On the sharpness of Mockenhaupt’s restriction estimate

Izabella Łaba

IPAM, Los Angeles, 2013
Let μ be a finite, nonnegative Borel measure on \mathbb{R}^n, $f \in L^1(d\mu)$. Define the Fourier transform

$$\hat{fd\mu}(\xi) = \int f(x)e^{-2\pi i \xi \cdot x} d\mu(x)$$
Let μ be a finite, nonnegative Borel measure on \mathbb{R}^n, $f \in L^1(d\mu)$. Define the Fourier transform

$$\widehat{fd\mu}(\xi) = \int f(x)e^{-2\pi i \xi \cdot x} d\mu(x)$$

When is $f \to \widehat{fd\mu}$ a bounded mapping $L^q(d\mu) \to L^p(\mathbb{R}^n)$?
Let μ be a finite, nonnegative Borel measure on \mathbb{R}^n, $f \in L^1(d\mu)$. Define the Fourier transform

$$\hat{fd\mu}(\xi) = \int f(x)e^{-2\pi i \xi \cdot x} d\mu(x)$$

When is $f \to \hat{fd\mu}$ a bounded mapping $L^q(d\mu) \to L^p(\mathbb{R}^n)$?

Trivially, we have $\|\hat{fd\mu}\|_\infty \leq \mu(\mathbb{R}^n)\|f\|_{L^1(d\mu)}$.
Let μ be a finite, nonnegative Borel measure on \mathbb{R}^n, $f \in L^1(d\mu)$. Define the Fourier transform

$$\hat{fd\mu}(\xi) = \int f(x)e^{-2\pi i \xi \cdot x} \, d\mu(x)$$

When is $f \to \hat{fd\mu}$ a bounded mapping $L^q(d\mu) \to L^p(\mathbb{R}^n)$?

Trivially, we have $\|\hat{fd\mu}\|_\infty \leq \mu(\mathbb{R}^n) \| f \|_{L^1(d\mu)}$.

Without additional assumptions on μ, that’s all we can say. But for some types of μ, there is much more...
Theorem (Stein-Tomas, 1970s.) Let σ be the surface measure on the unit sphere $S^{n-1} \subset \mathbb{R}^n$. Then for all $p \geq \frac{2n+2}{n-1}$,

$$\| \hat{f}d\sigma \|_{L^p(\mathbb{R}^n)} \leq C(p) \| f \|_{L^2(d\sigma)}$$

for all $f \in L^2(d\sigma)$.
Theorem (Stein-Tomas, 1970s.) Let σ be the surface measure on the unit sphere $S^{n-1} \subset \mathbb{R}^n$. Then for all $p \geq \frac{2n+2}{n-1}$,

$$\|\hat{f}d\sigma\|_{L^p(\mathbb{R}^n)} \leq C(p)\|f\|_{L^2(d\sigma)}$$

for all $f \in L^2(d\sigma)$.

Proof is based on the decay of $\hat{\sigma}$ at infinity:

$$|\hat{\sigma}(\xi)| \leq C(1 + |\xi|)^{-(n-1)/2}$$
Theorem (Stein-Tomas, 1970s.) Let σ be the surface measure on the unit sphere $S^{n-1} \subset \mathbb{R}^n$. Then for all $p \geq \frac{2n+2}{n-1}$,

$$\| \hat{f} d\sigma \|_{L^p(\mathbb{R}^n)} \leq C(p) \| f \|_{L^2(d\sigma)}$$

for all $f \in L^2(d\sigma)$.

Proof is based on the decay of $\hat{\sigma}$ at infinity:

$$|\hat{\sigma}(\xi)| \leq C(1 + |\xi|)^{-(n-1)/2}$$

The range of p is optimal.
This turned out to be a rich and productive line of research:

- Many restriction estimates are now known for surface measures on manifolds (spheres, cones, curves in \mathbb{R}^3, ...)

The availability of such estimates, and range of exponents, depends on geometric properties of the manifold: dimension, curvature (via decay of Fourier transform of σ), Kakeya-type geometric information.

Many important open problems remain, e.g. Stein's restriction conjecture for the sphere (partial results: Bourgain, Wolff, Tao, Bourgain-Guth.)
This turned out to be a rich and productive line of research:

- Many restriction estimates are now known for surface measures on manifolds (spheres, cones, curves in \mathbb{R}^3, ...)
- The availability of such estimates, and range of exponents, depends on geometric properties of the manifold: dimension, curvature (via decay of Fourier transform of σ), Kakeya-type geometric information.

Izabella Łaba

On the sharpness of Mockenhaupt’s restriction estimate
This turned out to be a rich and productive line of research:

- Many restriction estimates are now known for surface measures on manifolds (spheres, cones, curves in \mathbb{R}^3, ...)
- The availability of such estimates, and range of exponents, depends on geometric properties of the manifold: dimension, curvature (via decay of Fourier transform of σ), Kakeya-type geometric information.
- Many important open problems remain, e.g. Stein’s restriction conjecture for the sphere (partial results: Bourgain, Wolff, Tao, Bourgain-Guth.)
Restriction estimates for discrete sets

- Restriction estimates for sets of integers (Bourgain, Green, Green-Tao, Tao-Vu).

Green (2003) and Green-Tao (2004) used restriction estimates in proving Roth-type results on arithmetic progressions in sets of integers.

Finite field analogues (Mockenhaupt-Tao, Iosevich, Koh, A. Lewko, M. Lewko, Shen, ...)

Instead of curvature (makes no sense for discrete sets), proofs use arithmetic information, e.g. counting solutions to equations $a_1 + \cdots + a_n = a_{n+1} + \cdots + a_{2n}$ with a_i in a given set.
Restriction estimates for discrete sets

- Restriction estimates for sets of integers (Bourgain, Green, Green-Tao, Tao-Vu).
- Green (2003) and Green-Tao (2004) used restriction estimates in proving Roth-type results on arithmetic progressions in sets of integers.

Instead of curvature (makes no sense for discrete sets), proofs use arithmetic information, e.g. counting solutions to equations $a_1 + \cdots + a_n = a_{n+1} + \cdots + a_{2n}$ with a_i in a given set.
 Restriction estimates for discrete sets

- Restriction estimates for sets of integers (Bourgain, Green, Green-Tao, Tao-Vu).
- Green (2003) and Green-Tao (2004) used restriction estimates in proving Roth-type results on arithmetic progressions in sets of integers.
- Finite field analogues (Mockenhaupt-Tao, Iosevich, Koh, A. Lewko, M. Lewko, Shen, ...)

Izabella Łaba
On the sharpness of Mockenhaupt’s restriction estimate
Restriction estimates for discrete sets

- Restriction estimates for sets of integers (Bourgain, Green, Green-Tao, Tao-Vu).

- Green (2003) and Green-Tao (2004) used restriction estimates in proving Roth-type results on arithmetic progressions in sets of integers.

- Finite field analogues (Mockenhaupt-Tao, Iosevich, Koh, A. Lewko, M. Lewko, Shen, ...)

- Instead of curvature (makes no sense for discrete sets), proofs use arithmetic information, e.g. counting solutions to equations $a_1 + \cdots + a_n = a_{n+1} + \cdots + a_{2n}$ with a_i in a given set.
Mockenhaupt (2000): restriction theorem for “Salem sets.” (Definitions and precise statements will follow shortly.)
Mockenhaupt (2000): restriction theorem for “Salem sets.” (Definitions and precise statements will follow shortly.)

Proof follows the same argument as the Tomas-Stein restriction theorem for the sphere.
Mockenhaupt (2000): restriction theorem for “Salem sets.” (Definitions and precise statements will follow shortly.)

Proof follows the same argument as the Tomas-Stein restriction theorem for the sphere.

Main contribution: changing the point of view, shifting focus from “smooth” surface measures on manifolds to less regular fractal measures.
Restriction estimates for fractal measures

- Mockenhaupt (2000): restriction theorem for “Salem sets.” (Definitions and precise statements will follow shortly.)
- Proof follows the same argument as the Tomas-Stein restriction theorem for the sphere.
- Main contribution: changing the point of view, shifting focus from “smooth” surface measures on manifolds to less regular fractal measures.
- X. Chen (2012): a restriction theorem for fractal measures based on a different mechanism.
Let μ be a probability measure on \mathbb{R}^n and $0 \leq \alpha \leq n$. We say that μ obeys the α-dimensional ball condition if

$$\mu(B(x, r)) \leq Cr^\alpha \quad \forall x \in \mathbb{R}^n, \ r \in (0, \infty)$$

(\ast)

$B(x, r)$ ball of radius r centered at x.
Let μ be a probability measure on \mathbb{R}^n and $0 \leq \alpha \leq n$. We say that μ obeys the α-dimensional ball condition if

$$\mu(B(x, r)) \leq Cr^\alpha \quad \forall x \in \mathbb{R}^n, \ r \in (0, \infty) \quad (*)$$

$B(x, r)$ ball of radius r centered at x.

Let $E \subset \mathbb{R}^n$ closed, $\dim_H(E) =$ Hausdorff dimension of E. Then

$$\dim_H(E) = \sup\{\alpha \in [0, n] : \ E \text{ supports a probability measure } \mu = \mu_\alpha \text{ obeying } (*)\}$$
The **Fourier dimension** of $E \subset \mathbb{R}^n$ is defined as

$$\dim_F(E) = \sup\{\beta \in [0, n] : E \text{ supports a probability measure } \mu = \mu_\beta \text{ with }$$

$$|\hat{\mu}(\xi)| \leq C(1 + |\xi|)^{-\beta/2}\}.$$
The **Fourier dimension** of $E \subset \mathbb{R}^n$ is defined as

$$\dim_F(E) = \sup\{\beta \in [0, n] : E \text{ supports a probability measure } \mu = \mu_\beta \text{ with}$$

$$|\hat{\mu}(\xi)| \leq C(1 + |\xi|)^{-\beta/2}\}. $$

- $\dim_F(E) \leq \dim_H(E)$, always.
The **Fourier dimension** of $E \subset \mathbb{R}^n$ is defined as

$$\dim_F(E) = \sup\{\beta \in [0, n] : E \text{ supports a probability measure } \mu = \mu_\beta \text{ with}$$

$$|\hat{\mu}(\xi)| \leq C(1 + |\xi|)^{-\beta/2}\}.$$

- $\dim_F(E) \leq \dim_H(E)$, always.
- Inequality can be strict: the $2/3$ Cantor set has Hausdorff dimension $\log 2 / \log 3$, but Fourier dimension 0.

Background: Fourier dimension

Izabella Laba

On the sharpness of Mockenhaupt’s restriction estimate
Salem sets: sets with $\dim_F(E) = \dim_H(E)$. Difficult to construct!
Salem sets: sets with $\dim_F(E) = \dim_H(E)$. Difficult to construct!

- Salem 1950: first examples (randomized Cantor-type sets)
- Kahane 1985: Brownian images of compact sets are almost surely Salem.
- Kaufman 1981: deterministic example of a Salem set (diophantine Cantor-type construction)
Salem sets: sets with $\dim_F(E) = \dim_H(E)$. Difficult to construct!

- Salem 1950: first examples (randomized Cantor-type sets)
- Kahane 1985: Brownian images of compact sets are almost surely Salem.
Salem sets: sets with $\dim_F(E) = \dim_H(E)$. Difficult to construct!

- Salem 1950: first examples (randomized Cantor-type sets)
- Kahane 1985: Brownian images of compact sets are almost surely Salem.
- Kaufman 1981: deterministic example of a Salem set (diophantine Cantor-type construction)
Salem sets: sets with $\dim_F(E) = \dim_H(E)$. Difficult to construct!

- Salem 1950: first examples (randomized Cantor-type sets)
- Kahane 1985: Brownian images of compact sets are almost surely Salem.
- Kaufman 1981: deterministic example of a Salem set (diophantine Cantor-type construction)
These constructions provide, for any $\alpha_0 \in (0, n)$, probability measures μ on \mathbb{R}^n (Salem measures) such that
These constructions provide, for any $\alpha_0 \in (0, n)$, probability measures μ on \mathbb{R}^n (**Salem measures**) such that

- μ is supported on a set of Hausdorff dimension α_0,

 $|\hat{\mu}(\xi)| \leq C_{\beta}(1 + |\xi|)^{-\beta/2}$ for all $\beta < \alpha_0$.

Salem measures

These constructions provide, for any $\alpha_0 \in (0, n)$, probability measures μ on \mathbb{R}^n (Salem measures) such that

- μ is supported on a set of Hausdorff dimension α_0,
- $\mu(B(x, r)) \leq C_\alpha r^\alpha$ for all $\alpha < \alpha_0$ (Salem’s construction has $\alpha = \alpha_0$).
Salem measures

These constructions provide, for any $\alpha_0 \in (0, n)$, probability measures μ on \mathbb{R}^n (Salem measures) such that

- μ is supported on a set of Hausdorff dimension α_0,
- $\mu(B(x, r)) \leq C_\alpha r^\alpha$ for all $\alpha < \alpha_0$ (Salem’s construction has $\alpha = \alpha_0$),
- $|\hat{\mu}(\xi)| \leq C_\beta (1 + |\xi|)^{-\beta/2}$ for all $\beta < \alpha_0$.

Izabella Laba
On the sharpness of Mockenhaupt’s restriction estimate
Theorem (Mockenhaupt 2000; endpoint Bak-Seeger 2011)

Let μ be a compactly supported positive measure on \mathbb{R}^n such that for some $\alpha, \beta \in (0, n)$

- $\mu(B(x, r)) \leq C_1 r^\alpha$ for all $x \in \mathbb{R}^n$, $r > 0$,
- $|\hat{\mu}(\xi)| \leq C_2 (1 + |\xi|)^{-\beta/2}$

Then for all $p \geq p_{n, \alpha, \beta} := \frac{2(2n-2\alpha+\beta)}{\beta}$,

$$\left\| f d\mu \right\|_{L^p(\mathbb{R}^n)} \leq C_p \left\| f \right\|_{L^2(d\mu)}$$

for all $f \in L^2(d\mu)$.

Izabella Łaba

On the sharpness of Mockenhaupt’s restriction estimate
We are interested in the range of exponents: where does it come from, and is it sharp?
We are interested in the range of exponents: where does it come from, and is it sharp?

- If $\mu = \sigma$ is the surface measure on the sphere $S^{n-1} \subset \mathbb{R}^n$, Mockenhaupt’s theorem recovers the classical Tomas-Stein theorem. In this case, the range of exponents is known to be optimal. (More on next slide.)
We are interested in the range of exponents: where does it come from, and is it sharp?

- If $\mu = \sigma$ is the surface measure on the sphere $S^{n-1} \subset \mathbb{R}^n$, Mockenhaupt’s theorem recovers the classical Tomas-Stein theorem. In this case, the range of exponents is known to be optimal. (More on next slide.)

- For fractal measures, the question was open. **This is what we address here.**
Stein-Tomas: if $\mu = \sigma$ is the surface measure on the sphere $S^{n-1} \subset \mathbb{R}^n$, the $L^2(d\mu) \rightarrow L^p(\mathbb{R}^n)$ restriction estimate holds for $p \geq \frac{2n+2}{n-1}$.

The range of p is optimal.

Knapp example: Let f_δ be the characteristic function of a spherical cap of diameter δ. Then $|\hat{f}\sigma| \geq C \|f_\delta\|_{L^1(d\mu)}$ on a "dual" cylinder. It follows that there are no uniform (in δ) $L^2 \rightarrow L^p$ estimates for $p > \frac{2n+2}{n-1}$.

Izabella Łaba

On the sharpness of Mockenhaupt’s restriction estimate
Stein-Tomas: if $\mu = \sigma$ is the surface measure on the sphere $S^{n-1} \subset \mathbb{R}^n$, the $L^2(d\mu) \to L^p(\mathbb{R}^n)$ restriction estimate holds for $p \geq \frac{2n+2}{n-1}$.

▶ The range of p is optimal.
Stein-Tomas: if $\mu = \sigma$ is the surface measure on the sphere $S^{n-1} \subset \mathbb{R}^n$, the $L^2(d\mu) \to L^p(\mathbb{R}^n)$ restriction estimate holds for $p \geq \frac{2n+2}{n-1}$.

- The range of p is optimal.
- **Knapp example**: Let f_δ be the characteristic function of a spherical cap of diameter δ. Then

$$|\hat{f}d\sigma| \geq C\|f_\delta\|_{L^1(d\mu)}$$

on a “dual” cylinder. It follows that there are no uniform (in δ) $L^2 \to L^p$ estimates for $p > \frac{2n+2}{n-1}$.
We focus on fractal Salem measures on the line:

- \(\dim_H(\text{supp}\mu) = \alpha_0 \in (0, 1), \)
We focus on fractal Salem measures on the line:

▶ $\dim_H(\text{supp} \mu) = \alpha_0 \in (0, 1)$,
▶ ball condition and Fourier decay with α, β arbitrarily close to α_0.

Mockenhaupt: the $L^2(\mathbb{R}) \rightarrow L^p(\mathbb{R}^n)$ restriction estimate holds for $p \geq 4 - \frac{2}{\alpha_0}$.

Easy argument via energy integrals: no such estimates if $p < \frac{2}{\alpha_0}$.

Izabella Laba
On the sharpness of Mockenhaupt’s restriction estimate
Range of exponents: Mockenhaupt’s theorem for Salem measures on the line

We focus on fractal Salem measures on the line:

- $\dim_H(\text{supp}\mu) = \alpha_0 \in (0, 1)$,
- ball condition and Fourier decay with α, β arbitrarily close to α_0.

Mockenhaupt: the $L^2(d\mu) \to L^p(\mathbb{R}^n)$ restriction estimate holds for $p \geq \frac{4-2\alpha_0}{\alpha_0}$.
Range of exponents: Mockenhaupt’s theorem for Salem measures on the line

We focus on fractal Salem measures on the line:

- \(\dim_H(\text{supp}\mu) = \alpha_0 \in (0, 1) \),
- ball condition and Fourier decay with \(\alpha, \beta \) arbitrarily close to \(\alpha_0 \).

Mockenhaupt: the \(L^2(d\mu) \rightarrow L^p(\mathbb{R}^n) \) restriction estimate holds for

\[
p \geq \frac{4-2\alpha_0}{\alpha_0}.
\]

Easy argument via energy integrals: no such estimates if \(p < \frac{2}{\alpha_0} \).
This leaves the intermediate range

\[
\frac{2}{\alpha_0} \leq p < \frac{4 - 2\alpha_0}{\alpha_0}
\]
This leaves the intermediate range
\[\frac{2}{\alpha_0} \leq p < \frac{4 - 2\alpha_0}{\alpha_0} \]

- Is there an analogue of Knapp’s example for fractal sets?
This leaves the intermediate range

\[\frac{2}{\alpha_0} \leq p < \frac{4 - 2\alpha_0}{\alpha_0} \]

▶ Is there an analogue of Knapp’s example for fractal sets?
▶ Mockenhaupt: cannot exclude possibility that restriction estimates for Salem measures of fractional dimension hold in the intermediate range of exponents.
This leaves the intermediate range

\[
\frac{2}{\alpha_0} \leq p < \frac{4 - 2\alpha_0}{\alpha_0}
\]

▶ Is there an analogue of Knapp’s example for fractal sets?
▶ Mockenhaupt: cannot exclude possibility that restriction estimates for Salem measures of fractional dimension hold in the intermediate range of exponents.
▶ Chen (2012): there is a measure μ supported on a set of Hausdorff dimension α in \mathbb{R} for which a restriction estimate holds for all $p \geq 2/\alpha_0$. (Based on a probabilistic construction by Körner. The measure μ need not be Salem.)
Main result

Theorem (Hambrook-Łaba 2012)

Let \(\alpha = \frac{\log(t_0)}{\log(N_0)} \) with \(t_0, N_0 \in \mathbb{N} \). Let \(1 \leq p < \frac{4-2\alpha}{\alpha} \). Then there exist a probability measure \(\mu \) and functions \(\{f_\ell\}_{\ell \in \mathbb{N}} \) on \([0,1]\) such that

- \(\mu \) is supported on a set \(E \) of dimension \(\alpha \),
- \(\mu \) obeys ball condition with the given value of \(\alpha \),
- \(|\widehat{\mu}(\xi)| \leq C_\beta (1 + |\xi|)^{-\beta/2} \) for all \(\beta < \alpha \),
- the restriction estimate fails:

\[
\frac{\| \hat{f}_\ell \, d\mu \|_{L^p(\mathbb{R})}}{\| f_\ell \|_{L^2(d\mu)}} \to \infty \quad \text{as} \quad \ell \to \infty.
\]
Main result: comments

- This proves that range of exponents in Mockenhaupt’s theorem, in its stated generality, is optimal.
This proves that range of exponents in Mockenhaupt’s theorem, in its stated generality, is optimal.

Chen’s example: there are measures for which restriction estimates hold with exponents beyond Mockenhaupt’s range. We do not know whether this can happen for Salem measures.
This proves that range of exponents in Mockenhaupt’s theorem, in its stated generality, is optimal.

Chen’s example: there are measures for which restriction estimates hold with exponents beyond Mockenhaupt’s range. We do not know whether this can happen for Salem measures.

It should be possible to modify the construction to allow arbitrary $\alpha \in (0, 1)$, but a dense set of α is still enough to get our conclusion.
Proof: construction of μ

Construct $E = \bigcap E_j$ via Cantor iteration:

- Let $N = N_0^{2n_0}$, $t = t_0^{2n_0}$ so that $\log t / \log N = \alpha$. (We will want n_0 to be sufficiently large.)
Proof: construction of μ

Construct $E = \bigcap E_j$ via Cantor iteration:

- Let $N = N_0^{2n_0}$, $t = t_0^{2n_0}$ so that $\log t / \log N = \alpha$. (We will want n_0 to be sufficiently large.)

- Divide $[0, 1]$ into N intervals of equal length, choose t of them. (The choice will be specified shortly.) This is E_1.
Construct $E = \bigcap E_j$ via Cantor iteration:

- Let $N = N_0^{2^n_0}$, $t = t_0^{2^n_0}$ so that $\log t / \log N = \alpha$. (We will want n_0 to be sufficiently large.)

- Divide $[0, 1]$ into N intervals of equal length, choose t of them. (The choice will be specified shortly.) This is E_1.

- Suppose E_j has been constructed as a union of t^j intervals of length N^{-j}. For each such interval, subdivide it into N subintervals of length N^{-j-1}, then choose t of them, for a total of t^{j+1} subintervals. (The choices may be different for different intervals of E_j.)
Proof: construction of \(\mu \)

Construct \(E = \bigcap E_j \) via Cantor iteration:

- Let \(N = N_0^{2n_0}, \ t = t_0^{2n_0} \) so that \(\log t / \log N = \alpha \). (We will want \(n_0 \) to be sufficiently large.)

- Divide \([0, 1]\) into \(N \) intervals of equal length, choose \(t \) of them. (The choice will be specified shortly.) This is \(E_1 \).

- Suppose \(E_j \) has been constructed as a union of \(t^j \) intervals of length \(N^{-j} \). For each such interval, subdivide it into \(N \) subintervals of length \(N^{-j-1} \), then choose \(t \) of them, for a total of \(t^{j+1} \) subintervals. (The choices may be different for different intervals of \(E_j \).)

- This produces \(E_1 \supset E_2 \supset \ldots \), with \(E_j \) as described above.
Let $\mu_j = \frac{1}{|E_j|}1_{E_j}$, then μ_j converge weakly to μ, a probability measure on $E = \bigcap E_j$.
Construction of μ, cont.

\begin{itemize}
 \item Let $\mu_j = \frac{1}{|E_j|} \mathbf{1}_{E_j}$, then μ_j converge weakly to μ, a probability measure on $E = \bigcap E_j$.
 \item For \textit{any} choice of subintervals in the construction, E has dimension α, and $\mu(B(x, r)) \leq Cr^\alpha$ for all $x \in \mathbb{R}$, $r > 0$.
\end{itemize}
Let $\mu_j = \frac{1}{|E_j|} 1_{E_j}$, then μ_j converge weakly to μ, a probability measure on $E = \bigcap E_j$.

For any choice of subintervals in the construction, E has dimension α, and $\mu(B(x, r)) \leq Cr^\alpha$ for all $x \in \mathbb{R}$, $r > 0$.

(Laba-Pramanik 2008) There is a randomized choice of subintervals such that μ is a Salem measure.
The sets E_j are “random”, but can they contain much smaller subsets that are arithmetically structured?

Idea: modify the random construction so that the set of left endpoints of E_j contains a generalized arithmetic progression $P_j = N - 1, N - 2, \ldots, N - j$ where $P \subseteq \{0, 1, \ldots, N-1\}$ is an arithmetic progression of length \sqrt{t}.

Main challenge: we need to do this without destroying the Fourier decay estimates. Turns out that \sqrt{t} is the largest size of P for which this is possible.
Subsets with arithmetic structure

- The sets E_j are “random”, but can they contain much smaller subsets that are arithmetically structured?
- Idea: modify the random construction so that the set of left endpoints of E_j contains a generalized arithmetic progression

$$P_j = N^{-1}P + N^{-2}P + \cdots + N^{-j}P$$

where $P \subset \{0, 1, \ldots, N - 1\}$ is an arithmetic progression of length \sqrt{t}.
The sets E_j are “random”, but can they contain much smaller subsets that are arithmetically structured?

Idea: modify the random construction so that the set of left endpoints of E_j contains a generalized arithmetic progression

$$P_j = N^{-1}P + N^{-2}P + \cdots + N^{-j}P$$

where $P \subset \{0, 1, \ldots, N - 1\}$ is an arithmetic progression of length \sqrt{t}.

Main challenge: we need to do this without destroying the Fourier decay estimates. Turns out that \sqrt{t} is the largest size of P for which this is possible.
The functions f_j

- Let $F_j \subset E_j$ consist of those N^{-j}-intervals whose left endpoints lie in P_j.

- Let $f_j = \mathbb{1}_{F_j}$, then $\|f_j\|_{L^2(d\mu)} = \mu(F_j) = t - j / 2$.

- The lower bound $\|\hat{f}_j d\mu\|_{L^p(\mathbb{R})} \geq C(r) N^{j - 1} t_j (p + 1) / 2$ is based on counting additive $2r$-tuples $a_1 + \cdots + a_r = a_{r+1} + \cdots + a_{2r}$, $a_i \in P_j$, with fixed $r \in \mathbb{N}$ large enough (depending on α).

- Conclusion follows if $p < 4/\alpha - 2$ and n_0 is large enough.
The functions f_j

- Let $F_j \subset E_j$ consist of those N^{-j}-intervals whose left endpoints lie in P_j.
- Let $f_j = 1_{F_j}$, then $\|f_j\|_{L^2(d\mu)}^2 = \mu(F_j) = t^{-j/2}$.

Izabella Łaba
On the sharpness of Mockenhaupt’s restriction estimate
The functions f_j

- Let $F_j \subset E_j$ consist of those N^{-j}-intervals whose left endpoints lie in P_j.
- Let $f_j = 1_{F_j}$, then $\|f_j\|_{L^2(d\mu)}^2 = \mu(F_j) = t^{-j/2}$.
- The lower bound

$$\|\hat{f}_j d\mu\|_{L^p(\mathbb{R})}^p \geq C(r) \frac{N^j r^{-j-1} j!}{t^{jl(p+1)/2}}$$

is based on counting additive $2r$-tuples

$$a_1 + \cdots + a_r = a_{r+1} + \cdots + a_{2r}, \quad a_i \in P_j,$$

with fixed $r \in \mathbb{N}$ large enough (depending on α).
The functions \(f_j \)

- Let \(F_j \subset E_j \) consist of those \(N^{-j} \)-intervals whose left endpoints lie in \(P_j \).
- Let \(f_j = 1_{F_j} \), then \(\| f_j \|_{L^2(d\mu)}^2 = \mu(F_j) = t^{-j/2} \).
- The lower bound
 \[
 \| \hat{f}_j d\mu \|_{L^p(\mathbb{R})}^p \geq C(r) \frac{N^j r^{-j-1}}{t^{jl(p+1)/2}}
 \]
 is based on counting additive \(2r \)-tuples
 \[
 a_1 + \cdots + a_r = a_{r+1} + \cdots + a_{2r}, \quad a_i \in P_j,
 \]
 with fixed \(r \in \mathbb{N} \) large enough (depending on \(\alpha \))
- Conclusion follows if \(p < 4/\alpha - 2 \) and \(n_0 \) is large enough.
Knapp example revisited

Compare to Knapp example for the sphere:

- Knapp example: the sphere (curved) contains spherical caps (almost flat). Equivalently, the curved sphere is tangent to flat hyperplanes.
Knapp example revisited

Compare to Knapp example for the sphere:

- **Knapp example**: the sphere (curved) contains spherical caps (almost flat). Equivalently, the curved sphere is tangent to flat hyperplanes.

- The range of exponents in Stein-Tomas restriction theorem reflects the degree of tangency.
Knapp example revisited

Compare to Knapp example for the sphere:

- Knapp example: the sphere (curved) contains spherical caps (almost flat). Equivalently, the curved sphere is tangent to flat hyperplanes.
- The range of exponents in Stein-Tomas restriction theorem reflects the degree of tangency.
- In our example, we used that a Salem set (random) may contain a generalized arithmetic progression (structured). We could say that E is “tangent” to the more structured sets F_j, and that the degree of tangency is reflected in the range of restriction exponents.
Thank you!