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Infinrtesimally quasiconformal functions map disks into ellipsoids.

Homeomorphism f: Q — C € W;2%() is K-quasiconformal if for almost

loc
everwvhe:g\ the classical Beltrami equation holds

3L .
0:f(2) = n(2)0.(2), )| <k<1, K= "

/@orwl( AXWT 1 —k

20:f(2) = 0, f(2) + 10, f(2), 282?(2) =0, f(2) —10,f(2), z=x+1y




0z f(z) = p(2) 0= f(2),

One can measurably preassign the
eccentricity and angle of the ellipses.

major axis |0, f| + |0z f] P

= K
minor axis |0y f| — |05 f| —

Every solution g € W02 (Q) can be factorized as g = h o f where h is analytic
and f is a homeomorphic solution (Stoilow factorization).




QUASICONFORMAL aF}?XM I(LY

2) 0. f(2)

Homeomorphic solution ® : C — C € W,-?(C) is called normalized if

B(0) = 0,0(1) = 1
e %/gﬁltow, 6 ui“oh = <¢V\a.gtc o b\outeou@r?bxlsul)

There is a umque homeomorphm solution that maps 0 — 0, 1 — a € C\ {0}

namely, a ®(z)

{a®(z) : a € C}is a C-linear family of quasiconformal maps (and constant 0)

Conversely, if one has a C-linear family of quasiconformal maps {a f : a € C},
one can assoclate to It a classical Beltrami equation, by setting

- azf(z)
) = 550

[t i1s well-defined (and unique), since 9, f(z) # 0 almost everywhere.
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Families appear In the context of G-convergence properties of R-linear Beltrami
operators,

0: — 13 ()0 — ()T, |uy(2)] + vy ()| <k <1

Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004),
Bojarski, D’Onoffrio, Iwaniec, and Sbordone (2005)

Homeomorphic solutions to R-linear Beltrami equation

0:f(2) = 1(2) 0: f(2) + v(2) 0 f(2),  |u(z)| +|v(2)| <k <1

form an R-linear family of quasiregular mappings. Is their linear combination
injective!




Homeomorphic solutions to R-linear Beltrami equation

0:f(2) = p(2) 0 f(2) + v(2) 0: f(2),  [u(z)|+|v(z)| <k <1

form an R-linear family of quasiregular mappings. Is their linear combination
injective!

Yes (after normalization): Homeomorphic solution is uniquely defined knowing its
values at two distinct points. Moreover;, the linear combination is erther
homeomorphism or constant.

ldea: ¥ = F' o &, where homeomorphism F' solves a reduced equation

9:£(2) = M=) Im(D.£(2)  [A(2)| < 2k/(1+ k)

The only homeomorphic solution to the reduced equation that fixes two points
s the identity, Astala, Iwaniec, and Martin (2009): f(z) —tz

Z
1 -1

If we normalize ®(0) = 0 = ¥(0), the linear independence of &(1), ¥(1)

implies that a®(z) + BY(2), a, 8 € R, is K-quasiconformal, and we have an
R-linear family of quasiconformal mappings.




R-LINEAR FAMILY OF QC MAPS
0:1(2) = (=) 0-F() + (=) 012

Conversely, if we have an R-linear family of quasiconformal mappings
{a®() + BU(2) : 0,8 € R}

can we define ft and v so that every mapping of the linear family solves the
Rlinear equation given by p, v ! —
_qeherdled )%{jﬁ)o Wopping s @\ecm@

Yes we can!

e

- 0(2) 0.0 (2) 1 o ..

0 2T E -
2Im (P, V)

Whep . .
) ey

On the singular set, we set v = 0.
Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004),

Bojarski, D’Onofrio, Iwaniec, and Sbordone (2005)




R-LINEAR FAMILY OF QC MAPS
0z f(2) = 1(2) 0-f(2) + v(2) 0. f (%)

Conversely, if we have an R-linear family of quasiconformal mappings
{a®() + BU(2) : 0,8 € R}

Wwe deﬂﬂe \Ifz(}TZ - \IJ—Z(I)Z | (I)g\Ijz B (I)Z\Ijg

— Z) =1 =
2Im(P, W) 2Im(®, W, )

p(z) =i

Unigue! Yes, by a VWronsky-type theorem, Alessandrini and Nesi (2009), Astala and
Jaciskeldinen (2009); Bojarski, D'Onoffrio, Iwaniec, and Sbordone (2005) k < 1/2

e ——— = e —

:I'.he:)rem. Suppose @,V & Wl’Q(Q) are homeomorphic sltions

loc

0:f(2) = m(2) 0. f(2) + v(2) 0. f(2),  [u(z)|+|v(z)| <k <1,

for almost every z € () Solutions ® and ¥ are R-linearly independent if and
only if complex gradients d.® and 0,V are pointwise independent almost
everywhere, 1.e.,




R-LINEAR FAMILY OF QR MAPS
0z f(2) = 1(2) 0:f(2) + v(2) 0. (2)

Wronsky-type theorem, Alessandrini and Nesi (2009), Astala and |ddskeldinen
(2009); Bojarski, D’Onoffrio, lwaniec, and Sbordone (2005) k < 1/2

e =

Ate solutions to

Theorem. Suppose @, W & Wéf(ﬂ) are +

 0:f(2) = w(2) 0 f(2) +v(2) 0. f(2),  u(2)| +|v(2)| <k <1,

for almost every z € () Solutions ® and ¥ are R-linearly independent if and
only if complex gradients d.® and 0,V are pointwise independent almost
everywhere, L.e,,

Im (8,0 0,T) # 0




BELTRAMI EQUATIONS

C-linear R-linear Nonlinear

—:,u(z)fz—l—u(z)fz fZZH(ZafZ)

H(z,w) : CxC—C

z — H(z,w) measurable

qw — H(z,w) k-Lipschitz
/ H(z,0) =

Difference of two solutions Is K-quasiregular

0:1(2) — D:0(2)| = [H(=,9-1(2) — (= D-g())\<

Constants are solutions. ——————




C-linear R-linear Nonlinear

fz=u(2) f- fe=puz) f.+v(z)f. fz =Mz, f2)

There Is a unique There Is a unique Not unigue In general,
homeomorphic homeomorphic Astala, Clop, Faraco,
solution ® such that solution ® such that Jadskeldinen, and

$(0) =0,P(1) = 1 ®(0) =0,d(1) = 1 Székelyhidi Jr. (2012)

z — H(z, w) measurable w — H(z,w) k- |_|psch|tz H(z,0) =

1Theorem. f imsup k(z) < 3 _ 2v/2 = 0.17157...
equaﬂon 2|00

thenthe nnlmear
0z f(2) = H(2,0.f(2))

admits a unique homeomorphic solution ® : C — C € Wéf(@) normalized
by ®(0) =0,P(1) = 1.

iurthermore the bound on k s sharp

e —




COUN TEREXAMPLES

Astala, Clop, Faraco, |ddskeldinen, and Székelyhidi Jr. (2012)

z — H(z,w) measurable w — H(z,w) k-Lipschitz

S ———————

'Theorem. f imsup k(z) < 3 — 242 =0.17157..., then the nonlmear
‘equa’uon 2] =re0

0z f(2) = H(z,0.f(2))

admits a unique homeomorphic solution ® : C — C € W,-?(C) normalized

by ®(0) =0,®(1) = 1.
y Kett% 5 e h=3-2V3 ]

f_urthermore,the bound on £ s sharp./ 1 —k







C-linear R-linear Nonlinear

fz = p(2) f2 fe=n(z) f: +v(z) f2 fz = H(z [2)

There Is a unique There is a unique
homeomorphic homeomorphic homeomorphic
solution @ such that solution @ such that solution @ such that

d(0)=0,P(1) =1 P(0)=0,P(1) =1 S(0)=0,P(1) =1
when near the infinity

k(2) <3—2V2

Homeomorphic solution Is uniquely defined by its values at two distinct points,
Difference 1s homeomorphism or constant.

There i1s a unique

{®,: P, K —qc,0—~ 0,1+ a}

Clinear family of Relinear family of family of
quasiconformal quasiconformal quasiconformal
mappings mMappings mappings




FROM FAMILY TO EQUATION

{<I> Py K — - dc; OHO 1Ha}

Clinear family of R—Imear farmly of family of
quasiconformal quasiconformal quasiconformal

mappIings mappIings mappIings
{a®(z):acC} H{ad(z)+8Y(2):qa,8€R}
d(0)=0,9(1) =1 d(0)=0,9(1) =1
U0)=0,¥(1)=1¢ A

unique i and v s.t. every mapping of the family solves\
the Beltrami equation (Wronsky-type theorem) |

fz = u(2) [z fe=u(z) f:+v

(Mear(%‘/ihie{ahieﬂj Thus Their couﬁ?(a)( jra&eﬂ? afe (Me,ar(%‘/imie:?evd'




HOW [O DEFINE EQUATION!?

We have a family of quasiconformal mappings {®, : &, K — qc,0+— 0,1 — a},
®,(2) — Pp(2) is K-quasiconformal.

We want nonlinear equation|

Define pointwise 9:®,(z) =\ ; ;ﬂigsurstt)le
-Lipschitz
Not overdetermined:

One can extend w — H(z,w) to whole plane as a Lipschitz map by Kirszbraun
extension theorem. Hence there exists a nonlinear Beltrami equation.

Unique, when one has a full range {0, ®,(z) : a € C} = C for almost every z,

In the case of linear families {a 0, ®(2)}, {a 0, P(2) + 0.V (z)}
complex’_qradiefs are (Mear(%r«’nie:?enieﬁ ((/\Zronsg;@;a Theoren)




PROPERTIES OF THE FAMILY

Astala, Clop, Faraco, and ddskeldinen

We have a family of quasiconformal mappings {®, : &, K — qc,0+— 0,1 — a},
®,(2) — Pp(2) is K-quasiconformal.

VWhat other properties does the family have! For instance, when do we have a
full range {0, ®,(2) : a € C} = C for almost every 2!

[t turns out that @ — 9, P, (2) exists for almost every a (exceptional set might
depend on z; and this causes difficulties). Note that z +— 9,®,(2) exists for
almost every z (by quasiconformality). The exceptional set depends on a.

We need some relation between a and z.

What more can we say about the family, if we know more about the nonlinear

Beltrami equation 0z f(z) = H(z,0.f(2))?




0:f(2) = H(z,0.f(2)) {®,: P, K —qc,0—~ 0,1+ a}
®,(2) — Pp(2) is K-quasiconformal.

z — H(z,w) measurable
w i H(z,w) C*
k-Lipschitz, k(2) < 3 — 2v/2 near the infinity
H(z,0) =0
Astala, Clop, Faraco, and Jddskeldinen Tales care Aé We{?irsf excepliona] st
''Theorem. For each fixed z € C, the mapping a — ®,(2) is continuously |

differentiable. Further, the convergence of derivatives 9, P (2) is locally uniform
nz.

In fact, the directional derivatives

%P, (2) := i — e € C,

are quasiconformal mappings of z all satisfying the same R-linear Beltrami
equation

| 0z f(2) = 1a(2)0: f(2) + va(2)0. f(2)
1o (2) = OuwH(2,0,P4(2)),




{®,: P, K —qc,0—~ 0,1+ a}
®,(2) — Pp(2) is K-quasiconformal.

)
k- L|psch|tz k(z) < 3 —2v2 near the infinity

H(z,0) =0
Schauder estimates: ®, € C'- ' (C) Tales care Déwe, second exceplional st

loc

\/\Zronsg;@;e Theorey ‘{"T‘;@m“t abod” directional derivatives

Astala, Clop, Faraco, and Jddskeldinen:
Fixing z, Jacobian of a +— 0,®,(z) : C — C
J(a,a— 0,P,(2)) =1Im(0,[07 Pu(2)] 0. [08Py(2)]) # O a.e. z

Hence a — 0,P,(2) is locally injective (locally homeomorphic, by invariance of
domain); in particular, an open mapping.




{®,: P, K —qc,0—~ 0,1+ a}

®,(2) — Pp(2) is K-quasiconformal.

.

k- L|psch|tz k(z) < 3 —2v2 near the infinity

H(z,0) =0
Schauder estimates: ®, € C2%(C)

loc

Astala, Clop, Faraco, and Jddskeldinen:

Fixing z, Jacobian of a +— 0,®,(z) : C — C

Totlas cate Aé ﬂTe secohat e%ce:lﬂfot'\otl Sér

\/\Zronsg;@}e Theoren ‘{"T‘;"m“t abod” directional derivatives

J(a,a— 0,P,(2)) = Im(0,[0{ Pu(2)] 0. [0¢P,(2)]) O a.e. z

Hence a — 0,P,(2) is locally injective (local
domain); in particular, an open mapping. Can
mapping between Riemann spheresC. Thus 't
a+— 0,P,(z) : C — Cis actually a homeom

y homeomorphic, by invariance of
e extended as a continuous

ne covering map stuff’ gives that
orphism for almost every z. (Ve

get more than the full range {0, ®,(z) : a € C} = C))




{®,: P, K —qc,0—~ 0,1+ a}
®,(2) — Pp(2) is K-quasiconformal.

| K(z) < V2 near the infinit
k-Lipschitz, k(z) < 3 — 2v/2 near the infinrty (%) > c Cl,a(cy)

H(z,0) =0 {0,9,(2) : a € (lecz C

+ some regularity in a

{®,: P, K —qc,0—~ 0,1+ a}
P, (2) — Pp(2) is K-quasiconformal.

o, € CL%(C)

loc

a 0,8,(z): C— C a homeomorphism
in particular, the full range {9, ®,(z) : a € C} =C

+ some regularity In a







