Hausdorff dimensin distortion by Sobolev maps in foliated spaces

ZB, R. Monti, J. T. Tyson, K. Wildrick

1. Mai 2013

Overview

Introduction and Notations

Overview

Overview

□Overview

Introduction and Notations

Euclidean results: -, R. Monti, J. T. Tyson, Frequency of Sobolev and quasiconformal dimension distortion, J. Math. Pure. Appl. 2013

Overview

□ Overview

Introduction and Notations

- Euclidean results: -, R. Monti, J. T. Tyson, Frequency of Sobolev and quasiconformal dimension distortion, J. Math. Pure. Appl. 2013
- Metric spaces: -, J. T. Tyson, K. Wildrick, Dimension distortion by Sobolev mappings in foliated metric spaces, Preprint, 2013

Overview

□ Overview

Introduction and Notations

- Euclidean results: -, R. Monti, J. T. Tyson, Frequency of Sobolev and quasiconformal dimension distortion, J. Math. Pure. Appl. 2013
- Metric spaces: -, J. T. Tyson, K. Wildrick, Dimension distortion by Sobolev mappings in foliated metric spaces, Preprint, 2013
- Heisenberg groups: -, J. T. Tyson, K. Wildrick, Frequency of Sobolev dimension distortion of horizontal subgroups of Heisenberg groups, Preprint 2013

Introduction and Notations

- ☐ Morrey-Sobolev estimate
- ∏ Kaufaman's theorem
- ∏Main Result
- Sharpness
- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem

Euclidean results

Morrey-Sobolev estimate

Overview

Introduction and Notations

Morrey-Sobolev estimate

- ∏ Kaufaman's theorem
- □ Main Result
- Sharpness
- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Proposition 0.1. Let $f \in W^{1,p}(\Omega,Y)$, p > n, and g_f denote the minimal upper gradient for f. Then for all cubes Q compactly contained in Ω , we have

$$\operatorname{diam} f(Q) \le C(n, p) (\operatorname{diam} Q)^{1 - n/p} \left(\int_{Q} g_f^p \right)^{1/p}. \tag{0.1}$$

Morrey-Sobolev estimate

Overview

Introduction and Notations

Morrey-Sobolev estimate

- ∏ Kaufaman's theorem
- □ Main Result
- Sharpness
- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- ☐ Sharpness in
 Ⅲ

Proposition 0.2. Let $f \in W^{1,p}(\Omega,Y)$, p > n, and g_f denote the minimal upper gradient for f. Then for all cubes Q compactly contained in Ω , we have

$$\operatorname{diam} f(Q) \le C(n, p) (\operatorname{diam} Q)^{1 - n/p} \left(\int_{Q} g_f^p \right)^{1/p}. \tag{0.1}$$

By the Morrey–Sobolev embedding theorem, each supercritical mapping $f \in W^{1,p}(\Omega,Y)$, p>n, has a representative which is locally (1-n/p)-Hölder continuous. In particular, if $E \subset \Omega$, $\dim E = t$ then

$$\dim f(E) \le \frac{tp}{p-n}.$$

Kaufman's theorem

Overview

Introduction and Notations

Morrey-Sobolev estimate

☐ Kaufaman's theorem

- Sharpness
- ☐ Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Theorem 0.3 (R. Kaufman 2000). $E \subset \Omega$; $\mathcal{H}^t(E) < \infty$, 0 < t < n. $f \in W^{1,p}(\Omega,Y)$ for some p > n. Then f(E) has zero $\mathcal{H}^{pt/(p-n+t)}$ measure. This statement is sharp.

Kaufman's theorem

Overview

Introduction and Notations

Morrey-Sobolev estimate

∏ Kaufaman's theorem

- Sharpness
- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- [] Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- ☐ Sharpness in ℍ

Theorem 0.4 (R. Kaufman 2000). $E \subset \Omega$; $\mathcal{H}^t(E) < \infty$, 0 < t < n. $f \in W^{1,p}(\Omega,Y)$ for some p > n. Then f(E) has zero $\mathcal{H}^{pt/(p-n+t)}$ measure. This statement is sharp.

In particular if $\dim E = t$ then

$$\dim f(E) \le \frac{tp}{p-n+t}.$$

Kaufman's theorem

Overview

Introduction and Notations

Morrey-Sobolev estimate

[] Kaufaman's theorem

- Sharpness
- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Theorem 0.5 (R. Kaufman 2000). $E \subset \Omega$; $\mathcal{H}^t(E) < \infty$, 0 < t < n. $f \in W^{1,p}(\Omega,Y)$ for some p > n. Then f(E) has zero $\mathcal{H}^{pt/(p-n+t)}$ measure. This statement is sharp.

In particular if $\dim E = t$ then

$$\dim f(E) \le \frac{tp}{p-n+t}.$$

If $V \in G(n, m)$. Then

$$\dim f(V_a \cap \Omega) \le \frac{pm}{p - n + m}.$$
 (0.2)

Overview

Introduction and Notations

☐ Morrey-Sobolev estimate

∏ Kaufaman's theorem

∏Main Result

Sharpness

☐ Sobolev mappings between metric spaces

Prevalence of bad functions

∏Idea of Proof

Regular foliations

☐ Frequency of distortion for metric foliations

Heisenberg foliation

☐ Two types of foliations

☐ Heisenberg Theorem

☐ Sharpness in ℍ

Let $\mathbb{R}^n = V^\perp \bigoplus V$ and $V_a = a + V$. Given a Sobolev map $f: \mathbb{R}^n \to Y$, how frequently can the intermediate values $m \le \alpha \le \frac{pm}{p-n+m}$ be exceeded by $\dim f(V_a)$?

Overview

Introduction and Notations

Morrey-Sobolev estimate

∏ Kaufaman's theorem

∏Main Result

□ Sharpness

Sobolev mappings between metric spaces

Prevalence of bad functions

[] Idea of Proof

Regular foliations

☐ Frequency of distortion for metric foliations

Heisenberg foliation

☐ Two types of foliations

[] Heisenberg Theorem

☐ Sharpness in
Ⅲ

Let $\mathbb{R}^n = V^\perp \bigoplus V$ and $V_a = a + V$. Given a Sobolev map $f: \mathbb{R}^n \to Y$, how frequently can the intermediate values $m \le \alpha \le \frac{pm}{p-n+m}$ be exceeded by $\dim f(V_a)$?

Theorem 0.7 (-.R. Monti, J. Tyson).

Let
$$\beta = \beta(p, \alpha) := (n - m) - \left(1 - \frac{m}{\alpha}\right)p$$
.

 $f(V_a \cap \Omega)$ has zero \mathcal{H}^{α} measure for \mathcal{H}^{β} -almost every $a \in V^{\perp}$.

Overview

Introduction and Notations

Morrey-Sobolev estimate

[] Kaufaman's theorem

Sharpness

Sobolev mappings between metric spaces

Prevalence of bad functions

∏Idea of Proof

Regular foliations

☐ Frequency of distortion for metric foliations

[] Heisenberg foliation

☐ Two types of foliations

[] Heisenberg Theorem

 $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Let $\mathbb{R}^n = V^\perp \bigoplus V$ and $V_a = a + V$. Given a Sobolev map $f: \mathbb{R}^n \to Y$, how frequently can the intermediate values $m \le \alpha \le \frac{pm}{p-n+m}$ be exceeded by $\dim f(V_a)$?

Theorem 0.8 (-.R. Monti, J. Tyson).

Let
$$\beta = \beta(p, \alpha) := (n - m) - \left(1 - \frac{m}{\alpha}\right)p$$
.

 $f(V_a \cap \Omega)$ has zero \mathcal{H}^{α} measure for \mathcal{H}^{β} -almost every $a \in V^{\perp}$.

In particular:

$$\dim\{a \in V^{\perp} : \dim f(V_a) \ge \alpha\} \le \beta$$

Overview

Introduction and Notations

Morrey-Sobolev estimate

[] Kaufaman's theorem

Sharpness

Sobolev mappings between metric spaces

Prevalence of bad functions

∏Idea of Proof

Regular foliations

☐ Frequency of distortion for metric foliations

[] Heisenberg foliation

☐ Two types of foliations

[] Heisenberg Theorem

☐ Sharpness in
Ⅲ

Let $\mathbb{R}^n = V^\perp \bigoplus V$ and $V_a = a + V$. Given a Sobolev map $f: \mathbb{R}^n \to Y$, how frequently can the intermediate values $m \le \alpha \le \frac{pm}{p-n+m}$ be exceeded by $\dim f(V_a)$?

Theorem 0.9 (-.R. Monti, J. Tyson).

Let
$$\beta = \beta(p, \alpha) := (n - m) - \left(1 - \frac{m}{\alpha}\right)p$$
.

 $f(V_a \cap \Omega)$ has zero \mathcal{H}^{α} measure for \mathcal{H}^{β} -almost every $a \in V^{\perp}$.

In particular:

$$\dim\{a \in V^{\perp} : \dim f(V_a) \ge \alpha\} \le \beta$$

Note: $\alpha \to m \Rightarrow \beta \to n-m \text{ and } \alpha \to \frac{pm}{p-n+m} \Rightarrow \beta \to 0$

Overview

Introduction and Notations

- Morrey-Sobolev estimate
- [] Kaufaman's theorem

Sharpness

- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ☐ Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Theorem 0.10 (-.R. Monti, J. Tyson). Let α satisfy $m < \alpha < \frac{pm}{p-n+m}$ and $\beta = \beta(p,\alpha)$ as above. There exists a $E \subset \mathbb{R}^{n-m}$ s.th. $\mathcal{H}^{\beta}(E) > 0$ and for any integer $N > \alpha$, there exists a map $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^N)$ with the property that $\dim f(\{a\} \times \mathbb{R}^m) \geq \alpha$, for \mathcal{H}^{β} -almost every $a \in E$.

Overview

Introduction and Notations

- Morrey-Sobolev estimate
- [] Kaufaman's theorem

Sharpness

- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- Heisenberg Theorem
- $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Theorem 0.12 (-.R. Monti, J. Tyson). Let α satisfy $m < \alpha < \frac{pm}{p-n+m}$ and $\beta = \beta(p,\alpha)$ as above. There exists a $E \subset \mathbb{R}^{n-m}$ s.th. $\mathcal{H}^{\beta}(E) > 0$ and for any integer $N > \alpha$, there exists a map $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^N)$ with the property that $\dim f(\{a\} \times \mathbb{R}^m) \geq \alpha$, for \mathcal{H}^{β} -almost every $a \in E$.

Theorem 0.13 (S. Hencl, P. Honzik 2013). Let $m < \alpha < p \le n$ and $\beta(p,\alpha) := (n-m) - \left(1 - \frac{m}{\alpha}\right)p$. and $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^k)$ be p- quasicontinuous. Then $\dim\{a \in V^\perp : \dim f(V_a) \ge \alpha\} \le \beta$.

Overview

Introduction and Notations

- Morrey-Sobolev estimate
- [] Kaufaman's theorem

Sharpness

- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ∏Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- $\hfill \square$ Sharpness in $\hfill \mathbb{H}$

Theorem 0.14 (-.R. Monti, J. Tyson). Let α satisfy $m < \alpha < \frac{pm}{p-n+m}$ and $\beta = \beta(p,\alpha)$ as above. There exists a $E \subset \mathbb{R}^{n-m}$ s.th. $\mathcal{H}^{\beta}(E) > 0$ and for any integer $N > \alpha$, there exists a map $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^N)$ with the property that $\dim f(\{a\} \times \mathbb{R}^m) \geq \alpha$, for \mathcal{H}^{β} -almost every $a \in E$.

Theorem 0.15 (S. Hencl, P. Honzik 2013). Let $m < \alpha < p \le n$ and $\beta(p,\alpha) := (n-m) - \left(1 - \frac{m}{\alpha}\right)p$. and $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^k)$ be p- quasicontinuous. Then $\dim\{a \in V^\perp : \dim f(V_a) \ge \alpha\} \le \beta$.

Note: $\alpha \to p \implies \beta \to n-p$ The above theorem is also sharp.

Overview

Introduction and Notations

- Morrey-Sobolev estimate
- [] Kaufaman's theorem

Sharpness

- Sobolev mappings between metric spaces
- Prevalence of bad functions
- ☐ Idea of Proof
- Regular foliations
- ☐ Frequency of distortion for metric foliations
- Heisenberg foliation
- ☐ Two types of foliations
- [] Heisenberg Theorem
- \hfill Sharpness in \hfill

Theorem 0.16 (-.R. Monti, J. Tyson). Let α satisfy $m < \alpha < \frac{pm}{p-n+m}$ and $\beta = \beta(p,\alpha)$ as above. There exists a $E \subset \mathbb{R}^{n-m}$ s.th. $\mathcal{H}^{\beta}(E) > 0$ and for any integer $N > \alpha$, there exists a map $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^N)$ with the property that $\dim f(\{a\} \times \mathbb{R}^m) \geq \alpha$, for \mathcal{H}^{β} -almost every $a \in E$.

Theorem 0.17 (S. Hencl, P. Honzik 2013). Let $m < \alpha < p \le n$ and $\beta(p,\alpha) := (n-m) - \left(1 - \frac{m}{\alpha}\right)p$. and $f \in W^{1,p}(\mathbb{R}^n,\mathbb{R}^k)$ be p- quasicontinuous. Then $\dim\{a \in V^\perp : \dim f(V_a) \ge \alpha\} \le \beta$.

Note: $\alpha \to p \Rightarrow \beta \to n-p$ The above theorem is also sharp.

Example: [P. Hajlasz, J. Tyson] Then there exists a continuous map $f \in W^{1,m}(\mathbb{R}^n,\ell^2)$ s.th. $\dim f(\{a\} \times [0,1]^m) = \infty$ for all $a \in [0,1]^{n-m}$.

Introduction and Notations

Metric space results

Metric case

Overview

Introduction and Notations

Theorem 0.18 (-J. T., K. W.). X: proper, loc. Q-homogeneous, local Q-Poincaré inequality. If $f: X \to Y$ is a continuous mapping that has an upper gradient in $L^p_{loc}(X)$, p > Q, then

$$\dim_Y f(E) \le \frac{p \dim_X E}{p - Q + \dim_X E} \tag{0.3}$$

for any subset $E \subseteq X$.

Metric case

Overview

Introduction and Notations

Theorem 0.20 (-J. T., K. W.). X: proper, loc. Q-homogeneous, local Q-Poincaré inequality. If $f: X \to Y$ is a continuous mapping that has an upper gradient in $L^p_{loc}(X)$, p > Q, then

$$\dim_Y f(E) \le \frac{p \dim_X E}{p - Q + \dim_X E} \tag{0.3}$$

for any subset $E \subseteq X$.

Theorem 0.21 (-J. T., K. W.). Let (X,d,μ) , Ahlfors Q-regular. For $0 \le s \le Q$ and p > Q, set $\alpha = \frac{ps}{p-Q+s}$. Let E be a compact subset of X such that $\mathcal{H}^s(E) > 0$. Then for all $N > \alpha$, there exists a continuous $f: X \to \mathbb{R}^N$ such that f has an upper gradient in $L^p(X)$ and $\dim f(E) \ge \alpha$.

Prevalence

Overview

Introduction and Notations

Theorem 0.22 (-J. T., K. W.). The set of functions

$$S_{\alpha} := \{ f \in \mathbb{N}^{1,p}(X; \mathbb{R}^N) : \dim f(E) \ge \alpha \}$$

is a prevalent set in the Newtonian–Sobolev space $N^{1,p}(X;\mathbb{R}^N)$.

Prevalence

Overview

Introduction and Notations

Theorem 0.23 (-J. T., K. W.). The set of functions

$$S_{\alpha} := \{ f \in \mathbf{N}^{1,p}(X; \mathbb{R}^N) : \dim f(E) \ge \alpha \}$$

is a prevalent set in the Newtonian–Sobolev space $N^{1,p}(X;\mathbb{R}^N)$.

Prevalence is an important notion in dynamics. Was introduced and developed by J. Yorke, V. Kaloshin, B. Hunt, W. Ott, T. Sauer

Prevalence

Overview

Introduction and Notations

Theorem 0.24 (-J. T., K. W.). The set of functions

$$S_{\alpha} := \{ f \in \mathbb{N}^{1,p}(X; \mathbb{R}^N) : \dim f(E) \ge \alpha \}$$

is a prevalent set in the Newtonian–Sobolev space $N^{1,p}(X;\mathbb{R}^N)$.

Prevalence is an important notion in dynamics. Was introduced and developed by J. Yorke, V. Kaloshin, B. Hunt, W. Ott, T. Sauer

There exists a compactly supported Borel probability measure λ on $\mathrm{N}^{1,p}(X;\mathbb{R}^N)$ such that

$$\lambda(N^{1,p}(X;\mathbb{R}^N)\setminus (S_\alpha+g))=0, \ \forall g\in N^{1,p}(X;\mathbb{R}^N).$$

Idea of Proof

Overview

Introduction and Notations

Idea: let μ be a Frostman measure on E and find first $h \in N^{1,p}(X;\mathbb{R}^N)$ with $I_{\alpha}(h_{\sharp}\mu) < \infty$ i.e.

$$\int_{E} \int_{E} \frac{1}{|h(x) - h(y)|^{\alpha}} d\mu(x) d\mu(y) < \infty.$$

Idea of Proof

Overview

Introduction and Notations

Idea: let μ be a Frostman measure on E and find first $h \in N^{1,p}(X;\mathbb{R}^N)$ with $I_{\alpha}(h_{\sharp}\mu) < \infty$ i.e.

$$\int_{E} \int_{E} \frac{1}{|h(x) - h(y)|^{\alpha}} d\mu(x) d\mu(y) < \infty.$$

Let $\mathcal{M}=\{M\in M(N\times N,\mathbb{R}),||M||\leq 1\}$ and ν to be the normalized N^2 -dimensional Lebesgue measure on \mathcal{M} .

Idea of Proof

Overview

Introduction and Notations

Idea: let μ be a Frostman measure on E and find first $h \in N^{1,p}(X;\mathbb{R}^N)$ with $I_{\alpha}(h_{\sharp}\mu) < \infty$ i.e.

$$\int_{E} \int_{E} \frac{1}{|h(x) - h(y)|^{\alpha}} d\mu(x) d\mu(y) < \infty.$$

Let $\mathcal{M}=\{M\in M(N\times N,\mathbb{R}),||M||\leq 1\}$ and ν to be the normalized N^2 -dimensional Lebesgue measure on \mathcal{M} . Consider

$$\Phi: \mathcal{M} \to N^{1,p}(X; \mathbb{R}^N), \Phi(M) := M \circ h,$$

and define: $\lambda := \Phi_{\sharp} \nu$. Let $g \in N^{1,p}(X; \mathbb{R}^N)$ and $f_M = M \circ h + g$.

Introduction and Notations

Idea: let μ be a Frostman measure on E and find first $h \in N^{1,p}(X;\mathbb{R}^N)$ with $I_{\alpha}(h_{\sharp}\mu) < \infty$ i.e.

$$\int_{E} \int_{E} \frac{1}{|h(x) - h(y)|^{\alpha}} d\mu(x) d\mu(y) < \infty.$$

Let $\mathcal{M}=\{M\in M(N\times N,\mathbb{R}),||M||\leq 1\}$ and ν to be the normalized N^2 -dimensional Lebesgue measure on \mathcal{M} . Consider

$$\Phi: \mathcal{M} \to N^{1,p}(X; \mathbb{R}^N), \Phi(M) := M \circ h,$$

and define: $\lambda := \Phi_{\sharp} \nu$. Let $g \in N^{1,p}(X; \mathbb{R}^N)$ and $f_M = M \circ h + g$. Have to prove:

$$\int_{\mathcal{M}} \int_{E} \int_{E} \frac{1}{|f_{M}(x) - f_{M}(y)|^{\alpha}} d\mu(x) d\mu(y) d\nu(M) < \infty.$$

Regular foliations

Overview

Introduction and Notations

Definition[G. David, S. Semmes] A surjection $\pi \colon X \to W$ is called s-regular if for any compact $K \subseteq X$

- $\ \, \square \ \, \pi^{-1}(B)\cap K \ \, \text{can be covered by at most } Cr^{-s} \ \, \text{balls in } X \ \, \text{of radius } Cr.$

Regular foliations

Overview

Introduction and Notations

Definition[G. David, S. Semmes] A surjection $\pi \colon X \to W$ is called s-regular if for any compact $K \subseteq X$

- $\ \square \ \pi^{-1}(B) \cap K$ can be covered by at most Cr^{-s} balls in X of radius Cr.

Note that $\mathcal{H}_X^s(\pi^{-1}(a)\cap K)\leq C$, in particular, for the leaves $\pi^{-1}(a)$ it follows

$$\dim \pi^{-1}(a) \le s,$$

and this inequality can be sometimes strict. The triple (X, W, π) will be called an s-foliation of X.

Overview

Introduction and Notations

Theorem 0.25. Let (X, d_X, μ) be a proper, loc. Q-homogeneous, with local Q-Poincaré inequality, and is equipped with an s-foliation (X, W, π) . If $f: X \to Y$ is a continuous mapping with upper gradient in $L^p_{loc}(X)$, p > Q, then

$$\dim\{a \in W : \dim(f(\pi^{-1}(a))) \ge \alpha\} \le (Q - s) - (1 - \frac{s}{\alpha})$$

for
$$s < \alpha \le \frac{ps}{p-Q+s}$$
.

Overview

Introduction and Notations

Theorem 0.26. Let (X, d_X, μ) be a proper, loc. Q-homogeneous, with local Q-Poincaré inequality, and is equipped with an s-foliation (X, W, π) . If $f: X \to Y$ is a continuous mapping with upper gradient in $L^p_{loc}(X)$, p > Q, then

$$\dim\{a \in W : \dim(f(\pi^{-1}(a))) \ge \alpha\} \le (Q - s) - (1 - \frac{s}{\alpha})$$

for
$$s < \alpha \le \frac{ps}{p-Q+s}$$
.

If $s = \dim \pi^{-1}(a)$ then this is a good theorem to apply. Examples:

Overview

Introduction and Notations

Theorem 0.27. Let (X, d_X, μ) be a proper, loc. Q-homogeneous, with local Q-Poincaré inequality, and is equipped with an s-foliation (X, W, π) . If $f: X \to Y$ is a continuous mapping with upper gradient in $L^p_{loc}(X)$, p > Q, then

$$\dim\{a \in W : \dim(f(\pi^{-1}(a))) \ge \alpha\} \le (Q - s) - (1 - \frac{s}{\alpha})$$

for
$$s < \alpha \le \frac{ps}{p-Q+s}$$
.

If $s = \dim \pi^{-1}(a)$ then this is a good theorem to apply. Examples:

1. $X = \mathbb{R}^n, W = \mathbb{R}^{m-n}$ with the orthogonal projection $\pi : \mathbb{R}^n \to W$ defines a regular s = m-foliation.

Overview

Introduction and Notations

Theorem 0.28. Let (X, d_X, μ) be a proper, loc. Q-homogeneous, with local Q-Poincaré inequality, and is equipped with an s-foliation (X, W, π) . If $f: X \to Y$ is a continuous mapping with upper gradient in $L^p_{loc}(X)$, p > Q, then

$$\dim\{a \in W : \dim(f(\pi^{-1}(a))) \ge \alpha\} \le (Q - s) - (1 - \frac{s}{\alpha})$$

for
$$s < \alpha \le \frac{ps}{p-Q+s}$$
.

If $s = \dim \pi^{-1}(a)$ then this is a good theorem to apply. Examples:

- 1. $X = \mathbb{R}^n, W = \mathbb{R}^{m-n}$ with the orthogonal projection $\pi : \mathbb{R}^n \to W$ defines a regular s = m-foliation.
- 2. $X = \mathbb{H}^n = \mathbb{V}^{\perp} \ltimes \mathbb{V}$, \mathbb{V} -horizontal subgroup of \mathbb{H}^n .

Introduction and Notations

Heisenberg group results

Heisenberg foliations

Overview

$$\mathbb{H}^n \simeq \mathbb{R}^{2n+1} \ni p = (x_1, y_1, \dots, x_n, y_n, t) = (z, t),$$

$$p * p' = (z + z', t + t' + 2\omega(z, z'))$$

$$\omega(z, z') = \sum_{i=1}^n (x_i y_i' - x_i' y_i),$$

$$d_{\mathbb{H}^n}(p, p') = ||p^{-1} * p'||_{\mathbb{H}^n}, \ ||p||_{\mathbb{H}^n} = (||z||^4 + |t|^2)^{1/4}.$$

$$\delta_r p = (rz, r^2 t), \ Q = 2n + 2. \ \text{Ahlfors, Poincare OK}$$

Heisenberg foliations

Overview

Introduction and Notations

$$\mathbb{H}^n \simeq \mathbb{R}^{2n+1} \ni p = (x_1, y_1, \dots, x_n, y_n, t) = (z, t),$$

$$p * p' = (z + z', t + t' + 2\omega(z, z'))$$

$$\omega(z, z') = \sum_{i=1}^n (x_i y_i' - x_i' y_i),$$

$$d_{\mathbb{H}^n}(p, p') = ||p^{-1} * p'||_{\mathbb{H}^n}, \ ||p||_{\mathbb{H}^n} = (||z||^4 + |t|^2)^{1/4}.$$

$$\delta_r p = (rz, r^2 t), \ Q = 2n + 2. \ \text{Ahlfors, Poincare OK}$$

Isotropic subspace of $\mathbb{V} \leq \mathbb{R}^{2n}$: $\omega(u,v) = 0 \ \forall \ u,v \in \mathbb{V} \Rightarrow$ horizontal homogenous subgroups of $\dim \mathbb{V} = m \leq n$. Vertical complementary subspace: $\mathbb{V}^{\perp} = V^{\perp} \times \mathbb{R}$ is a normal subgroup generating the semidirect product.

Heisenberg foliations

Overview

Introduction and Notations

$$\mathbb{H}^n \simeq \mathbb{R}^{2n+1} \ni p = (x_1, y_1, \dots, x_n, y_n, t) = (z, t),$$

$$p * p' = (z + z', t + t' + 2\omega(z, z'))$$

$$\omega(z,z') = \sum_{i=1}^{n} (x_i y_i' - x_i' y_i),$$

$$d_{\mathbb{H}^n}(p,p') = ||p^{-1} * p'||_{\mathbb{H}^n}, ||p||_{\mathbb{H}^n} = (||z||^4 + |t|^2)^{1/4}.$$

$$\delta_r p = (rz, r^2 t), \ Q = 2n + 2$$
. Ahlfors, Poincare OK

Isotropic subspace of $\mathbb{V} \leq \mathbb{R}^{2n}$: $\omega(u,v) = 0 \ \forall \ u,v \in \mathbb{V} \Rightarrow \text{horizontal}$ homogenous subgroups of $\dim \mathbb{V} = m \leq n$.

Vertical complementary subspace: $\mathbb{V}^{\perp} = V^{\perp} \times \mathbb{R}$ is a normal subgroup generating the semidirect product.

 $\mathbb{H}^n=\mathbb{V}^\perp\ltimes\mathbb{V},\,p=p_{\mathbb{V}^\perp}*p_{\mathbb{V}}$ defines two types of folitations:

$$\pi_{\mathbb{V}} \colon \mathbb{H}^n \to \mathbb{V} \ , \pi_{\mathbb{V}}^{-1}(a) = \mathbb{V}^{\perp} * a \text{ and } \pi_{\mathbb{V}^{\perp}} \colon \mathbb{H}^n \to \mathbb{V}^{\perp}, \ \pi_{\mathbb{V}^{\perp}}^{-1}(a) = a * \mathbb{V}$$

Overview

Overview

Introduction and Notations

Good news:

$$(\mathbb{H}^n, \mathbb{V}, \pi_{\mathbb{V}})$$

is a regular (Q - m)- foliation. Moreover:

$$\dim(\pi_{\mathbb{V}}^{-1}(a)) = \dim(\mathbb{V}^{\perp} * a) = Q - m$$

Overview

Introduction and Notations

Good news:

$$(\mathbb{H}^n, \mathbb{V}, \pi_{\mathbb{V}})$$

is a regular (Q - m)- foliation. Moreover:

$$\dim(\pi_{\mathbb{V}}^{-1}(a)) = \dim(\mathbb{V}^{\perp} * a) = Q - m$$

Bad news:

$$(\mathbb{H}^n, \mathbb{V}^\perp, \pi_{\mathbb{V}^\perp})$$

is NOT a regular m- foliation.

Overview

Introduction and Notations

Good news:

$$(\mathbb{H}^n, \mathbb{V}, \pi_{\mathbb{V}})$$

is a regular (Q - m)- foliation. Moreover:

$$\dim(\pi_{\mathbb{V}}^{-1}(a)) = \dim(\mathbb{V}^{\perp} * a) = Q - m$$

Bad news:

$$(\mathbb{H}^n, \mathbb{V}^\perp, \pi_{\mathbb{V}^\perp})$$

is NOT a regular m- foliation.

Improvement: $(\mathbb{H}^n, (\mathbb{V}^\perp, d_E), \pi_{\mathbb{V}^\perp})$ is a regular m+1- foliation, but $s=m+1>m=\dim(\pi_{\mathbb{V}^\perp}^{-1}(a))$, which for

$$m \le \alpha \le \frac{Qm}{p-Q+m}$$
 and $\beta = (Q-s)-p(1-\frac{s}{\alpha})$

does not imply sharp results at endpoints.

Heisenberg Foliation Distortion

Overview

Heisenberg Foliation Distortion

Overview

Introduction and Notations

Redefine β as:

$$\beta(p, m, \alpha) = \begin{cases} (Q - 1 - m) - \frac{p}{2} \left(1 - \frac{m}{\alpha} \right) & \alpha \in \left[m, \frac{pm}{p - 2} \right], \\ (Q - m) - p \left(1 - \frac{m}{\alpha} \right) & \alpha \in \left[\frac{pm}{p - 2}, \frac{pm}{p - (Q - m)} \right]. \end{cases}$$

Heisenberg Foliation Distortion

Overview

Introduction and Notations

Redefine β as:

$$\beta(p, m, \alpha) = \begin{cases} (Q - 1 - m) - \frac{p}{2} \left(1 - \frac{m}{\alpha} \right) & \alpha \in \left[m, \frac{pm}{p - 2} \right], \\ (Q - m) - p \left(1 - \frac{m}{\alpha} \right) & \alpha \in \left[\frac{pm}{p - 2}, \frac{pm}{p - (Q - m)} \right]. \end{cases}$$

Theorem 0.31. Let $f \in W^{1,p}_{loc}(\mathbb{H}^n;Y)$, p > Q. Given a horizontal subgroup \mathbb{V} of \mathbb{H}^n of dimension $1 \leq m \leq n$, and

$$m \le \alpha \le \frac{pm}{p - (Q - m)},$$

it holds that

$$\dim_{\mathbb{R}} \{ a \in \mathbb{V}^{\perp} : \dim f(a * \mathbb{V}) \ge \alpha \} \le \beta(p, m, \alpha).$$

Sharpness in \mathbb{H}

Overview

Sharpness in \mathbb{H}

Overview

Introduction and Notations

Theorem 0.33. Let \mathbb{V}_x denote the horizontal subgroup defined by the x-axis in \mathbb{H} , and let p > 4. For each

$$1 < \alpha < \frac{p}{p-2} < \frac{p}{p-3}$$

there is a compact set $E_{\alpha} \subset \mathbb{V}_{x}^{\perp}$ and a continuous mapping $f \in W^{1,p}(\mathbb{H};\mathbb{R}^{2})$ such that

$$0 < \mathcal{H}_{\mathbb{R}^3}^{2-p\left(1-\frac{1}{\alpha}\right)}(E_\alpha) < \infty$$

and dim $f(a * V) \ge \alpha$ for every $a \in E_{\alpha}$.

Sharpness in \mathbb{H}

Overview

Introduction and Notations

Theorem 0.34. Let \mathbb{V}_x denote the horizontal subgroup defined by the x-axis in \mathbb{H} , and let p > 4. For each

$$1 < \alpha < \frac{p}{p-2} < \frac{p}{p-3}$$

there is a compact set $E_{\alpha} \subset \mathbb{V}_{x}^{\perp}$ and a continuous mapping $f \in W^{1,p}(\mathbb{H};\mathbb{R}^{2})$ such that

$$0 < \mathcal{H}_{\mathbb{R}^3}^{2-p\left(1-\frac{1}{\alpha}\right)}(E_{\alpha}) < \infty$$

and dim $f(a * V) \ge \alpha$ for every $a \in E_{\alpha}$.

Note: $2-p(1-\frac{1}{\alpha})<\beta=2-\frac{p}{2}(1-p(1-\frac{1}{\alpha}),$ however the example is asymptotically sharp

$$2-p(1-rac{1}{lpha})
ightarrow 2, \ ext{if} \ lpha
ightarrow 1.$$