But $(W^*(\beta_t))$ may not be normalized by hcap $(W^*(\beta_t)) = 2t$. This can be handled with a time-change. Let $u(t) = hcap(W^*(\beta_t))/2$. Then u is continuous and increasing with u(0) = 0, and $(W^*(\beta_{u^{-1}(t)}))$ is normalized, and so are generated by a backward Loewner equation. We call $(W^*(\beta_{u^{-1}(t)}))$ the conformal transformation of (β_t) via W.

・同下 ・ヨト ・ヨト

Suppose (β_t) are generated by a backward Loewner equation such that $S_{\beta_t} \subset \Omega$ for every t. If $t_1 < t_2$, then $\beta_{t_1} \prec \beta_{t_2}$, so $W^*(\beta_{t_1}) \prec W^*(\beta_{t_2})$. But $(W^*(\beta_t))$ may not be normalized by hcap $(W^*(\beta_t)) = 2t$. This can be handled with a time-change. Let $u(t) = \text{hcap}(W^*(\beta_t))/2$. Then u is continuous and increasing with u(0) = 0, and $(W^*(\beta_{u^{-1}(t)}))$ is normalized, and so are generated by a backward Loewner equation. We call $(W^*(\beta_{u^{-1}(t)}))$ the conformal transformation of (β_t) via W.

Let ϕ and ϕ_W be the laminations induced by (β_t) and $(W^*(\beta_{u^{-1}(t)}))$, respectively. Then they are self-homeomorphisms of $S := \bigcup S_{\beta_t}$ and $S_W = \bigcup S_{W^*(\beta_t)}$, respectively, and we have $S_W = W(S)$ and $\phi_W = W \circ \phi \circ W^{-1}$.

Now we define backward chordal SLE(κ ; ρ) process, where $\rho \in \mathbb{R}$. Let $x \neq y \in \mathbb{R}$. Suppose $\lambda(t)$ and p(t) solve the equations

$$\begin{cases} d\lambda(t) = \sqrt{\kappa} dB(t) + \frac{-\rho}{\lambda(t) - \rho(t)} dt, & \lambda(0) = x; \\ dp(t) = \frac{-2}{\rho(t) - \lambda(t)} dt, & p(0) = y. \end{cases}$$

Then we call the backward chordal Loewner process driven by λ the backward chordal SLE($\kappa; \rho$) process started from (x; y).

・ロン ・回と ・ヨン・

Proposition

Let W be a conformal automorphism of \mathbb{H} such that $W(0) \neq \infty$. Let $\kappa \in (0, 4]$ and (β_t) be backward chordal SLE_{κ} traces. Suppose $W^{-1}(\infty) \notin S_{\beta_t}$ for $0 \leq t < T$. Then the conformal transformation of $(\beta_t)_{0 \leq t < T}$ via W is a backward chordal SLE $(\kappa; -\kappa - 6)$ process.

・ロン ・回と ・ヨン ・ヨン

This theorem is similar to the work by Schramm and Wilson, who showed that the image of a forward chordal SLE_{κ} process under a conformal automorphism of \mathbb{H} is an $SLE(\kappa; \kappa - 6)$ process. The resemblance makes us to believe that the backward SLE_{κ} can be understood as SLE with negative parameter $-\kappa$. It is known that the central charge of SLE_{κ} is $\frac{(8-3\kappa)(\kappa-6)}{2\kappa} \in (-\infty, 1]$, so we guess that backward SLE_{κ} has central charge

$$rac{(8-3(-\kappa))(-\kappa-6)}{2(-\kappa)}=rac{(8+3\kappa)(\kappa+6)}{2\kappa}\in [25,\infty).$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Radial SLE is another important version of SLE. For radial SLE, the unit disc $\mathbb{D} = \{|z| < 1\}$ plays the role of \mathbb{H} , the center 0 plays the role of ∞ , and the unit circle $\mathbb{T} = \{|z| = 1\}$ plays the role of \mathbb{R} . We have a very similar theory.

・ 同 ト ・ ヨ ト ・ ヨ ト

Radial SLE is another important version of SLE. For radial SLE, the unit disc $\mathbb{D} = \{|z| < 1\}$ plays the role of \mathbb{H} , the center 0 plays the role of ∞ , and the unit circle $\mathbb{T} = \{|z| = 1\}$ plays the role of \mathbb{R} . We have a very similar theory.

The forward radial Loewner equation is

$$\partial_t g_t(z) = g_t(z) \cdot rac{e^{i\lambda(t)} + g_t(z)}{e^{i\lambda(t)} - g_t(z)}, \quad g_0(z) = z.$$

If $\lambda(t) = \sqrt{\kappa}B(t)$, we get the radial SLE_{κ} process. In the case $\kappa \in (0, 4]$, there is a random simple curve β , called the radial SLE_{κ} trace, with $\beta(0) = 1$, $\beta(t) \in \mathbb{D} \setminus \{0\}$ for t > 0, and $\lim_{t\to\infty} \beta(t) = 0$, such that for every t, $g_t : \mathbb{D} \setminus \beta(0, t] \xrightarrow{\text{Conf}} \mathbb{D}$.

35 / 53

<ロ> (四) (四) (三) (三) (三)

Adding a minus sign, we get the backward radial Loewner equation

$$\partial_t f_t(z) = -f_t(z) \cdot rac{e^{i\lambda(t)} + f_t(z)}{e^{i\lambda(t)} - f_t(z)}, \quad f_0(z) = z.$$

If $\lambda(t) = \sqrt{\kappa}B(t)$, we get the backward radial SLE_{κ} process. In the case $\kappa \in (0, 4]$, the process generates a family of \mathbb{D} -simple curves (β_t) such that for each t, $f_t : \mathbb{D} \xrightarrow{\text{Conf}} \mathbb{D} \setminus \beta_t$. Here a \mathbb{D} -simple curve is a half-open simple curve in $\mathbb{D} \setminus \{0\}$, whose open end approaches a single point on \mathbb{T} .

(日本) (日本) (日本)

A relatively closed subset K of \mathbb{D} is called a \mathbb{D} -hull, if $0 \notin K$ and $\mathbb{D} \setminus K$ is simply connected. Let K be a \mathbb{D} -hull. Let $B_K = \overline{K} \cap \mathbb{T}$ be the base of K. Let $K^{\text{doub}} = K \cup I_{\mathbb{T}}(K) \cup B_K$ be the double of K, where $I_{\mathbb{T}}(z) = 1/\overline{z}$ is the reflection of \mathbb{T} . There is a unique $g_K : \mathbb{D} \setminus K \xrightarrow{\text{Conf}} \mathbb{D}$ such that $g_K(0) = 0$ and $g'_K(0) > 0$, and g_K extends to $g_K : \mathbb{C} \setminus K^{\text{doub}} \xrightarrow{\text{Conf}} \mathbb{C} \setminus S_K$, where $S_K \subset \mathbb{T}$ is compact, called the support of K. Let the \mathbb{D} -capacity of K be $\text{dcap}(K) = \ln g'_K(0) \ge 0$. Let $f_K = g_K^{-1}$ be defined on $\mathbb{C} \setminus S_K$ or its subset \mathbb{D} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Every D-simple curve is a D-hull, whose support is an arc on T. A D-simple curve β induces a lamination ϕ_{β} , which is a self-homeomorphism of S_{β} swapping its two end points, such that $y = \phi_{\beta}(x)$ implies that $f_{\beta}(x) = f_{\beta}(y)$. Note that f_{β} maps the two end points of S_{β} to the base of $\beta: \overline{\beta} \cap \mathbb{T}$, and maps the only fixed point of ϕ_{β} to the tip of β .

Suppose (β_t) are the \mathbb{D} -simple curves generated by a backward radial Loewner equation. Then $f_t = f_{\beta_t}$ for every t.

Let K and L be two D-hulls. If $L \subset K$, we define another D-hull: $K/L = g_L(K \setminus L)$, call it a quotient hull of K, and write $K/L \prec K$. If $M \prec K$, then dcap $(M) \leq$ dcap(K) and $S_M \subset S_K$.

・ロン ・回と ・ヨン ・ヨン

æ

Let K and L be two \mathbb{D} -hulls. If $L \subset K$, we define another \mathbb{D} -hull: $K/L = g_L(K \setminus L)$, call it a quotient hull of K, and write $K/L \prec K$. If $M \prec K$, then dcap $(M) \leq$ dcap(K) and $S_M \subset S_K$.

Proposition

Let (β_t) be a family of \mathbb{D} -simple curves. Then they are generated by a backward radial Loewner equation if and only if

(i)
$$t_1 < t_2$$
 implies that $\beta_{t_1} \prec \beta_{t_2}$;

(ii) (β_t) is normalized such that $dcap(\beta_t) = t$ for each t.

Moreover, if (i) holds, then $\phi_{\beta_{t_2}}$ extends $\phi_{\beta_{t_1}}$ if $t_2 > t_1$, so (β_t) induces a lamination ϕ , which is a self-homeomorphism of $\bigcup S_{\beta_t}$, and satisfies that $\phi|_{S_{\beta_t}} = \phi_{\beta_t}$ for each t.

・ロン ・回 と ・ ヨ と ・ ヨ と

39 / 53

Theorem

Let W be a conformal map with domain Ω . Suppose Ω and W are symmetric in the sense that $I_{\mathbb{T}}(\Omega) = \Omega$ and $W \circ I_{\mathbb{T}} = I_{\mathbb{T}} \circ W$. Let K be a \mathbb{D} -hull such that $S_K \subset \Omega$. Then there is a unique symmetric conformal map W^K defined on $\Omega^K := f_K(\Omega \setminus S_K) \cup K^{\text{doub}}$ such that $W^K \circ f_K = f_{W^K(K)} \circ W$ holds in $\Omega \setminus S_K$, and $S_{W^K(K)} = W(S_K)$. Moreover, if $K_1 \prec K_2$ and $S_{K_2} \subset \Omega$, then $W^{K_1}(K_1) \prec W^{K_2}(K_2)$.

We use $W^*(K)$ to denote $W^K(K)$, which is also a \mathbb{D} -hull.

(4 同) (4 回) (4 回)

If $K = \beta$ is an \mathbb{D} -simple curve, then so is $W^*(\beta)$. Now β and $W^*(\beta)$ induce laminations ϕ_{β} and $\phi_{W^*(\beta)}$, which are self-homeomorphisms of S_{β} and $S_{W^*(\beta)} = W(S_{\beta})$, respectively. From $W^{\beta} \circ f_{\beta} = f_{W^*(\beta)} \circ W$ we see that $\phi_{W^*(\beta)} = W \circ \phi_{\beta} \circ W^{-1}$.

・同下 ・ヨト ・ヨト

If $K = \beta$ is an \mathbb{D} -simple curve, then so is $W^*(\beta)$. Now β and $W^*(\beta)$ induce laminations ϕ_{β} and $\phi_{W^*(\beta)}$, which are self-homeomorphisms of S_{β} and $S_{W^*(\beta)} = W(S_{\beta})$, respectively. From $W^{\beta} \circ f_{\beta} = f_{W^*(\beta)} \circ W$ we see that $\phi_{W^*(\beta)} = W \circ \phi_{\beta} \circ W^{-1}$.

Suppose (β_t) is generated by a backward radial Loewner equation, then $W^*(\beta_{t_1}) \prec W^*(\beta_{t_2})$ if $t_1 < t_2$. Let $u(t) = dcap(W^*(\beta_t))$. Then $(W^*(\beta_{u^{-1}(t)}))$ is normalized, and so is generated by a backward radial Loewner process. We call this process the conformal transformation of (β_t) via W. Let ϕ and ϕ_W be the laminations induced by (β_t) and $(W^*(\beta_{u^{-1}(t)}))$, respectively. Then they are self-homeomorphisms of $S := \bigcup S_{\beta_t}$ and $S_W = \bigcup S_{W^*(\beta_t)}$, respectively, and we have $S_W = W(S)$ and $\phi_W = W \circ \phi \circ W^{-1}$.

소리가 소문가 소문가 소문가

Let $\rho \in \mathbb{R}$. Let $x, y \in \mathbb{R}$ be such that $e^{ix} \neq e^{iy}$. Suppose $\lambda(t)$ and $\rho(t)$ solve the equations

$$\begin{cases} d\lambda(t) = \sqrt{\kappa} dB(t) - \frac{\rho}{2} \cot((\lambda(t) - p(t))/2) dt, & \lambda(0) = x; \\ dp(t) = -\cot((p(t) - \lambda(t))/2) dt, & p(0) = y. \end{cases}$$

Then we call the backward radial Loewner process driven by λ the backward radial SLE($\kappa; \rho$) process started from ($e^{ix}; e^{iy}$).

・ 同 ト ・ ヨ ト ・ ヨ ト

If W is a conformal map from \mathbb{H} onto \mathbb{D} , then we may similarly define the conformal transformation of a backward chordal Loewner process via W, and get a backward radial Loewner process. The theorem below also resembles Schramm-Wilson's result.

イロト イポト イヨト イヨト

If W is a conformal map from \mathbb{H} onto \mathbb{D} , then we may similarly define the conformal transformation of a backward chordal Loewner process via W, and get a backward radial Loewner process. The theorem below also resembles Schramm-Wilson's result.

Proposition

Suppose W maps \mathbb{H} conformally onto \mathbb{D} . Let $\kappa \in (0, 4]$ and (β_t) be backward chordal SLE_{κ} traces. Then the conformal transformation of (β_t) via W is a backward radial SLE $(\kappa; -\kappa - 6)$ process started from $(W(0); W(\infty))$.

イロト イポト イヨト イヨト

The above backward radial SLE(κ ; $-\kappa - 6$) process started from $(W(0); W(\infty))$ induces a lamination ϕ_W , which is a self-homeomorphism of $\mathbb{T} \setminus \{W(\infty)\}$ with one fixed point: W(0). If ϕ is the lamination induced by (β_t) , then $\phi_W = W \circ \phi \circ W^{-1}$. We may extend ϕ_W to a self-homeomorphism of \mathbb{T} , which has two fixed points: W(0) and $W(\infty)$.

소리가 소문가 소문가 소문가

The above backward radial SLE(κ ; $-\kappa - 6$) process started from $(W(0); W(\infty))$ induces a lamination ϕ_W , which is a self-homeomorphism of $\mathbb{T} \setminus \{W(\infty)\}$ with one fixed point: W(0). If ϕ is the lamination induced by (β_t) , then $\phi_W = W \circ \phi \circ W^{-1}$. We may extend ϕ_W to a self-homeomorphism of \mathbb{T} , which has two fixed points: W(0) and $W(\infty)$.

Fix $z_1 \neq z_2 \in \mathbb{T}$. To prove the main theorem, it suffices to show that, we may couple a backward radial SLE(κ ; $-\kappa - 6$) process started from (z_1 ; z_2) with a backward radial SLE(κ ; $-\kappa - 6$) process started from (z_2 ; z_1), such that the two processes induce the same lamination.

・ロン ・回 と ・ 回 と ・ 回 と

44 / 53

Theorem

Let $\kappa \in (0,4]$ and $z_1 \neq z_2 \in \mathbb{T}$. There exists a coupling of two families of \mathbb{D} -simple curves (β_t^1) and (β_t^2) such that the following hold.

(i) For j = 1, 2, (β_t^j) is a backward radial SLE $(\kappa; -\kappa - 6)$ process started from $(z_j; z_{3-j})$;

(ii) Let $t_2 < \infty$ be a stopping time for (β_t^2) , $f_{t_2}^2 = f_{\beta_{t_2}^2}$, and $T_1(t_2)$ be the first time such that $S_{\beta_t^1}$ intersects $S_{\beta_{t_2}^2}$. Then the transformation of $(\beta_t^1)_{0 \le t < T_1(t_2)}$ via $f_{t_2}^2$ is a backward radial SLE(κ ; $-\kappa - 6$) process started from $(f_{t_2}^2(z_1); B_{\beta_{t_2}^2})$. A similar result holds if the indices "1" and "2" are switched.

・ロト ・回ト ・ヨト ・ヨト

45 / 53

Note that the transformation of $(\beta_t^1)_{0 \le t < T_1(t_2)}$ via $f_{t_2}^2$ is well defined because for $t < T_1(t_2)$, $S_{\beta_t^1}$ is contained in $\mathbb{C} \setminus S_{\beta_{t_2}^2}$, which is the domain of $f_{t_2}^2$.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

æ

Note that the transformation of $(\beta_t^1)_{0 \le t < T_1(t_2)}$ via $f_{t_2}^2$ is well defined because for $t < T_1(t_2)$, $S_{\beta_t^1}$ is contained in $\mathbb{C} \setminus S_{\beta_{t_2}^2}$, which is the domain of $f_{t_2}^2$.

For j = 1, 2, let ϕ^j be the lamination induced by (β_t^j) . Assume that the above theorem holds true, and the two backward radial SLE(κ ; $-\kappa - 6$) processes are coupled according to the theorem. We will show that $\phi^1 = \phi^2$, which then implies the main theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let t_2 be fixed. Since the transformation of $(\beta_t^1)_{0 \le t < T_1(t_2)}$ via $f_{t_2}^2$ is a backward radial SLE $(\kappa; -\kappa - 6)$ process started from $(f_{t_2}^2(z_1); B_{\beta_{t_2}^2})$, the union of the supports of $(f_{t_2}^2)^*(\beta_t^1)$, $0 \le t < T_1(t_2)$, is $\mathbb{T} \setminus B_{\beta_{t_2}^2}$. Since $f_{t_2}^2$ maps $\mathbb{T} \setminus S_{\beta_{t_2}^2}$ onto $\mathbb{T} \setminus B_{\beta_{t_2}^2}$, the union of the supports of β_t^1 , $0 \le t < T_1(t_2)$, is $\mathbb{T} \setminus S_{\beta_{t_2}^2}$. This shows that $S_{\beta_{T_1(t_2)}^1}$ and $S_{\beta_{t_2}^2}$ share two end points. Since both ϕ^1 and ϕ^2 flip these two end points, they agree on these two points. Letting t_2 vary, we conclude that $\phi^1 = \phi^2$.

47 / 53

・ 同 ト ・ ヨ ト ・ ヨ ト

・ロン ・四 と ・ ヨ と ・ モ と

It remains to prove the above theorem. To construct the coupling, we use the idea in the proof of the reversibility of forward chordal SLE_{κ} for $\kappa \in (0, 4]$. First, we construct local couplings. Let I_1 and I_2 be two closed arcs on \mathbb{T} such that dist $(I_1, I_2) > 0$ and the interior of I_j contains z_j , j = 1, 2. We call (I_1, I_2) a disjoint pair. Let (β_t^j) , j = 1, 2, be a backward radial SLE $(\kappa; -\kappa - 6)$ process started from $(z_j; z_{3-j})$. Let $T_j(I_j)$ be the first time that $S_{\beta_t^j}$ is not contained in the interior of I_j , j = 1, 2. We say that the two processes are well coupled within (I_1, I_2) if the following holds.

If t₂ ≤ T₂(I₂) is a stopping time for (β²_t), then the transformation of (β¹_t)_{0≤t<T1}(I₁) via f²_{t2} is a stopped backward radial SLE(κ; -κ − 6) process started from (f²_{t2}(z₁); B_{β²_{t2}}). A similar result holds if the indices "1" and "2" are switched.

向下 イヨト イヨト

If t₂ ≤ T₂(I₂) is a stopping time for (β²_t), then the transformation of (β¹_t)_{0≤t<T1}(I₁) via f²_{t2} is a stopped backward radial SLE(κ; -κ − 6) process started from (f²_{t2}(z₁); B_{β²_{t2}}). A similar result holds if the indices "1" and "2" are switched.

Such coupling can be constructed by weighting an independent coupling of two backward radial SLE(κ ; $-\kappa - 6$) processes by a suitable Radon-Nikodym derivative, which is obtained by a standard argument on Loewner equations.

(4 同) (4 回) (4 回)

Then we are able to show that, for any finitely many disjoint pairs (I_1^m, I_2^m) , $1 \le m \le n$, there is a coupling of two backward radial SLE $(\kappa; -\kappa - 6)$ processes, such that for any m, the two processes are well coupled within (I_1^m, I_2^m) . Such coupling is obtained by weighting an independent coupling of two backward radial SLE $(\kappa; -\kappa - 6)$ processes by a RN derivative, which is related with the RN derivatives for a good coupling within each (I_1^m, I_2^m) .

소리가 소문가 소문가 소문가

Now let $(I_1^m, I_2^m)_{m \in \mathbb{N}}$ be a sequence of disjoint pairs, which is dense in the space of disjoint pairs. For every $n \in \mathbb{N}$, the above result shows that there is a coupling of two backward radial SLE $(\kappa; -\kappa - 6)$ processes, which are well coupled within (I_1^m, I_2^m) , for *m* from 1 up to *n*. Let μ_n denote the distribution of such coupling. The sequence (μ_n) converges in some suitable topology to a measure μ , which is exactly the coupling of two backward radial SLE $(\kappa; -\kappa - 6)$ processes that we are looking for.

Thank you!

イロン イヨン イヨン イヨン