Lipschitz spheres in the Heisenberg group

Robert Young
University of Toronto
(joint with Stefan Wenger)

Apr. 2013
The Heisenberg group

\[\mathbb{H} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \bigg| x, y, z \in \mathbb{R} \right\} \]
The Heisenberg group

\[\mathbb{H} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\} \]

\[\mathbb{H}_\mathbb{Z} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{Z} \right\} \]
The Heisenberg group

\[\mathbb{H} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \quad \text{where} \quad x, y, z \in \mathbb{R} \]

\[\mathbb{H}_\mathbb{Z} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \quad \text{where} \quad x, y, z \in \mathbb{Z} \]

\[x = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad z = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
The Cayley graph of $\mathbb{H}_Z(1)$

\[
x = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]
\[
y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\]
\[
z = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]
The Cayley graph of $\mathbb{H}_Z (2)$

\[z = xyx^{-1}y^{-1} \]
The Cayley graph of $\mathbb{H}_\mathbb{Z} (3)$

\[z^4 = x^2y^2x^{-2}y^{-2} \]
The Cayley graph of $\mathbb{H}_Z(4)$

$$z^{n^2} = x^n y^n x^{-n} y^{-n}$$
The Cayley graph of $\mathbb{H}_Z(4)$

$z^{n^2} = x^n y^n x^{-n} y^{-n}$

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & tx & t^2z \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{pmatrix}$$

is an automorphism.
From Cayley graph to sub-riemannian metric

- Horizontal planes spanned by red and blue edges.

\[d(u, v) = \inf \{ \ell(\gamma) | \gamma \text{ is a horizontal curve from } u \text{ to } v \} \]
From Cayley graph to sub-riemannian metric

- Horizontal planes spanned by red and blue edges.
- The length of a horizontal curve is the length of its projection.

\[d(u, v) = \inf \{ \ell(\gamma) | \gamma \text{ is a horizontal curve from } u \text{ to } v \} \]
From Cayley graph to sub-riemannian metric

- Horizontal planes spanned by red and blue edges.
- The length of a horizontal curve is the length of its projection.

\[d(u, v) = \inf \{ \ell(\gamma) \mid \gamma \text{ is a horizontal curve from } u \text{ to } v \} \]
Horizontal curves in \mathbb{H}

- Curves in the plane lift to horizontal curves in \mathbb{H}.

- The length of the lift is the same as the length of the original curve.

- The change in height along the lift of a closed curve is the signed area of the curve.

- Geodesics are lifts of circles.
Horizontal curves in \mathbb{H}

- Curves in the plane lift to horizontal curves in \mathbb{H}.
- The length of the lift is the same as the length of the original curve.
Horizontal curves in \mathbb{H}

- Curves in the plane lift to horizontal curves in \mathbb{H}.
- The length of the lift is the same as the length of the original curve.
- The change in height along the lift of a closed curve is the signed area of the curve.
Horizontal curves in \mathbb{H}

- Curves in the plane lift to horizontal curves in \mathbb{H}.
- The length of the lift is the same as the length of the original curve.
- The change in height along the lift of a closed curve is the signed area of the curve.
- Geodesics are lifts of circles.
Horizontal surfaces in \mathbb{H}?

- The horizontal plane field is non-integrable, so there are no smooth horizontal surfaces in \mathbb{H}.

- Theorem (Pansu) Any Lipschitz map $f: B_n \to \mathbb{H}$ from the n-ball is a.e. Pansu differentiable (differentiable, horizontal, and its differential is a homomorphism $\mathbb{R}^n \to h$ of Lie algebras.)

- So any Lipschitz map $f: B_n \to \mathbb{H}$ has derivative of rank 1 a.e.

- In fact, Theorem (Wenger-Y.) If M is a simply-connected manifold, then any Lipschitz map $f: M \to \mathbb{H}$ factors through an \mathbb{R}-tree.
Horizontal surfaces in \mathbb{H}?

- The horizontal plane field is non-integrable, so there are no smooth horizontal surfaces in \mathbb{H}.
- Even Lipschitz maps $B^n \to \mathbb{H}$ are limited:

Theorem (Pansu)

Any Lipschitz map $f : B^n \to \mathbb{H}$ from the n-ball is a.e. Pansu differentiable (differentiable, horizontal, and its differential is a homomorphism $\mathbb{R}^n \to \mathfrak{h}$ of Lie algebras.)

So any Lipschitz map $f : B^n \to \mathbb{H}$ has derivative of rank 1 a.e.
Horizontal surfaces in \mathbb{H}?

- The horizontal plane field is non-integrable, so there are no smooth horizontal surfaces in \mathbb{H}.
- Even Lipschitz maps $B^n \to \mathbb{H}$ are limited:

Theorem (Pansu)

Any Lipschitz map $f : B^n \to \mathbb{H}$ from the n-ball is a.e. Pansu differentiable (differentiable, horizontal, and its differential is a homomorphism $\mathbb{R}^n \to \mathfrak{h}$ of Lie algebras.)

So any Lipschitz map $f : B^n \to \mathbb{H}$ has derivative of rank 1 a.e.

- In fact,

Theorem (Wenger-Y.)

If M is a simply-connected manifold, then any Lipschitz map $f : M \to \mathbb{H}$ factors through an \mathbb{R}-tree.
Lipschitz homotopy groups

If X is a metric space, we define

$$\pi_n^{\text{Lip}}(X) = \{\text{Lipschitz maps } S^n \to X\}/$$
$$\{\text{Lipschitz homotopies } S^n \times [0, 1] \to X\}$$
Lipschitz homotopy groups

If X is a metric space, we define

$$\pi_n^{\text{Lip}}(X) = \{\text{Lipschitz maps } S^n \to X\}/\{\text{Lipschitz homotopies } S^n \times [0, 1] \to X\}$$

If X is a riemannian manifold or simplicial complex, then $\pi_n^{\text{Lip}}(X) = \pi_n(X)$.
Lipschitz homotopy groups of \mathbb{H}

$\mathbb{H} \cong \mathbb{R}^3$, so $\pi_n(\mathbb{H}) = 0$ for all n, but:

- $\pi_{\text{Lip}}^0(\mathbb{H}) = 0$ (if \mathbb{H} is geodesic)
- $\pi_{\text{Lip}}^1(\mathbb{H})$ is uncountably generated (lots of closed curves but no surfaces)
- $\pi_{\text{Lip}}^n(\mathbb{H}) = 0$ for all $n > 1$ (higher-dimensional spheres factor through \mathbb{R}-trees)
Lipschitz homotopy groups of \mathbb{H}

$\mathbb{H} \cong \mathbb{R}^3$, so $\pi_n(\mathbb{H}) = 0$ for all n, but:

$\pi^\text{Lip}_0(\mathbb{H}) = 0$ (\mathbb{H} is geodesic)

$\pi^\text{Lip}_1(\mathbb{H})$ is uncountably generated (lots of closed curves but no surfaces)

$\pi^\text{Lip}_n(\mathbb{H}) = 0$ for all $n > 1$ (higher-dimensional spheres factor through \mathbb{R}-trees)

Question: What happens in higher-dimensional Heisenberg groups?
Lipschitz homotopy groups of \mathbb{H}

$\mathbb{H} \cong \mathbb{R}^3$, so $\pi_n(\mathbb{H}) = 0$ for all n, but:

- $\pi_0^{\text{Lip}}(\mathbb{H}) = 0$ (\mathbb{H} is geodesic)
- $\pi_1^{\text{Lip}}(\mathbb{H})$ is uncountably generated (lots of closed curves but no surfaces)
The Lipschitz homotopy groups of \mathbb{H}

$\mathbb{H} \cong \mathbb{R}^3$, so $\pi_n(\mathbb{H}) = 0$ for all n, but:

- $\pi_{0}^{\text{Lip}}(\mathbb{H}) = 0$ (\mathbb{H} is geodesic)
- $\pi_{1}^{\text{Lip}}(\mathbb{H})$ is uncountably generated (lots of closed curves but no surfaces)
- $\pi_{n}^{\text{Lip}}(\mathbb{H}) = 0$ for all $n > 1$ (higher-dimensional spheres factor through \mathbb{R}-trees)
Lipschitz homotopy groups of \mathbb{H}

$\mathbb{H} \cong \mathbb{R}^3$, so $\pi_n(\mathbb{H}) = 0$ for all n, but:

- $\pi_{0}^{\text{Lip}}(\mathbb{H}) = 0$ (\mathbb{H} is geodesic)
- $\pi_{1}^{\text{Lip}}(\mathbb{H})$ is uncountably generated (lots of closed curves but no surfaces)
- $\pi_{n}^{\text{Lip}}(\mathbb{H}) = 0$ for all $n > 1$ (higher-dimensional spheres factor through \mathbb{R}-trees)

Question: What happens in higher-dimensional Heisenberg groups?
Higher Heisenberg groups

\[H_n = \left\{ \begin{pmatrix} 1 & x_1 & \ldots & x_n & z \\ 0 & 1 & \ldots & 0 & y_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & y_n \\ 0 & 0 & \ldots & 0 & 1 \end{pmatrix} \middle| x_i, y_i, z \in \mathbb{R} \right\} \]
Plenty of horizontal curves

- Any curve $\gamma : [0, 1] \to \mathbb{R}^{2n}$ lifts to a curve in \mathbb{H}_n of the same length.
Any curve $\gamma : [0, 1] \to \mathbb{R}^{2n}$ lifts to a curve in \mathbb{H}_n of the same length.

The change in height along the lift of a closed curve γ is

$$\int_{\gamma} x_1 \, dy_1 + \cdots + x_n \, dy_n = \int_{\beta} dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n,$$

where β is a disc with $\partial \beta = \gamma$. That is, the change in height is the symplectic area of γ.
Plenty of low-dimensional horizontal surfaces

- Example: if $f : \mathbb{R}^n \to \mathbb{R}$ is smooth, let $g : \mathbb{R}^n \to \mathbb{H}_n$

 $$g(\vec{x}) = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}, x_1, \ldots, x_n, f(\vec{x})).$$

 This is horizontal.
Plenty of low-dimensional horizontal surfaces

- Example: if \(f : \mathbb{R}^n \to \mathbb{R} \) is smooth, let \(g : \mathbb{R}^n \to \mathbb{H}_n \)

\[
g(\vec{x}) = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}, x_1, \ldots, x_n, f(\vec{x}) \right).
\]

This is horizontal.

- Any isotropic surface \(i : \mathbb{R}^k \to \mathbb{R}^{2n} \) lifts to a horizontal surface in \(\mathbb{H}_n \).
Plenty of low-dimensional horizontal surfaces

- Example: If $f : \mathbb{R}^n \to \mathbb{R}$ is smooth, let $g : \mathbb{R}^n \to H_n$

$$g(\vec{x}) = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}, x_1, \ldots, x_n, f(\vec{x}) \right).$$

This is horizontal.

- Any isotropic surface $i : \mathbb{R}^k \to \mathbb{R}^{2n}$ lifts to a horizontal surface in H_n.

- In fact,

Theorem (Gromov)

*If $k < n$, then any Lipschitz sphere $S^k \to H_n$ can be extended to a Lipschitz map $B^{k+1} \to H_n$.***
Plenty of low-dimensional horizontal surfaces

- Example: if $f : \mathbb{R}^n \to \mathbb{R}$ is smooth, let $g : \mathbb{R}^n \to \mathbb{H}_n$

 $$g(\vec{x}) = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}, x_1, \ldots, x_n, f(\vec{x}) \right).$$

 This is horizontal.

- Any isotropic surface $i : \mathbb{R}^k \to \mathbb{R}^{2n}$ lifts to a horizontal surface in \mathbb{H}_n.

- In fact,

Theorem (Gromov)

If $k < n$, then any Lipschitz sphere $S^k \to \mathbb{H}_n$ can be extended to a Lipschitz map $B^{k+1} \to \mathbb{H}_n$.

(i.e., $\pi^\text{Lip}_k(\mathbb{H}_n) = 0$ if $k < n$.)
Not many high-dimensional horizontal surfaces

But there aren’t many \((n + 1)\)-dimensional surfaces:

Theorem (Pansu)

Any Lipschitz map \(B^k \to \mathbb{H}_n\) is differentiable and horizontal a.e., and its derivative has rank \(\leq n\) a.e.
Not many high-dimensional horizontal surfaces

But there aren’t many \((n + 1)\)-dimensional surfaces:

Theorem (Pansu)

Any Lipschitz map \(B^k \to \mathbb{H}_n \) is differentiable and horizontal a.e., and its derivative has rank \(\leq n \) a.e.

So there are lots of maps \(S^n \to \mathbb{H}_n \) that can’t be extended.
Not many high-dimensional horizontal surfaces

But there aren’t many \((n + 1)\)-dimensional surfaces:

Theorem (Pansu)

Any Lipschitz map \(B^k \to \mathbb{H}_n\) is differentiable and horizontal a.e., and its derivative has rank \(\leq n\) a.e.

So there are lots of maps \(S^n \to \mathbb{H}_n\) that can’t be extended.
(i.e. \(\pi_n^{\text{Lip}}(\mathbb{H}_n)\) is uncountably generated)
What happens in higher dimensions?

Suppose \(\alpha : S^n \to \mathbb{H}_n \) is a smooth embedding and \(\beta : S^k \to S^n \) is a nontrivial element of \(\pi_k(S^n) \).

Can \(\alpha \circ \beta \) be extended to a map \(B^{k+1} \to \mathbb{H}_n \)?

Theorem (DeJarnette-Hajlasz-Lukyanenko-Tyson)

There is no smooth horizontal extension.

Theorem (Wenger-Y.)

Sometimes!
What happens in higher dimensions?

Suppose $\alpha : S^n \to \mathbb{H}_n$ is a smooth embedding and $\beta : S^k \to S^n$ is a nontrivial element of $\pi_k(S^n)$.
Can $\alpha \circ \beta$ be extended to a map $B^{k+1} \to \mathbb{H}_n$?

Theorem (DeJarnette-Hajłasz-Lukyanenko-Tyson)

There is no smooth horizontal extension.
What happens in higher dimensions?

Suppose $\alpha : S^n \to \mathbb{H}_n$ is a smooth embedding and $\beta : S^k \to S^n$ is a nontrivial element of $\pi_k(S^n)$.
Can $\alpha \circ \beta$ be extended to a map $B^{k+1} \to \mathbb{H}_n$?

Theorem (DeJarnette-Hajłasz-Lukyanenko-Tyson)

There is no smooth horizontal extension.

Can $\alpha \circ \beta$ be extended to a Lipschitz map $B^{k+1} \to \mathbb{H}_n$?
What happens in higher dimensions?

Suppose $\alpha : S^n \to \mathbb{H}_n$ is a smooth embedding and $\beta : S^k \to S^n$ is a nontrivial element of $\pi_k(S^n)$. Can $\alpha \circ \beta$ be extended to a map $B^{k+1} \to \mathbb{H}_n$?

Theorem (DeJarnette-Hajłasz-Lukyanenko-Tyson)

There is no smooth horizontal extension.

Can $\alpha \circ \beta$ be extended to a Lipschitz map $B^{k+1} \to \mathbb{H}_n$?

Theorem (Wenger-Y.)

Sometimes!
Main Theorem

Theorem (Wenger-Y.)

If $\alpha : S^n \to \mathbb{H}_n$ is a smooth embedding, $\beta : S^k \to S^n$ is an element of $\pi_k(S^n)$ which is a suspension (in particular, if $k < 2n - 1$), and $k \geq n + 2$, then $\alpha \circ \beta$ can be extended to a Lipschitz map $B^{k+1} \to \mathbb{H}_n$.
Main Theorem

Theorem (Wenger-Y.)

If $\alpha : S^n \to \mathbb{H}_n$ is a smooth embedding, $\beta : S^k \to S^n$ is an element of $\pi_k(S^n)$ which is a suspension (in particular, if $k < 2n - 1$), and $k \geq n + 2$, then $\alpha \circ \beta$ can be extended to a Lipschitz map $B^{k+1} \to \mathbb{H}_n$.

Theorem (Wenger-Y.)

If $\beta : S^k \to S^n$ is an element of $\pi_k(S^n)$ which is a suspension and $k \geq n + 1$, then β can be extended to a Lipschitz map $B^{k+1} \to B^{n+1}$ whose derivative has rank $\leq n$ almost everywhere.
Open questions

- What happens for other values of β?
- What are the Lipschitz homotopy groups of \mathbb{H}_n?