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Closed billiard trajectories
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It is easy to find a periodic trajectory in an acute triangle:

Exercise. Show that the broken line joining the base points of the heights in

an acute triangle is a closed billiard trajectory (called Fagnano trajectory ).

Show that it is an inscribed triangle of the minimal possible perimeter.
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It is difficult to believe, but for an obtuse triangle the problem is open:

Open Problem. Is there at least one periodic trajectory in any obtuse triangle?
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R. Schwartz has verified it by a rigorous heavily computer-assisted proof).
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It is difficult to believe, but for an obtuse triangle the problem is open:

Open Problem. Is there at least one periodic trajectory in any obtuse triangle?

The answer might be affirmative (for triangles with obtuse angle at most 100o

R. Schwartz has verified it by a rigorous heavily computer-assisted proof).

But even if it is affirmative, the natural question “And how many?..” is

completely and desperately open already for acute triangles.

Open Problem. Estimate the number N(Π, L) of periodic trajectories of

length at most L in a polygon Π as L → +∞.



Billiards in rational polygons.
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Life is better for rational polygons with all angles rational multiples of π.

Theorem (H. Masur). For any rational polygon Π there exist constants c, C
such that for L large enough the number N(Π, L) of closed trajectories

satisfies

c · L2 ≤ N(Π, L) ≤ C · L2 .

For several exceptional rational polygons (namely, for regular polygons; for
certain very special triangles; for squares with a vertical barrier; for L-shaped

polygons (possibly with a barrier) with ratios of the horizontal and vertical sides

in the same quadratic field; and for the finite covers of the above ones) an exact

quadratic asymptotics is proved:

N(Π, L) ∼ const ·L2 as L → ∞ .

These polygons correspond to Teichmüller curves or to Teichmüller surfaces.

The proofs of exact asymptotics and the computation of the values of the
constants requires a heavy machinery performed in the papers of Veech,

Eskin-Markloff-Morris, Eskin-Masur-Schmoll, Bouw-Möller, Hooper, Bainbridge.



Billiards in rational polygons.

5 / 27

Life is better for rational polygons with all angles rational multiples of π.

Theorem (H. Masur). For any rational polygon Π there exist constants c, C
such that for L large enough the number N(Π, L) of closed trajectories

satisfies

c · L2 ≤ N(Π, L) ≤ C · L2 .

For several exceptional rational polygons (namely, for regular polygons; for
certain very special triangles; for squares with a vertical barrier; for L-shaped

polygons (possibly with a barrier) with ratios of the horizontal and vertical sides

in the same quadratic field; and for the finite covers of the above ones) an exact

quadratic asymptotics is proved:

N(Π, L) ∼ const ·L2 as L → ∞ .

These polygons correspond to Teichmüller curves or to Teichmüller surfaces.

The proofs of exact asymptotics and the computation of the values of the
constants requires a heavy machinery performed in the papers of Veech,

Eskin-Markloff-Morris, Eskin-Masur-Schmoll, Bouw-Möller, Hooper, Bainbridge.
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Following Moon Duchin

we shall play on

right-angled billiard tables.



Closed trajectories and generalized diagonals
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We count the asymptotic number of trajectories of bounded length joining a

given pair of corners (“generalized diagonals”) as the bound L tends to infinity.

We also want to count the number of periodic trajectories of length at most L,

or rather the number of bands of periodic trajectories. We might also count the

bands with the weight representing the “thickness” of the band.



Number of generalized diagonals
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Pi

Pj

Pi

Pj

Example of a Theorem. For almost any right-angled polygon Π in any family

B(k1, . . . , kn) of right-angled polygons with angles k1
π
2 , . . . kn

π
2 , the number

Ni,j(Π, L) of trajectories of length bounded by L joining any two fixed corners

with true right angles π
2 is asymptotically the same as for a rectangle:

Ni,j(Π, L) ∼
1

2π
·
(bound L for the length)2

area of the table
as L → ∞

and does not depend on the shape of the polygon Π.



Naive intuition does not help...
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P
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0
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However, say, for almost any L-shaped polygon Π the number N0,j(Π, L) of

trajectories joining the corner P0 with the angle 3π
2 to some other corner Pj

has asymptotics

N0,j(Π, L) ∼
2

π
·
(bound L for the length)2

area of the table
as L → ∞ ,

which is 4 times (and not 3) times bigger than the number of trajectories joining

a fixed pair of right corners...



Billiard in a right-angled polygon: general answer
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For each family B(k1, . . . , kn) of right-angled polygons we find all topological

types of “admissible” generalized diagonals (closed trajectories). We show that
a billiard table Π outside of a zero measure set in B(k1, . . . , kn) does not

contain a single “non-admissible” generalized diagonal (closed trajectory).



Billiard in a right-angled polygon: general answer
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For each topological type we explicitly compute the coefficient in the exact

quadratic asymptotics for the corresponding number of generalized diagonals
(number of closed trajectories) of bounded length L, which is the same for

almost all Π in the billiard family. Say, the coefficients in the exact quadratic

asymptotics for the number of generalized diagonals joining a pair of distinct

fixed vertices of one of the angles π
2 , 3

π
2 , 4

π
2 is described by the following

table:

angle
4π

2

3π

2

π

2

4π

2

9

10

45

64

9

32

3π

2

45

64

16

3π2

2

π2

π

2

9

32

2

π2

1

2π2
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Billiards in right-angled polygons versus quadratic diffe rentials on CP
1
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The topological sphere obtained by gluing two copies of the billiard table by the

boundary is naturally endowed with a flat metric. This metric has conical
singularities at the points coming from vertices of the polygon, otherwise it is

nonsingular. In the case of a “rectangular polygon” the flat metric has holonomy

in Z/(2Z). Hence it corresponds to a meromorphic quadratic differential with

at most simple poles on CP1. Moreover, geodesics on this flat sphere project

to billiard trajectories! Thus, to count billiard trajectories we may count
geodesics on flat spheres!

But before counting geodesics on flat spheres we shall count the flat spheres

themselves!
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Integer points in the moduli space of Abelian differentials
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When a flat metric has on a surface S trivial holonomy, it defines a quadratic

differential which is a global square of a holomorphic 1-form. The moduli space
H(m1, . . . ,mn) of holomorphic 1-forms with zeroes of multiplicities

m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector space

H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural lattice

H1(S, {P1, . . . , Pn};Z ⊕ iZ). The points of this lattice are represented by

square-tiled surfaces.

Indeed, if a flat surface S is defined by an holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover over the torus T = R
2/(Z ⊕ iZ) defined by the map

P 7→

∫ P

P1

ω modZ ⊕ iZ .

Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by “pillowcase covers” over CP1 branched at four points.



Integer points in the moduli space of Abelian differentials

14 / 27

When a flat metric has on a surface S trivial holonomy, it defines a quadratic

differential which is a global square of a holomorphic 1-form. The moduli space
H(m1, . . . ,mn) of holomorphic 1-forms with zeroes of multiplicities

m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector space

H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural lattice

H1(S, {P1, . . . , Pn};Z ⊕ iZ). The points of this lattice are represented by

square-tiled surfaces.

Indeed, if a flat surface S is defined by an holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover over the torus T = R
2/(Z ⊕ iZ) defined by the map

P 7→

∫ P

P1

ω modZ ⊕ iZ .

Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by “pillowcase covers” over CP1 branched at four points.



Integer points in the moduli space of Abelian differentials

14 / 27

When a flat metric has on a surface S trivial holonomy, it defines a quadratic

differential which is a global square of a holomorphic 1-form. The moduli space
H(m1, . . . ,mn) of holomorphic 1-forms with zeroes of multiplicities

m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector space

H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural lattice

H1(S, {P1, . . . , Pn};Z ⊕ iZ). The points of this lattice are represented by

square-tiled surfaces.

Indeed, if a flat surface S is defined by an holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover over the torus T = R
2/(Z ⊕ iZ) defined by the map

P 7→

∫ P

P1

ω modZ ⊕ iZ .

Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by “pillowcase covers” over CP1 branched at four points.



Calculation the volume of a “sphere” through counting inte-
ger points inside a “ball” of large radius.
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The volume of the “unit sphere” H1(m1, . . . ,mn) of flat surfaces of area 1, is

a multiple of the volume of the “unit ball” H≤1(m1, . . . ,mn) of flat surfaces of

area at most 1 by a dimensional factor:

Vol(H1(m1, . . . ,mn)) = dimR H(m1, . . . ,mn) · µ((H≤1(m1, . . . ,mn)) .

The volume of the “unit ball” is equal to the coefficient in the asymptotics of the

number of lattice points captured inside the unit ball for the lattice with a grid

1/N when N → ∞. The latter number is the same as the number of integer

points inside a “ball of radius N ”.

Thus, to compute the volume of a stratum of flat surface, it is sufficient to find

the asymptotics for the number SqN (m1, . . . ,mn) of square-tiled surfaces
tiled with at most N squares:

VolH1(m1, . . . ,mn) = 2 dimC H(m1, . . . ,mn) · lim
N→+∞

SqN (m1, . . . ,mn)

NdimC H(m1,...,mn)
.
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Historical remarks.
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For Abelian differentials this counting problem was successfully solved by

A. Eskin and A. Okounkov in 2001. Their formula implies that the volume
VolH1(m1, . . . ,mn) of every connected component of every stratum of

Abelian differentials is equal to r · π2g, where r is a rational number. It also

provides an efficient algorithm allowing to compute r for all strata up to genus

10 and for some strata (like the principal one) up to genus 200.
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For Abelian differentials this counting problem was successfully solved by

A. Eskin and A. Okounkov in 2001. Their formula implies that the volume
VolH1(m1, . . . ,mn) of every connected component of every stratum of

Abelian differentials is equal to r · π2g, where r is a rational number. It also

provides an efficient algorithm allowing to compute r for all strata up to genus

10 and for some strata (like the principal one) up to genus 200.

A. Eskin and A. Okounkov also obtained a formula for the volumes

VolQ1(d1, . . . , dk) of the moduli spaces of quadratic differentials. However,

this time the resulting expressions in terms of characters of the symmetric
group are more complicated, and the formula is not translated into a computer

code yet. This is why we know the numerical values of the volumes only for

several low-dimensional strata, where they are computed by hands.



Kontsevich conjecture
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Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem. The volume of any stratum Q1(d1, . . . , dk) of meromorphic
quadratic differentials with at most simple poles on CP1 (i.e. when

di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and
∑k

i=1 di = −4) is equal to

VolQ1(d1, . . . , dk) = 2π ·

k
∏

i=1

v(di) .

Corollary. The number of pillowcase covers of degree at most N with

ramification pattern corresponding to Q(d1, . . . , dk) has the following leading

term in the asymptotics as N → ∞

Number of pillowcase covers ∼
π

k − 2

k
∏

i=1

v(di) ·N
k−2 .
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Various approaches to a proof.
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M. Kontsevich conjectured this formula about ten years ago. Using Lyapunov

exponents of the Teichmüller geodesic flow, he predicted volumes of the special
strata Q(d,−1d+4) and then made an ambitious guess for general case.

In ten years we made numerous attempts to prove the Conjecture, for example,

following an approach based on Kontsevich’ solution to the Witten conjecture.

We also tried to developing ideas of Eskin–Okounkov. And not only. Each time

we ran into very interesting combinatorics, but we were never able to get any

simple expressions. Finally we had to come back to the approach based on the

formula for the Lyapunov exponents of the Teichmüller geodesic flow. The latter
formula is derived using serious analytic, geometrical, and dynamical inputs.

Challenge. Find an alternative proof of the formula for the volumes.
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Siegel—Veech constant

20 / 27

Closed regular geodesics on flat surfaces appear in families of parallel closed

geodesics sharing the same length. Every such family fills a maximal cylinder
having conical points on each of the boundary components.

Denote by Narea(S,L) the sum of areas of all cylinders spanned by geodesics

of length at most L.

Theorem [after W. Veech] For every stratum of meromorphic quadratic

differentials Q(d1, . . . , dk) the following ratio is constant (i.e. does not depend

on the value of a positive parameter L):

1

πL2

∫

Q1(d1,...,dk)
Narea(S,L) dν1 = carea(d1, . . . , dk) ,

where constant carea(d1, . . . , dk) is called the Siegel–Veech constant.

Analogous formulae are valid for other counting functions considered above,
say for N(S,L) or for NC(S,L), where C is any admissible configuration of

closed geodesics or of saddle connections.
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Values of Siegel–Veech constants
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Theorem (A. Eskin, H. Masur.) For almost any flat surface S in any stratum

Q(d1, . . . , dk) one has

Narea(S,L) ∼ carea(d1, . . . , dn) · L
2 as L → ∞ .

Analogous formulae are valid for similar counting functions.

Theorem. For any stratum Q(d1, . . . , dk) in genus zero one has

carea(d1, . . . , dk) =

=
1

dimC Q(d1, . . . , dk)− 1
·lim
ε→0

1

πε2
Vol(“ε-neighborhood of the cusps”)

VolQ1(d1, . . . , dk)
=

= (explicit combinatorial factor) ·

∏

Vol(adjacent simpler strata)

VolQ1(d1, . . . , dk)
.

(The proof develops ideas from joint works of Eskin and Zorich with H. Masur.)
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Q(d1, . . . , dk) one has

Narea(S,L) ∼ carea(d1, . . . , dn) · L
2 as L → ∞ .

Analogous formulae are valid for similar counting functions.

Theorem. For any stratum Q(d1, . . . , dk) in genus zero one has

carea(d1, . . . , dk) =

=
1

dimC Q(d1, . . . , dk)− 1
·lim
ε→0

1

πε2
Vol(“ε-neighborhood of the cusps”)

VolQ1(d1, . . . , dk)
=

= (explicit combinatorial factor) ·

∏

Vol(adjacent simpler strata)

VolQ1(d1, . . . , dk)
.

(The proof develops ideas from joint works of Eskin and Zorich with H. Masur.)



Lyapunov exponents and alternative expression for the
Siegel–Veech constant
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Theorem (A. Eskin, M. Kontsevich, A. Z.) Let dν1 be a PSL(2,R) ergodic

probability measure supported on a regular 1 suborbifold M1 in some stratum

Q1(d1, . . . , dn). The Lyapunov exponents of the Hodge bundle H1
− along the

Teichmüller flow restricted to M1 satisfy the following relation:

λ1 + λ2 + · · ·+ λg =
1

24
·

n
∑

i=1

di(di + 4)

di + 2
+

π2

3
· carea(dν1) ,

where carea(dν1) is the Siegel–Veech constant.

Corollary. For any PSL(2,R)-invariant manifold in any stratum of quadratic

differentials in genus zero one has

carea(d1, . . . , dn) = −
1

8π2

n
∑

j=1

dj(dj + 4)

dj + 2
.

1C. Matheus will explain in his talk why this technical condition is always satisfied
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Combining two expressions for carea(d1, . . . , dn) we get series of

combinatorial identities recursively defining volumes of all strata:

(explicit combinatorial factor) ·

∏

Vol(adjacent simpler strata)

VolQ1(d1, . . . , dk)
=

= −
1

8π2

n
∑

j=1

dj(dj + 4)

dj + 2
.

It remains to verify that the guessed answer satisfy these identities. The

verification is reduced to verifying some cute combinatorial identities for

multinomial coefficients; it is based on manipulations with appropriate

generating functions.

Having proved the formula for the volumes of strata in genus 0, we can plug the
values into the formulae for the Siegel–Veech constants, and obtain their

numerical values.
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Transversality
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We have solved the counting problem for almost all flat spheres in any family

Q1(d1, . . . , dk) in genus zero. The trouble is that the subspace of those flat
spheres which correspond to right-angled billiards has large codimension: it is

a bit larger than half dimension of the in the ambient family.

Proposition. Consider the canonical local embedding

B(k1, . . . , kn) ⊂ Q(k1 − 2, . . . , kn − 2).

For almost all directional billiards in B(k1, . . . , kn) the projection of the tangent

space T∗B(k1, . . . , kn) to the unstable subspace of the Teichmüller geodesic

flow is a surjective map.



Ergodic Theorem by J. Chaika
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J. Chaika used a variation of an argument of Margulis to prove equidistribution

in the ambient stratum Q1 of large circles centered at almost all points of the
billiard submanifold B1. This approach is similar in spirit to the approach of

Eskin–Margulis–Mozes.

Theorem (J. Chaika). Let f be any bounded 1-Lipschitz function with a zero
mean on a stratum Q1(k1 − 2, . . . , kn − 2) of quadratic differentials in genus

zero. Then for µB-almost every right angled billiard Π in B1(k1, dots, kn) one

has:

lim
T→∞

1

2π

∫ 2π

0
f(gT rθqΠ) dθ =

1

µ1(Q1)

∫

Q1

f dµ1 .

The proof uses, in particular, the result of Athreya on quantitative recurrence of

the Teichmüller geodesic flow, and the result of Avila–Resende on exponential

mixing of the Teichmüller geodesic flow on Q1.

Applying these results, one proves the exact quadratic asymptotics for

µB-almost all quadratic differentials q(Π) in the billiard submanifold.
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Georges Braque, Le Billard (1944). Centre Pompidou, Paris
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