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The Schramm-Loewner Evolution (SLE) is a stochastic process of
random conformal maps that has received a lot of attention over
the last decade. A number of two-dimensional lattice models have
been proved to converge to SLE with different parameters, thanks
to the work by Schramm, Lawler, Werner, Smirnov, Sheffield, and
many others.
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SLE = Loewner’s differential equation + random driving function.
We are mainly concerned with the chordal Loewner equation:

∂tgt(z) =
2

gt(z)− λ(t)
, g0(z) = z ,

where z ∈ C, and λ ∈ C ([0,T ),R) is called the driving function.
Fix κ > 0, and let B(t) be a standard Brownian motion. The
solution of the chordal Loewner equation with λ(t) =

√
κB(t) is

called chordal SLEκ.
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Rohde and Schramm showed that chordal SLEκ generates a
random curve called the trace: β(t), 0 ≤ t <∞, in the closure of
the upper half plane, which satisfies β(0) = 0 and
limt→∞ β(t) =∞.

The simplest case is κ ∈ (0, 4], in which β is a simple curve with
β(t) ∈ H = {Im z > 0} for t > 0, and for every t > 0,

gt : H \ β(0, t]
Conf
� H.
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Adding a minus sign to the (forward) chordal Loewner equation,
we get the backward chordal Loewner equation:

∂t ft(z) =
−2

ft(z)− λ(t)
, f0(z) = z .

Setting λ(t) =
√
κB(t), we then get the backward chordal SLEκ.

The backward and forward Loewner equations are related as
follows. Fix T0 such that λ is defined on [0,T0]. Let
λT0(t) = λ(T0 − t), 0 ≤ t ≤ T0. It is easy to check

f λT0−t ◦ (f λT0
)−1 = g

λT0
t , 0 ≤ t ≤ T0.

Taking t = T0, we get (f λT0
)−1 = g

λT0
T0

.
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A half-open simple curve (as a set) in H is called an H-simple
curve, if its open side approaches a single point on R. If β is an
SLEκ (κ ≤ 4) trace, then β(0, t] is an H-simple curve for every t.

Suppose κ ∈ (0, 4] and λ(t) =
√
κB(t). Then λT0(t)− λ(T0) has

the same distribution as λ(t), 0 ≤ t ≤ T0. This together with

(f λT0
)−1 = g

λT0
T0

and the property of the forward SLEκ trace shows
that the backward chordal SLEκ generates a family of H-simple

curves (βt) such that, for every t, ft : H
Conf
� H \ βt .
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Fix t0 ≥ 0, and let ft,t0 , t ≥ t0, be the solution of

∂t ft,t0(z) =
−2

ft,t0(z)− λ(t)
, ft0,t0(z) = z .

If t2 > t1, then ft2,t1 : H
Conf
� H \ βt2,t1 , where βt2,t1 is an H-simple

curve. We have ft2,t1 ◦ ft1 = ft2 , and so βt2 = βt2,t1 ∪ ft2,t1(βt1).

When a forward Loewner process and a backward Loewner process
both generate H-simple curves, they look very similar at any fixed
time. However, if we let time evolve, the difference will be clear.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 8 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

Fix t0 ≥ 0, and let ft,t0 , t ≥ t0, be the solution of

∂t ft,t0(z) =
−2

ft,t0(z)− λ(t)
, ft0,t0(z) = z .

If t2 > t1, then ft2,t1 : H
Conf
� H \ βt2,t1 , where βt2,t1 is an H-simple

curve. We have ft2,t1 ◦ ft1 = ft2 , and so βt2 = βt2,t1 ∪ ft2,t1(βt1).

When a forward Loewner process and a backward Loewner process
both generate H-simple curves, they look very similar at any fixed
time. However, if we let time evolve, the difference will be clear.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 8 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 9 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 10 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 11 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 12 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 13 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

The backward chordal SLEκ does not naturally generate a single
curve because (βt) is not an increasing family. We will study a
different object: the conformal lamination.

Every ft has a continuous extension from H to H, which maps two
real intervals with common end point 0 onto the two sides of βt . If
ft(x1) = ft(x2) ∈ βt , then we write x1 ∼t x2. If t1 < t2, from
ft2,t1 ◦ ft1 = ft2 we see that x1 ∼t1 x2 implies that x1 ∼t2 x2. Thus,
we may define a global relation: x1 ∼ x2 if there exists t > 0 such
that x1 ∼t x2. In fact, x1 ∼ x2 iff that the solutions ft(x1) and
ft(x2) blow up at the same time, i.e., τ(x1) = τ(x2).
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It holds that almost surely, τ(x) <∞ for every x ∈ R. So we get a
random self-homeomorphism φ of R such that φ(0) = 0,
φ(±∞) = ∓∞, and y = φ(x) implies x ∼ y . We call such φ a
backward chordal SLEκ lamination.

A fundamental property of the forward chordal SLE is reversibility.
For κ ≤ 8, the law of the SLEκ trace is invariant under the
automorphism z 7→ −1/z of H, modulo time parametrization. This
was first proved for κ ≤ 4 (Z, 2007), and later for 4 ≤ κ ≤ 8
(Miller and Sheffield, 2012). It is false for κ > 8.
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Our main theorem is that the backward chordal SLEκ lamination
has the following reversibility property.

Theorem

Let κ ∈ (0, 4], and φ be a backward chordal SLEκ lamination. Then
ψ(x) := −1/φ−1(−1/x) has the same distribution as φ.
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Sheffield recently proved that, for κ ∈ (0, 4), there is a coupling of
a backward chordal SLEκ with a free boundary Gaussian free field
in H, such that the GFF determines the backward SLE and a
quantum length on R, and for x < 0 < y , φ(x) = y iff [x , 0] and
[0, y ] have the same quantum length.

Sheffield’s theorem seems to be closely related to our main
theorem. However, so far we have not found a way to connect
these two results. Instead, the proof of our theorem uses an idea in
the proof of the reversibility of forward chordal SLEκ for κ ∈ (0, 4].
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Let κ ∈ (0, 4]. Although a backward chordal SLEκ process does
not naturally generate a single trace, we may still define a
normalized global backward SLEκ trace as follows.

Recall that, for each t, ft : H
Conf
� H \ βt and ft(0) is the tip of βt .

We may find at , bt ∈ C such that Ft = at ft + bt fixes both 0 and i .
As t →∞, Ft converges to a conformal map F∞ defined on H,
which also fixes 0 and i . It turns out that F∞(H) = C \ β, where β
is a simple curve, which joins 0 with ∞, and avoids i , and F∞ is a
realization of the lamination φ in the sense that y = φ(x) implies
that F∞(x) = F∞(y) ∈ β. We call this β a normalized global
backward SLEκ trace. We have the following reversibility of β
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Theorem

Let κ ∈ (0, 4), and β be a normalized global backward chordal SLEκ
trace. Let h(z) = −1/z . Then h(β) has the same distribution as β.

This theorem follows from the main theorem and the fact that the
SLEκ trace is conformally removable, thank to the work by
Jones-Smirnov (a Hölder curve is conformally removable) and
Rohde-Schramm (an SLEκ trace is a Hölder curve).
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We now define the conformal transformation of a backward
Loewner process via a conformal map with suitable conditions. For
this purpose, we introduce some definitions.

I A relatively closed subset K of H is called an H-hull, if K is
bounded and H \ K is simply connected.

Now assume K is an H-hull. Let IR(z) = z be the reflection
about R.

I The base of K : BK = K ∩ R.

I The double of K : Kdoub = K ∪ IR(K ) ∪ BK .
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I gK is the unique gK : H \ K
Conf
� H such that

gK (z) = z + o(1/z) as H 3 z →∞.

I gK extends to a conformal map defined on C \ Kdoub.

I The support of K : SK = C \ gK (C \ Kdoub) ⊂ R.

I The H-capacity of K : hcap(K ) = limz→∞ z(gK (z)− z) ≥ 0.

I fK = g−1K is defined on C \ SK or its subset H.
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Every H-simple curve is an H-hull, whose base is a single point,
and whose support is a real interval. An H-simple curve β induces
a lamination φβ, which is a self-homeomorphism of Sβ swapping
its two end points, such that y = φβ(x) implies that fβ(x) = fβ(y).
Note that fβ maps the two end points of Sβ to the base of β:
β ∩ R, and maps the only fixed point of φβ to the tip of β.

Let κ ∈ (0, 4], and (βt) be the H-simple curves generated by a
backward SLEκ process. Then ft = fβt for every t and

⋃
Sβt = R.

The SLEκ lamination φ satisfies φ|Sβt = φβt for each t.
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Let K and L be two H-hulls. If L ⊂ K , we define another H-hull:
K/L = gL(K \ L), call it a quotient hull of K , and write K/L ≺ K .

Fact: If M ≺ K , then hcap(M) ≤ hcap(K ) and SM ⊂ SK .
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Proposition

Let (βt) be a family of H-simple curves. Then they are generated
by a backward chordal Loewner equation if and only if

(i) t1 < t2 implies that βt1 ≺ βt2 ;

(ii) (βt) is normalized such that hcap(βt) = 2t for each t.

Moreover, if (i) holds, then φβt2 extends φβt1 if t2 > t1, so (βt)
induces a lamination φ, which is a self-homeomorphism of

⋃
Sβt ,

and satisfies that φ|Sβt = φβt for each t.

Remark. From βt2 = βt2,t1 ∪ ft2,t1(βt1), we get βt1 = βt2/βt2,t1 .
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Theorem

Let W be a conformal map with domain Ω. Suppose Ω and W are
symmetric in the sense that IR(Ω) = Ω and W ◦ IR = IR ◦W . Let K
be an H-hull such that SK ⊂ Ω. Then there is a unique symmetric
conformal map WK defined on ΩK := fK (Ω\SK )∪Kdoub such that
WK ◦ fK = fWK (K) ◦W holds in Ω \ SK , and SWK (K) = W (SK ).

Moreover, if K1 ≺ K2 and SK2 ⊂ Ω, then WK1(K1) ≺WK2(K2).

We use W ∗(K ) to denote WK (K ), which is also an H-hull.
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To prove the theorem, we first consider the case that K is an
analytic H-simple curve. Some result on conformal welding is used
in this case. Then we use analytic H-simple curves to approximate
a general H-hull in the Carathéodory topology.

Now we explain why the theorem is useful. If K = β is an
H-simple curve, then so is W ∗(β). Now β and W ∗(β) induce
laminations φβ and φW ∗(β), which are self-homeomorphisms of Sβ
and SW ∗(β) = W (Sβ), respectively. From W β ◦ fβ = fW ∗(β) ◦W
we get φW ∗(β) = W ◦ φβ ◦W−1.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 29 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

To prove the theorem, we first consider the case that K is an
analytic H-simple curve. Some result on conformal welding is used
in this case. Then we use analytic H-simple curves to approximate
a general H-hull in the Carathéodory topology.
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Suppose (βt) are generated by a backward Loewner equation such
that Sβt ⊂ Ω for every t. If t1 < t2, then βt1 ≺ βt2 , so
W ∗(βt1) ≺W ∗(βt2). But (W ∗(βt)) may not be normalized by
hcap(W ∗(βt)) = 2t. This can be handled with a time-change. Let
u(t) = hcap(W ∗(βt))/2. Then u is continuous and increasing with
u(0) = 0, and (W ∗(βu−1(t))) is normalized, and so are generated
by a backward Loewner equation. We call (W ∗(βu−1(t))) the
conformal transformation of (βt) via W .

Let φ and φW be the laminations induced by (βt) and
(W ∗(βu−1(t))), respectively. Then they are self-homeomorphisms
of S :=

⋃
Sβt and SW =

⋃
SW ∗(βt), respectively, and we have

SW = W (S) and φW = W ◦ φ ◦W−1.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 30 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

Suppose (βt) are generated by a backward Loewner equation such
that Sβt ⊂ Ω for every t. If t1 < t2, then βt1 ≺ βt2 , so
W ∗(βt1) ≺W ∗(βt2). But (W ∗(βt)) may not be normalized by
hcap(W ∗(βt)) = 2t. This can be handled with a time-change. Let
u(t) = hcap(W ∗(βt))/2. Then u is continuous and increasing with
u(0) = 0, and (W ∗(βu−1(t))) is normalized, and so are generated
by a backward Loewner equation. We call (W ∗(βu−1(t))) the
conformal transformation of (βt) via W .

Let φ and φW be the laminations induced by (βt) and
(W ∗(βu−1(t))), respectively. Then they are self-homeomorphisms
of S :=

⋃
Sβt and SW =

⋃
SW ∗(βt), respectively, and we have

SW = W (S) and φW = W ◦ φ ◦W−1.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 30 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

Now we define backward chordal SLE(κ; ρ) process, where ρ ∈ R.
Let x 6= y ∈ R. Suppose λ(t) and p(t) solve the equations{

dλ(t) =
√
κdB(t) + −ρ

λ(t)−p(t)dt, λ(0) = x ;

dp(t) = −2
p(t)−λ(t)dt, p(0) = y .

Then we call the backward chordal Loewner process driven by λ
the backward chordal SLE(κ; ρ) process started from (x ; y).
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Proposition

Let W be a conformal automorphism of H such that W (0) 6= ∞.
Let κ ∈ (0, 4] and (βt) be backward chordal SLEκ traces. Suppose
W−1(∞) 6∈ Sβt for 0 ≤ t < T . Then the conformal transformation
of (βt)0≤t<T via W is a backward chordal SLE(κ;−κ− 6) process.
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This theorem is similar to the work by Schramm and Wilson, who
showed that the image of a forward chordal SLEκ process under a
conformal automorphism of H is an SLE(κ;κ− 6) process. The
resemblance makes us to believe that the backward SLEκ can be
understood as SLE with negative parameter −κ. It is known that
the central charge of SLEκ is (8−3κ)(κ−6)

2κ ∈ (−∞, 1], so we guess
that backward SLEκ has central charge

(8− 3(−κ))(−κ− 6)

2(−κ)
=

(8 + 3κ)(κ+ 6)

2κ
∈ [25,∞).
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Radial SLE is another important version of SLE. For radial SLE,
the unit disc D = {|z | < 1} plays the role of H, the center 0 plays
the role of ∞, and the unit circle T = {|z | = 1} plays the role of
R. We have a very similar theory.

The forward radial Loewner equation is

∂tgt(z) = gt(z) · e
iλ(t) + gt(z)

e iλ(t) − gt(z)
, g0(z) = z .

If λ(t) =
√
κB(t), we get the radial SLEκ process. In the case

κ ∈ (0, 4], there is a random simple curve β, called the radial SLEκ
trace, with β(0) = 1, β(t) ∈ D \ {0} for t > 0, and

limt→∞ β(t) = 0, such that for every t, gt : D \ β(0, t]
Conf
� D.
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Adding a minus sign, we get the backward radial Loewner equation

∂t ft(z) = −ft(z) · e
iλ(t) + ft(z)

e iλ(t) − ft(z)
, f0(z) = z .

If λ(t) =
√
κB(t), we get the backward radial SLEκ process. In

the case κ ∈ (0, 4], the process generates a family of D-simple

curves (βt) such that for each t, ft : D
Conf
� D \ βt . Here a

D-simple curve is a half-open simple curve in D \ {0}, whose open
end approaches a single point on T.
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A relatively closed subset K of D is called a D-hull, if 0 6∈ K and
D \ K is simply connected. Let K be a D-hull. Let BK = K ∩ T be
the base of K . Let Kdoub = K ∪ IT(K ) ∪ BK be the double of K ,
where IT(z) = 1/z is the reflection of T. There is a unique

gK : D \ K
Conf
� D such that gK (0) = 0 and g ′K (0) > 0, and gK

extends to gK : C \ Kdoub Conf
� C \ SK , where SK ⊂ T is compact,

called the support of K . Let the D-capacity of K be
dcap(K ) = ln g ′K (0) ≥ 0. Let fK = g−1K be defined on C \ SK or its
subset D.
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Every D-simple curve is a D-hull, whose support is an arc on T. A
D-simple curve β induces a lamination φβ, which is a
self-homeomorphism of Sβ swapping its two end points, such that
y = φβ(x) implies that fβ(x) = fβ(y). Note that fβ maps the two
end points of Sβ to the base of β: β ∩ T, and maps the only fixed
point of φβ to the tip of β.

Suppose (βt) are the D-simple curves generated by a backward
radial Loewner equation. Then ft = fβt for every t.
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Let K and L be two D-hulls. If L ⊂ K , we define another D-hull:
K/L = gL(K \ L), call it a quotient hull of K , and write K/L ≺ K .
If M ≺ K , then dcap(M) ≤ dcap(K ) and SM ⊂ SK .

Proposition

Let (βt) be a family of D-simple curves. Then they are generated
by a backward radial Loewner equation if and only if

(i) t1 < t2 implies that βt1 ≺ βt2 ;

(ii) (βt) is normalized such that dcap(βt) = t for each t.

Moreover, if (i) holds, then φβt2 extends φβt1 if t2 > t1, so (βt)
induces a lamination φ, which is a self-homeomorphism of

⋃
Sβt ,

and satisfies that φ|Sβt = φβt for each t.
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Theorem

Let W be a conformal map with domain Ω. Suppose Ω and W are
symmetric in the sense that IT(Ω) = Ω and W ◦ IT = IT ◦W . Let
K be a D-hull such that SK ⊂ Ω. Then there is a unique symmetric
conformal map WK defined on ΩK := fK (Ω\SK )∪Kdoub such that
WK ◦ fK = fWK (K) ◦W holds in Ω \ SK , and SWK (K) = W (SK ).

Moreover, if K1 ≺ K2 and SK2 ⊂ Ω, then WK1(K1) ≺WK2(K2).

We use W ∗(K ) to denote WK (K ), which is also a D-hull.
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If K = β is an D-simple curve, then so is W ∗(β). Now β and
W ∗(β) induce laminations φβ and φW ∗(β), which are
self-homeomorphisms of Sβ and SW ∗(β) = W (Sβ), respectively.

From W β ◦ fβ = fW ∗(β) ◦W we see that φW ∗(β) = W ◦ φβ ◦W−1.

Suppose (βt) is generated by a backward radial Loewner equation,
then W ∗(βt1) ≺W ∗(βt2) if t1 < t2. Let u(t) = dcap(W ∗(βt)).
Then (W ∗(βu−1(t))) is normalized, and so is generated by a
backward radial Loewner process. We call this process the
conformal transformation of (βt) via W . Let φ and φW be the
laminations induced by (βt) and (W ∗(βu−1(t))), respectively. Then
they are self-homeomorphisms of S :=

⋃
Sβt and SW =

⋃
SW ∗(βt),

respectively, and we have SW = W (S) and φW = W ◦ φ ◦W−1.
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Let ρ ∈ R. Let x , y ∈ R be such that e ix 6= e iy . Suppose λ(t) and
p(t) solve the equations{

dλ(t) =
√
κdB(t)− ρ

2 cot((λ(t)− p(t))/2)dt, λ(0) = x ;
dp(t) = − cot((p(t)− λ(t))/2)dt, p(0) = y .

Then we call the backward radial Loewner process driven by λ the
backward radial SLE(κ; ρ) process started from (e ix ; e iy ).
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If W is a conformal map from H onto D, then we may similarly
define the conformal transformation of a backward chordal Loewner
process via W , and get a backward radial Loewner process. The
theorem below also resembles Schramm-Wilson’s result.

Proposition

Suppose W maps H conformally onto D. Let κ ∈ (0, 4] and (βt) be
backward chordal SLEκ traces. Then the conformal transformation
of (βt) via W is a backward radial SLE(κ;−κ− 6) process started
from (W (0);W (∞)).
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The above backward radial SLE(κ;−κ− 6) process started from
(W (0);W (∞)) induces a lamination φW , which is a
self-homeomorphism of T \ {W (∞)} with one fixed point: W (0).
If φ is the lamination induced by (βt), then φW = W ◦ φ ◦W−1.
We may extend φW to a self-homeomorphism of T, which has two
fixed points: W (0) and W (∞).

Fix z1 6= z2 ∈ T. To prove the main theorem, it suffices to show
that, we may couple a backward radial SLE(κ;−κ− 6) process
started from (z1; z2) with a backward radial SLE(κ;−κ− 6)
process started from (z2; z1), such that the two processes induce
the same lamination.
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Theorem

Let κ ∈ (0, 4] and z1 6= z2 ∈ T. There exists a coupling of two
families of D-simple curves (β1t ) and (β2t ) such that the following
hold.

(i) For j = 1, 2, (βjt) is a backward radial SLE(κ;−κ− 6) process
started from (zj ; z3−j);

(ii) Let t2 <∞ be a stopping time for (β2t ), f 2t2 = fβ2
t2

, and T1(t2)

be the first time such that Sβ1
t

intersects Sβ2
t2

. Then the

transformation of (β1t )0≤t<T1(t2) via f 2t2 is a backward radial
SLE(κ;−κ− 6) process started from (f 2t2(z1);Bβ2

t2
). A similar

result holds if the indices “1” and “2” are switched.
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Note that the transformation of (β1t )0≤t<T1(t2) via f 2t2 is well
defined because for t < T1(t2), Sβ1

t
is contained in C \ Sβ2

t2
, which

is the domain of f 2t2 .

For j = 1, 2, let φj be the lamination induced by (βjt). Assume that
the above theorem holds true, and the two backward radial
SLE(κ;−κ− 6) processes are coupled according to the theorem.
We will show that φ1 = φ2, which then implies the main theorem.
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Let t2 be fixed. Since the transformation of (β1t )0≤t<T1(t2) via f 2t2 is
a backward radial SLE(κ;−κ− 6) process started from
(f 2t2(z1);Bβ2

t2
), the union of the supports of (f 2t2)∗(β1t ),

0 ≤ t < T1(t2), is T \ Bβ2
t2

. Since f 2t2 maps T \ Sβ2
t2

onto T \ Bβ2
t2

,

the union of the supports of β1t , 0 ≤ t < T1(t2), is T \ Sβ2
t2

. This

shows that Sβ1
T1(t2)

and Sβ2
t2

share two end points. Since both φ1

and φ2 flip these two end points, they agree on these two points.
Letting t2 vary, we conclude that φ1 = φ2.
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It remains to prove the above theorem. To construct the coupling,
we use the idea in the proof of the reversibility of forward chordal
SLEκ for κ ∈ (0, 4]. First, we construct local couplings. Let I1 and
I2 be two closed arcs on T such that dist(I1, I2) > 0 and the
interior of Ij contains zj , j = 1, 2. We call (I1, I2) a disjoint pair.

Let (βjt), j = 1, 2, be a backward radial SLE(κ;−κ− 6) process
started from (zj ; z3−j). Let Tj(Ij) be the first time that S

βj
t

is not

contained in the interior of Ij , j = 1, 2. We say that the two
processes are well coupled within (I1, I2) if the following holds.
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I If t2 ≤ T2(I2) is a stopping time for (β2t ), then the
transformation of (β1t )0≤t<T1(I1) via f 2t2 is a stopped backward
radial SLE(κ;−κ− 6) process started from (f 2t2(z1);Bβ2

t2
). A

similar result holds if the indices “1” and “2” are switched.

Such coupling can be constructed by weighting an independent
coupling of two backward radial SLE(κ;−κ− 6) processes by a
suitable Radon-Nikodym derivative, which is obtained by a
standard argument on Loewner equations.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 50 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

I If t2 ≤ T2(I2) is a stopping time for (β2t ), then the
transformation of (β1t )0≤t<T1(I1) via f 2t2 is a stopped backward
radial SLE(κ;−κ− 6) process started from (f 2t2(z1);Bβ2

t2
). A

similar result holds if the indices “1” and “2” are switched.

Such coupling can be constructed by weighting an independent
coupling of two backward radial SLE(κ;−κ− 6) processes by a
suitable Radon-Nikodym derivative, which is obtained by a
standard argument on Loewner equations.

S. Rohde & D. Zhan Reversibility of Backward SLE Lamination 50 / 53



Introduction
Conformal Transformation

Radial SLE
Couplings

Then we are able to show that, for any finitely many disjoint pairs
(Im1 , I

m
2 ), 1 ≤ m ≤ n, there is a coupling of two backward radial

SLE(κ;−κ− 6) processes, such that for any m, the two processes
are well coupled within (Im1 , I

m
2 ). Such coupling is obtained by

weighting an independent coupling of two backward radial
SLE(κ;−κ− 6) processes by a RN derivative, which is related with
the RN derivatives for a good coupling within each (Im1 , I

m
2 ).
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Now let (Im1 , I
m
2 )m∈N be a sequence of disjoint pairs, which is dense

in the space of disjoint pairs. For every n ∈ N, the above result
shows that there is a coupling of two backward radial
SLE(κ;−κ− 6) processes, which are well coupled within (Im1 , I

m
2 ),

for m from 1 up to n. Let µn denote the distribution of such
coupling. The sequence (µn) converges in some suitable topology
to a measure µ, which is exactly the coupling of two backward
radial SLE(κ;−κ− 6) processes that we are looking for.
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Thank you!
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