Ricci Curvature and Bochner Formula on Alexandrov Spaces

Hui-Chun Zhang

Sun Yat-sen University

March 18, 2013

(work with Prof. Xi-Ping Zhu)
Contents

- Alexandrov Spaces
- Generalized Ricci Curvature
- Geometric and Analytic consequences
- Dirichlet Form, Laplacian and Harmonic Functions
- Bochner Formula and its Applications
Contents

- Alexandrov Spaces
- Generalized Ricci Curvature
 - Geometric and Analytic consequences
 - Dirichlet Form, Laplacian and Harmonic Functions
 - Bochner Formula and its Applications
Contents

- Alexandrov Spaces
- Generalized Ricci Curvature
- Geometric and Analytic consequences
 - Dirichlet Form, Laplacian and Harmonic Functions
 - Bochner Formula and its Applications
Alexandrov Spaces

Generalized Ricci Curvature

Geometric and Analytic consequences

Dirichlet Form, Laplacian and Harmonic Functions

Bochner Formula and its Applications
Alexandrov spaces are locally compact geodesic spaces with the concept of (sectional) curvature bounded below.

- A geodesic space X is called to have curvature $\geq k$ if

$$\angle q \geq \angle \tilde{q}$$

Hui-Chun Zhang

Ricci Curvature and Bochner Formula on Alexandrov Spaces
1. Alexandrov spaces

Basic examples of Alexandrov spaces:

- Orbifolds
- Polyhedrons
- The limit spaces (Gromov-Hausdorff topology) of a family of smooth manifolds with controlled curvature, diameter, and dimension.
1. Alexandrov spaces

Basic examples of Alexandrov spaces:

- Orbifolds
- Polyhedrons

The limit spaces (Gromov-Hausdorff topology) of a family of smooth manifolds with controlled curvature, diameter and dimension.
1. Alexandrov spaces

Basic examples of Alexandrov spaces:

- Orbifolds
- Polyhedrons
- The limit spaces (Gromov-Hausdorff topology) of a family of smooth manifolds with controlled curvature, diameter and dimension.
1. Alexandrov spaces

Burago–Gromov–Perelman:

The following basic concepts and facts are well established on Alexandrov spaces

- The dimension is always an integer
- Tangent cones. Regular points is dense (but irregular points might be dense too)
- Volume comparison (Bishop–Gromov type)
- Parallel transportation
- Compactness theorem.
1. Alexandrov spaces

Burago–Gromov–Perelman:

The following basic concepts and facts are well established on Alexandrov spaces

- The dimension is always an integer
- Tangent cones. Regular points is dense (but irregular points might be dense too)
- Volume comparison (Bishop–Gromov type)
- Parallel transportation
- Compactness theorem.
1. Alexandrov spaces

Burago–Gromov–Perelman:

The following basic concepts and facts are well established on Alexandrov spaces

- The dimension is always an integer
- Tangent cones. Regular points is dense (but irregular points might be dense too)
- Volume comparison (Bishop–Gromov type)
- Parallel transportation
- Compactness theorem.
1. Alexandrov spaces

Burago–Gromov–Perelman:

The following basic concepts and facts are well established on Alexandrov spaces

- The dimension is always an integer
- Tangent cones. Regular points is dense (but irregular points might be dense too)
- Volume comparison (Bishop–Gromov type)
- Parallel transportation
- Compactness theorem.
1. Alexandrov spaces

Burago–Gromov–Perelman:

The following basic concepts and facts are well established on Alexandrov spaces

- The dimension is always an integer
- Tangent cones.
 Regular points is dense (but irregular points might be dense too)
- Volume comparison (Bishop–Gromov type)
- Parallel transportation
- Compactness theorem.
Some important results on Riemannian manifolds with lower bounds of sectional curvature have been extended to Alexandrov spaces.

- *(Petrunin)* Extended Synge theorem
- *(Milka)* Extended Toponogov splitting theorem
- *(Perelman, Shioya-Yamaguchi, Rong-Xu, etc)* Extended soul theorem
Some important results on Riemannian manifolds with lower bounds of sectional curvature have been extended to Alexandrov spaces.

- (Petrunin) Extended Synge theorem
- (Milka) Extended Toponogov splitting theorem
- (Perelman, Shioya-Yamaguchi, Rong-Xu, etc) Extended soul theorem
Some important results on Riemannian manifolds with lower bounds of sectional curvature have been extended to Alexandrov spaces.

- **(Petrunin)** Extended Synge theorem
- **(Milka)** Extended Toponogov splitting theorem
- **(Perelman, Shioya-Yamaguchi, Rong-Xu, etc)** Extended soul theorem
1. Alexandrov spaces

In PDE and Riemannian geometry, the differential calculus is the most fundamental tools. Now we recall the calculus on Alexandrov spaces.

- **Ostu–Shioya:**

 Established a C^1-structure and a corresponding C^0-Riemannian structure on the set of regular points

- **Perelman:**

 Extended it to a DC^1-structure and a corresponding BV^0-Riemannian structure on the set of regular points
In PDE and Riemannian geometry, the differential calculus is the most fundamental tools. Now we recall the calculus on Alexandrov spaces.

- **Ostu–Shioya:**
 Established a C^1-structure and a corresponding C^0-Riemannian structure on the set of regular points.

- **Perelman:**
 Extended it to a DC^1-structure and a corresponding BV^0-Riemannian structure on the set of regular points.
1. Alexandrov spaces

Under Ostu-shioya-Perelman’s Riemannian structure.

- let point p be regular, Riemannian structure g_{ij} around p, then

$$|g_{ij}(x) - \delta_{ij}| = o(1), \quad \text{as } |px| \to 0.$$

- let point p be “smooth” in the sense of Perelman, then

$$|g_{ij}(x) - \delta_{ij}| = o(|px|), \quad \text{as } |px| \to 0.$$

Comparison with Riemannian manifolds:

$$|g_{ij}(x) - \delta_{ij}| = O(|px|^2), \quad \text{as } |px| \to 0.$$
1. Alexandrov spaces

Under Ostu-shioya-Perelman’s Riemannian structure.

- let point p be regular, Reimannian structure g_{ij} around p, then

$$|g_{ij}(x) - \delta_{ij}| = o(1), \quad \text{as } |px| \to 0.$$

- let point p be “smooth” in the sense of Perelman, then

$$|g_{ij}(x) - \delta_{ij}| = o(|px|), \quad \text{as } |px| \to 0.$$

Comparison with Riemannian manifolds:

$$|g_{ij}(x) - \delta_{ij}| = O(|px|^2), \quad \text{as } |px| \to 0.$$
1. Alexandrov spaces

Under Ostu-shioya-Perelman’s Riemannian structure.

- let point p be regular, Riemannian structure g_{ij} around p, then

\[|g_{ij}(x) - \delta_{ij}| = o(1), \quad \text{as } |px| \to 0. \]

- let point p be “smooth” in the sense of Perelman, then

\[|g_{ij}(x) - \delta_{ij}| = o(|px|), \quad \text{as } |px| \to 0. \]

− − − − − − − − − − − − − − −

- Comparison with Riemannian manifolds:

\[|g_{ij}(x) - \delta_{ij}| = O(|px|^2), \quad \text{as } |px| \to 0. \]
2. Ricci curvature

Many fundamental results in Riemannian geometry assume only the lower bounds on Ricci curvature. For example:

- Bonnet–Myers diameter theorem
- Bishop–Gromov volume comparison and Levy–Gromov isoperimetric inequality
- Cheeger–Gromoll splitting theorem and Cheng maximal diameter theorem
- Lichnerowicz’s eigenvalue estimate and Obata theorem
- Yau’s gradient estimates and Li-Yau’s estimates
2. Ricci curvature

Many fundamental results in Riemannian geometry assume only the lower bounds on Ricci curvature. For example:

- Bonnet–Myers diameter theorem
- Bishop–Gromov volume comparison and Levy–Gromov isoperimetric inequality
- Cheeger–Gromoll splitting theorem and Cheng maximal diameter theorem
- Lichnerowicz’s eigenvalue estimate and Obata theorem
- Yau’s gradient estimates and Li-Yau’s estimates
2. Ricci curvature

Many fundamental results in Riemannian geometry assume only the lower bounds on Ricci curvature. For example:

- Bonnet–Myers diameter theorem
- Bishop–Gromov volume comparison and Levy–Gromov isoperimetric inequality
- Cheeger–Gromoll splitting theorem and Cheng maximal diameter theorem
- Lichnerowicz’s eigenvalue estimate and Obata theorem
- Yau’s gradient estimates and Li-Yau’s estimates
2. Ricci curvature

Many fundamental results in Riemannian geometry assume only the lower bounds on Ricci curvature. For example:

- Bonnet–Myers diameter theorem
- Bishop–Gromov volume comparison and Levy–Gromov isoperimetric inequality
- Cheeger–Gromoll splitting theorem and Cheng maximal diameter theorem
- Lichnerowicz’s eigenvalue estimate and Obata theorem
- Yau’s gradient estimates and Li-Yau’s estimates
Many fundamental results in Riemannian geometry assume only the lower bounds on Ricci curvature. For example:

- Bonnet–Myers diameter theorem
- Bishop–Gromov volume comparison and Levy–Gromov isoperimetric inequality
- Cheeger–Gromoll splitting theorem and Cheng maximal diameter theorem
- Lichnerowicz’s eigenvalue estimate and Obata theorem
- Yau’s gradient estimates and Li-Yau’s estimates
An interesting problem is to give a generalized notion of lower bounds of Ricci curvature on singular spaces, and study its geometric and analytic consequences.

Nowadays, several such generalizations have appeared. To recall them, let us recall the equivalent conditions for lower Ricci bounds on Riemannian manifolds.
2. Ricci curvature

In a Riemannian manifold, the condition $\text{Ric} \geq K$ is equivalent to each one of the following properties:

- Bochner formula
- Displacement K–convexity
- Volume comparison
- (average) Second variation formula of arc-length.
In a Riemannian manifold, the condition $\text{Ric} \geq K$ is equivalent to each one of the following properties:

- Bochner formula
- Displacement K–convexity
- Volume comparison
- (average) Second variation formula of arc-length.
2. Ricci curvature

In a Riemannian manifold, the condition $Ric \geq K$ is equivalent to each one of the following properties:

- Bochner formula
- Displacement K–convexity
- Volume comparison
- (average) Second variation formula of arc-length.
2. Ricci curvature

In a Riemannian manifold, the condition $\text{Ric} \geq K$ is equivalent to each one of the following properties:

- Bochner formula
- Displacement K—convexity
- Volume comparison
- (average) Second variation formula of arc-length.
2. Ricci curvature

In a Riemannian manifold, the condition $Ric \geq K$ is equivalent to each one of the following properties:

- Bochner formula
- Displacement K–convexity
- Volume comparison
- (averaging) Second variation formula of arc-length.

At last, clearly

$$sec \geq K \iff Ric \geq (n - 1)K.$$
2. Ricci curvature

(1) Bochner formula:
For each C^3 function f,

$$
\frac{1}{2} \Delta |\nabla f|^2 = |\nabla^2 f|^2 + \langle \nabla f, \nabla \Delta f \rangle + \text{Ric}(\nabla f, \nabla f) \\
\geq \frac{(\Delta f)^2}{n} + \langle \nabla f, \nabla \Delta f \rangle + K|\nabla f|^2
$$

- **Lin–Yau**: define Ricci curvature on locally finite graphs
- **Ambrosio–Gigli–Savaré**: define Bakry-Emery curvature-dimension condition on Dirichlet form
2. Ricci curvature

(2) Displacement K–convexity:

M^n— Riemannian manifold.

$P_2(M^n, d_W, vol)$— L^2–Wasserstein space

$\text{Ent}(\mu) = \int_{M^n} \frac{d\mu}{dx} \cdot \log \frac{d\mu}{dx} d\text{vol}(x)$

is K–convex in $P_2(M^n, d_W, vol)$.

- **Sturm, Lott–Villani**: define $CD(K, n)$ on metric measure spaces
- **Ambrosio–Gigli–Savaré**: improve $CD(K, n)$ to $RCD(K, n)$.
2. Ricci curvature

(3) Volume comparison:
Denote $A_p(r, \xi)$ the density of the Riemannian measure on $\partial B_p(r)$. Then

$$\frac{A_p(r, \xi)}{(s_K(r/\sqrt{n-1}))^{n-1}}$$

is non-increasing on r (for each $\xi \in \Sigma_p$), where $(s_K(r/\sqrt{n-1}))^{n-1}$ is the corresponding density of the space form.

- **Sturm, Ohta**: define $MCP(K, n)$ on metric measure spaces.

- **Kuwae–Shioya**: define $BG(K)$ on Alexandrov spaces.
(3) Volume comparison:
Denote $A_p(r, \xi)$ the density of the Riemannian measure on $\partial B_p(r)$. Then

$$\frac{A_p(r, \xi)}{(s_K(r/\sqrt{n-1}))^{n-1}}$$

is non-increasing on r (for each $\xi \in \Sigma_p$), where $(s_K(r/\sqrt{n-1}))^{n-1}$ is the corresponding density of the space form.

- **Sturm, Ohta**: define $MCP(K, n)$ on metric measure spaces.
- **Kuwae–Shioya**: define $BG(K)$ on Alexandrov spaces.
2. Ricci curvature

(4) Second variation formula of arc-length:

\[
\sum_{i=1}^{n-1} d \left(\exp_{q_1}(\varepsilon \xi_i), \exp_{q_2}(\varepsilon T \xi_i) \right) \leq (n - 1)d(q_1, q_2) - K \frac{d(q_1, q_2)}{2!} \varepsilon^2 + o(\varepsilon^2)
\]

where \(\xi_1, \cdots, \xi_{n-1}\) is an \((n - 1)\)-orthonormal frame at \(q_1\) and orthogonal to \(\gamma\).

Zhang–Zhu: \(Ric \geq K\) on Alexandrov spaces.
2. Ricci curvature

- On an \(n\)-dim Alexandrov space, the above notions "\(CD(K, n)\)”, “\(RCD(K, n)\)””, “\(MCP(K, n)\)” and “\(Ric \geq K\)” make sense.

Relation:

\[
Ric \geq K \iff CD(K, n)
\]

Petrunin \((K = 0)\), Zhang – Zhu \((K \neq 0)\)

\[
\iff RCD(K, n)
\]

Gigli – Kuwada – Ohta

\[
\implies MCP(K, n)
\]

Sturm

\[
\iff BG(K)
\]

Kuwae – Shioya

Question:

\[
Ric \geq K \iff CD(K, n)\]
2. Ricci curvature

- On an n-dim Alexandrov space, the above notions “$CD(K, n)$”, “$RCD(K, n)$”, “$MCP(K, n)$” and “$Ric \geq K$” make sense.

Relation:

\[
Ric \geq K \iff CD(K, n)
\]

- Petrunin ($K = 0$), Zhang – Zhu ($K \neq 0$)
- $\iff RCD(K, n)$ Gigli – Kuwada – Ohta
- $\Rightarrow MCP(K, n)$ Sturm
- $\iff BG(K)$ Kuwae – Shioya

Question:

\[
Ric \geq K \iff CD(K, n)\
\]
Now let us recall the geometric consequences of above generalized Ricci conditions. From now on, we always consider M to be an n-dim Alexandrov space.

- $BG(K) \implies$ Bishop–Gromov volume comparison
 Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

- $BG(n - 1) \implies$ Bonnet–Myers theorem: diameter $\leq \pi$
 Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

- $CD(n - 1, n) \implies$ Lichnerowicz estimate: $\lambda_1 \geq n$
 Lott–Vinalli
3. Geometric Results

Now let us recall the geometric consequences of above generalized Ricci conditions.
From now on, we always consider M to be an n-dim Alexandrov space.

- $BG(K) \implies$ Bishop–Gromov volume comparison
 Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

- $BG(n - 1) \implies$ Bonnet–Myers theorem: diameter $\leq \pi$
 Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

- $CD(n - 1, n) \implies$ Lichnerowicz estimate: $\lambda_1 \geq n$
 Lott–Vinalli
Now let us recall the geometric consequences of above generalized Ricci conditions. From now on, we always consider M to be an n-dim Alexandrov space.

- $BG(K) \Rightarrow$ Bishop–Gromov volume comparison
 Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

- $BG(n - 1) \Rightarrow$ Bonnet–Myers theorem: diameter $\leq \pi$
 Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

- $CD(n - 1, n) \Rightarrow$ Lichnerowicz estimate: $\lambda_1 \geq n$
 Lott–Vinalli
3. Geometric Results

Theorem

- Topological splitting theorem (Kuwae–Shioya):
 \[\text{MCP}(0, n), \exists \text{ a line } \implies M \overset{\text{hemeo}}{\cong} \mathbb{R} \times N. \]

- Topological maximal diameter theorem (Ohta):
 \[\text{MCP}(n - 1, n), \text{ diam} = \pi \implies M \overset{\text{hemeo}}{\cong} \text{a spherical suspension } [0, \pi] \times_{\sin} N. \]
3. Geometric Results

Theorem

- **Topological splitting theorem (Kuwae–Shioya):**
 \[\text{MCP}(0, n), \ \exists \text{ a line} \implies \text{M hemeo} \sim \mathbb{R} \times N. \]

- **Topological maximal diameter theorem (Ohta):**
 \[\text{MCP}(n - 1, n), \ \text{diam} = \pi \implies \text{M hemeo} \sim \text{a spherical suspension} [0, \pi] \times_{\sin} N. \]
3. Geometric Results

Under our definition of Ricci curvature, we gave a new geometric argument to prove:

Theorem (Zhang–Zhu)

- **Splitting theorem:**

 Alexandov space \(M \), \(\text{Ric} \geq 0 \), \(\exists \) a line \(\implies M \cong \mathbb{R} \times N. \)

- **Maximal diameter theorem:**

 \(n - \text{dim Alexandov space} \ M, \text{Ric} \geq n - 1, \ \text{diam} = \pi, \)

 \(\implies M \cong \text{a spherical suspension } [0, \pi] \times_{\sin} N. \)

Remark: Very recently, Gigli generalizes Splitting theorem for metric measure spaces under \(RCD(0, n) \).
3. Geometric Results

Under our definition of Ricci curvature, we gave a new geometric argument to prove:

Theorem (Zhang–Zhu)

- **Splitting theorem:**
 \[
 \text{Alexandov space } M, \ Ric \geq 0, \ \exists \ \text{a line} \implies M \overset{\text{isom}}{\cong} \mathbb{R} \times N.
 \]

- **Maximal diameter theorem:**
 \[
 n - \dim \text{Alexandov space } M, \ Ric \geq n - 1, \ diam = \pi, \implies M \overset{\text{isom}}{\cong} \text{a spherical suspension} \ [0, \pi] \times_{\sin} N.
 \]

Remark: Very recently, Gigli generalizes Splitting theorem for metric measure spaces under $RCD(0, n)$.

Hui-Chun Zhang
Ricci Curvature and Bochner Formula on Alexandrov Spaces
3. Geometric Results

Since our defined Ricci condition is local, it can be lifted to the covering spaces. Some topological consequences are given:

Corollaries

- **Alexandrov space** M, $\text{Ric} \geq 0$
 \[\implies M \text{ compact, } \pi_1(M) \text{ has a finite index Bieberbach subgroup}; \]
 \[\text{any finitely generated subgroup of } \pi_1(M) \text{ has polynomial growth of degree } \leq n. \]

- **Alexandrov space** M, $\text{Ric} \geq (n-1)K$, $\text{diam} \leq D$
 \[\implies b_1(M) \leq C(n, KD^2). \]
3. Geometric Results

Since our defined Ricci condition is local, it can be lifted to the covering spaces. Some topological consequences are given.

Corollaries

- **Alexandrov space** M, $\text{Ric} \geq 0$
 - \Rightarrow
 - M compact, $\pi_1(M)$ has a finite index Bieberbach subgroup;
 - any finitely generated subgroup of $\pi_1(M)$ has polynomial growth of degree $\leq n$.

- **Alexandrov space** M, $\text{Ric} \geq (n-1)K$, $\text{diam} \leq D$
 - \Rightarrow
 - $b_1(M) \leq C(n, KD^2)$.
Question: Levy–Gromov isoperimetric inequality for Alexandrov spaces? i.e., Alexandrov space M with $Ric \geq n - 1$. Set a surface σ_α dividing the volume of M in ratio α. Let s_α be a geodesic sphere in \mathbb{S}^n dividing the volume of \mathbb{S}^n in the same ratio α. Can one prove

$$\frac{\text{vol}(\sigma_\alpha)}{\text{vol}(M)} \geq \frac{\text{vol}(s_\alpha)}{\text{vol}(\mathbb{S}^n)}?$$

Remark: Petrunin sketched a proof of the inequality under assumption sectional curvature ≥ 1.
Now let us consider the analysis on Alexandrov spaces. We will begin from the canonical Dirichlet form and the definition of Laplace operator.

Recall the following basic facts:

- A Lipschitz function has derivative almost everywhere (Cheeger).
- Sobolev spaces $W^{1,p}(M)$ are well-defined (Cheeger, Shanmugalingam) etc.
- Canonical Dirichlet form

$$\mathcal{E}(u, v) = \int_M \langle \nabla u, \nabla v \rangle \, dvol, \quad \forall u, v \in W^{1,2}(M).$$

(Kuwae–Machigashira–Shioya)
Now let us consider the analysis on Alexandrov spaces. We will begin from the canonical Dirichlet form and the definition of Laplace operator.

Recall the following basic facts:

- A Lipschitz function has derivative almost everywhere (Cheeger)
- Sobolev spaces $W^{1,p}(M)$ are well-defined (Cheeger, Shanmugalingam) etc.
- Canonical Dirichlet form

$$\mathcal{E}(u, v) = \int_M \langle \nabla u, \nabla v \rangle \, dvol, \quad \forall u, v \in W^{1,2}(M).$$

(Kuwae–Machigashira–Shioya)
Now let us consider the analysis on Alexandrov spaces. We will begin from the canonical Dirichlet form and the definition of Laplace operator. Recall the following basic facts:

- A Lipschitz function has derivative almost everywhere (Cheeger)
- Sobolev spaces $W^{1,p}(M)$ are well-defined (Cheeger, Shanmugalingam) etc.
- Canonical Dirichlet form

$$\mathcal{E}(u, v) = \int_M \langle \nabla u, \nabla v \rangle \, dvol, \quad \forall u, v \in W^{1,2}(M).$$

(Kuwae– Machigashira–Shioya)
We will understand the Laplacian of a Sobolev function as a Radon measure.

- If $u \in W^{1,2}(M)$ such that
 \[
 \mathcal{L}_u(\phi) := -\int_M \langle \nabla u, \nabla \phi \rangle \, dvol \leq \int_M f \phi \, dvol,
 \]
 for all $\phi \in \text{Lip}_0(M), \phi \geq 0$,
 \[\Rightarrow \mathcal{L}_u \text{ is a signed Radon measure, say} \]
 \[\Delta u \leq f \cdot vol. \]

- Poisson equation
 \[\Delta u = f \cdot vol. \]

Under Lebesgue decomposition, it is
 \[\Delta^{\text{reg}} u = f \quad \text{and} \quad \Delta^{\text{sing}} u = 0. \]

In particular, the solution of $\Delta u = 0$ is called a harmonic function on M.
4. Dirichlet Form, Laplacian and Harmonic Functions

We will understand the Laplacian of a Sobolev function as a Radon measure.

- If \(u \in W^{1,2}(M) \) such that
 \[
 \mathcal{L}_u(\phi) := -\int_M \langle \nabla u, \nabla \phi \rangle \, dvol \leq \int_M f \phi \, dvol,
 \]
 for all \(\phi \in \text{Lip}_0(M), \phi \geq 0 \),
 \(\implies \) \(\mathcal{L}_u \) is a signed Radon measure, say
 \[
 \Delta u \leq f \cdot \text{vol}.
 \]

- Poisson equation
 \[
 \Delta u = f \cdot \text{vol}.
 \]

Under Lebesgue decomposition, it is
 \[
 \Delta^{\text{reg}} u = f \quad \text{and} \quad \Delta^{\text{sing}} u = 0.
 \]

In particular, the solution of \(\Delta u = 0 \) is called a harmonic function on \(M \).
To determine the regularity of harmonic functions on an Alexandrov space M, one has the followings facts (from volume comparison):

- doubling property
- Poincaré inequality and Sobolev inequality
- De Giorgi, Nash–Moser iteration argument works
- Every harmonic function is Hölder continuous
To determine the regularity of harmonic functions on an Alexandrov space M, one has the following facts (from volume comparison):

- doubling property
- Poincaré inequality and Sobolev inequality
- De Giorgi, Nash–Moser iteration argument works
- Every harmonic function is Hölder continuous
4. Dirichlet Form, Laplacian and Harmonic Functions

To determine the regularity of harmonic functions on an Alexandrov space M, one has the followings facts (from volume comparison):

- doubling property
- Poincaré inequality and Sobolev inequality
- De Giorgi, Nash–Moser iteration argument works
- Every harmonic function is Hölder continuous
4. Dirichlet Form, Laplacian and Harmonic Functions

To determine the regularity of harmonic functions on an Alexandrov space M, one has the followings facts (from volume comparison):

- doubling property
- Poincaré inequality and Sobolev inequality
- De Giorgi, Nash–Moser iteration argument works
- Every harmonic function is Hölder continuous
The same regularity problem for harmonic maps have considered:

- **Jost, Lin**: harmonic maps between Alexandrov spaces are Hölder continuous

- **Korevaar–Schoen**: harmonic maps from smooth manifolds to Alexandrov spaces are Lipschitz continuous

- A generalized Liouville theorem have proved: **Hua**: $CD(0, n) \implies$ the space of harmonic function with polynomial growth of degree $\leq d$ is finite dimensional for any $d \in \mathbb{R}^+$.

The same regularity problem for harmonic maps have considered:

- **Jost, Lin**: harmonic maps between Alexandrov spaces are Hölder continuous

- **Korevaar–Schoen**: harmonic maps from smooth manifolds to Alexandrov spaces are Lipschitz continuous

- A generalized Liouville theorem have proved:
 - **Hua**: \(CD(0, n) \) \(\Rightarrow \) the space of harmonic function with polynomial growth of degree \(\leq d \) is finite dimensional for any \(d \in \mathbb{R}^+ \).

Hui-Chun Zhang | Ricci Curvature and Bochner Formula on Alexandrov Spaces
4. Dirichlet Form, Laplacian and Harmonic Functions

The same regularity problem for harmonic maps have considered:

- **Jost, Lin**: harmonic maps between Alexandrov spaces are Hölder continuous

- **Korevaar–Schoen**: harmonic maps from smooth manifolds to Alexandrov spaces are Lipschitz continuous

- A generalized Liouville theorem have proved:
 - **Hua**: $CD(0, n) \implies$ the space of harmonic function with polynomial growth of degree $\leq d$ is finite dimensional for any $d \in \mathbb{R}^+$.
Question: Is any harmonic function on an Alexandrov space Lipschitz continuous?

By using Ostu–Shioya, Perelman’s coordinate system, there exists a $BV_{loc} -$Riemannian metric (g_{ij}). A harmonic function u is a solution of

$$
\sum_{i,j=1}^{n} \partial_i (\sqrt{g} g^{ij} \partial_j u) = 0
$$

in the sense of distribution.

The difficulty is the coefficient $\sqrt{g} g^{ij}$ might be not continuous on a dense subset.
4. Dirichlet Form, Laplacian and Harmonic Functions

- **Petrunin** (1996, announced):
 Let u be a harmonic function on an Alexandrov space with (sectional) curvature ≥ 0

 $\implies u$ is Lipschitz continuous.

- **Gigli–Kuwada–Ohta, Zhang–Zhu**:
 Let u be a harmonic function on an Alexandrov space,

 $\implies u$ is Lipschitz continuous.

- **Koskela–Rajala–Shanmugalingam**:
 Under a suitable condition for heat kernel, they obtained the Lipschitz continuity for Cheeger harmonic functions.
Dirichlet Form, Laplacian and Harmonic Functions

- **Petrunin** (1996, announced):
 Let u be a harmonic function on an Alexandrov space with (sectional) curvature ≥ 0

 $$\implies u \text{ is Lipschitz continuous.}$$

- **Gigli–Kuwada–Ohta, Zhang–Zhu**:
 Let u be a harmonic function on an Alexandrov space,

 $$\implies u \text{ is Lipschitz continuous.}$$

- **Koskela–Rajala–Shanmugalingam**:
 Under a suitable condition for heat kernel, they obtained the Lipschitz continuity for Cheeger harmonic functions.
4. Dirichlet Form, Laplacian and Harmonic Functions

- **Petrunin** (1996, announced): Let u be a harmonic function on an Alexandrov space with (sectional) curvature ≥ 0

 $\implies u$ is Lipschitz continuous.

- **Gigli–Kuwada–Ohta, Zhang–Zhu**: Let u be a harmonic function on an Alexandrov space,

 $\implies u$ is Lipschitz continuous.

- **Koskela–Rajala–Shanmugalingam**: Under a suitable condition for heat kernel, they obtained the Lipschitz continuity for Cheeger harmonic functions.
Open Question (Lin’s conjecture):
Is any harmonic maps between Alexandrov spaces Lipschitz continuous?
Bochner formula is one of most important tools in Riemannian geometry. On a Riemannian manifold with $\text{Ric} \geq K$, there holds that for any C^3 function u,

$$\frac{1}{2} \Delta |\nabla u|^2 = |\nabla^2 u|^2 + \langle \nabla u, \nabla \Delta u \rangle + \text{Ric}(\nabla u, \nabla u) \geq \frac{(\Delta u)^2}{n} + \langle \nabla u, \nabla \Delta u \rangle + K|\nabla u|^2$$

- In Alexandrov spaces, Δu is understood as a Radon measure, but there is no sense of Hessian $\nabla^2 u$

- It is not know if an Alexandrov space can be approximated (in GH distance) by smooth manifolds.
5. Bochner Formula and Its Applications

Theorem (Bochner formula, Zhang–Zhu)

Let M be an Alexandrov space with $\text{Ric} \geq K$. Suppose $f \in \text{Lip}(M)$ and u satisfies

$$\Delta u = f \cdot \text{vol}.$$

Then we have $|\nabla u|^2 \in W_{loc}^{1,2}(M)$ and

$$-\frac{1}{2} \int_M \langle \nabla |\nabla u|^2, \nabla \phi \rangle \, d\text{vol} \geq \int_M \phi \left(\frac{f^2}{n} + \langle \nabla u, \nabla f \rangle + K|\nabla u|^2 \right) \, d\text{vol}$$

for every $0 \leq \phi \in W_0^{1,2}(M) \cap L^\infty(M)$.

Hui-Chun Zhang

Ricci Curvature and Bochner Formula on Alexandrov Spaces
Step 1. Consider Hamilton-Jacobi semigroup

\[u_t(x) = \min_y \left\{ u(y) + \frac{|xy|^2}{2t} \right\}, \quad x \in M, \ t > 0. \]

- For any \(t > 0 \) and almost any \(x \in M \),

\[
\lim_{s \to 0^+} \frac{u_{t+s}(x) - u_t(x)}{s} = -\frac{\nabla_x u_t}{2}
\]

- For any \(t > 0 \) and \(x \) regular,

\[
\Rightarrow \exists \text{ unique } \ y = \exp_x(-t \nabla_x u_t)
\]

satisfying

\[u_t(x) = u(y) + \frac{|xy|^2}{2t} \]
Step 1. Consider Hamilton-Jacobi semigroup

\[u_t(x) = \min_y \{ u(y) + \frac{|xy|^2}{2t} \}, \quad x \in M, \ t > 0. \]

- For any \(t > 0 \) and almost any \(x \in M \),

\[\lim_{s \to 0^+} \frac{u_{t+s}(x) - u_t(x)}{s} = -\frac{\nabla_x u_t(x)^2}{2} \]

- For any \(t > 0 \) and \(x \) regular,

\[\Rightarrow \exists \text{ unique } y = \exp_x(-t\nabla_x u_t) \]

satisfying

\[u_t(x) = u(y) + \frac{|xy|^2}{2t} \]
Sketch of the proof

Step 2.

- For each $t > 0$, define a map $F_t : M \to M$ by $F_t(x)$ to be one of point such that

$$u_t(x) = u(F_t(x)) + \frac{|xF_t(x)|^2}{2t}.$$

- For any $t > 0$ sufficiently small,

$$a^2 \Delta u_t \leq \left(f \circ F_t + \frac{n(a - 1)^2}{t} - \frac{Kt}{3} (a^2 + a + 1)|\nabla u_t|^2 \right) \text{vol} \ (*)$$

for all $a > 0$.

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces
Step 2.

- For each $t > 0$, define a map $F_t : M \to M$ by $F_t(x)$ to be one point such that

 \[u_t(x) = u(F_t(x)) + \frac{|xF_t(x)|^2}{2t}. \]

- For any $t > 0$ sufficiently small,

 \[a^2 \Delta u_t \leq \left(f \circ F_t + \frac{n(a - 1)^2}{t} - \frac{Kt}{3} (a^2 + a + 1)|\nabla u_t|^2 \right) \text{vol} \quad (\ast) \]

 for all $a > 0$.
Sketch of the proof

To conclude the inequality (*) , two essential facts of Alexandrov spaces are used:

- **Comparison Property:**

 Let u be semi-concave, $\Delta u \geq 0$ on Ω if and only if for any small ball $B \subset \Omega$, we have $u \geq u_B$, where u_B is harmonic on B with the same boundary data of u.

- **For Perelman’s “smooth” points x and y, the assumption $\text{Ric} \geq 0$ implies**

\[
\int_{B_0(\delta_j)} \left(|\exp_x(a\eta) \exp_y(T\eta)|^2 - |xy|^2 \right) dH^n(\eta)
\leq (1 - a)^2 \frac{\omega_{n-1}}{n+2} \cdot \delta_j^{n+2} + o(\delta_j^{n+2})
\]

for any $a > 0$, as $\delta_j \to 0$.

Hui-Chun Zhang
Ricci Curvature and Bochner Formula on Alexandrov Spaces
Sketch of the proof

To conclude the inequality (*), two essential facts of Alexandrov spaces are used:

- **Comparison Property:**
 Let u be semi-concave, $\Delta u \geq 0$ on Ω if and only if for any small ball $B \subset \Omega$, we have $u \geq u_B$, where u_B is harmonic on B with the same boundary data of u.

- For Perelman’s “smooth” points x and y, the assumption $\text{Ric} \geq 0$ implies

$$
\int_{B_0(\delta_j)} \left(|\exp_x(a\eta)\exp_y(T\eta)|^2 - |xy|^2 \right) dH^n(\eta)
$$

$$
\leq (1 - a)^2 \frac{\omega_{n-1}}{n+2} \cdot \delta_j^{n+2} + o(\delta_j^{n+2})
$$

for any $a > 0$, as $\delta_j \to 0$.

Hui-Chun Zhang
Ricci Curvature and Bochner Formula on Alexandrov Spaces
A contradiction argument implies the inequality (*). Write the RHS of (*) as $w(x)$.

(i) If inequality (*) is wrong at point x, the continuity of f implies that $\Delta u_t > w$ near x, say Ω.

(ii) solve a function v such that $\Delta v = -w$ in Ω, and with the same boundary data as u_t. So, from the above comparison property, $v + u_t$ have strict minimum in Ω. Then the function

$$H(x, y) := u(y) + v(x) + |xy|^2 / 2t$$

has strict minimum in $\Omega \times \Omega$.

(iii) By Petrunin’s perturbation argument, we can assume that the minimum of $H(x, y)$, say (x_0, y_0), is Perelman’s “smooth”. Now an contradiction come from the combination of the facts: $H(x, y)$ has mimimum at (x_0, y_0) and mean inequalities for u and v.
Step 3.

- by suitable choosing a in the inequality (*), we get

$$
\frac{\Delta u_t(x) - f(x)}{t} \leq \frac{f(F_t(x)) - f(x)}{t} - \frac{1}{n} f(x) f(F_t(x)) - K |\nabla u_t(x)|^2 + C |f(F_t(x)) - f(x)| + Ct
$$

for some positive constant C.

- By using the Lipschitz continuity of f and taking $t \to 0^+$, we get

$$
\frac{1}{2} \Delta |\nabla u|^2 \geq \left(\frac{f^2}{n} + \langle \nabla u, \nabla f \rangle + K |\nabla u|^2 \right) \text{vol}.
$$
Sketch of the proof

Step 3.

- by suitable choosing a in the inequality (*), we get

\[
\frac{\Delta u_t(x) - f(x)}{t} \leq \frac{f(F_t(x)) - f(x)}{t} - \frac{1}{n} f(x)f(F_t(x)) \\
- K|\nabla u_t(x)|^2 + C|f(F_t(x)) - f(x)| + Ct
\]

for some positive constant C.

- By using the Lipschitz continuity of f and taking $t \rightarrow 0^+$, we get

\[
\frac{1}{2} \Delta |\nabla u|^2 \geq \left(\frac{f^2}{n} + \langle \nabla u, \nabla f \rangle + K|\nabla u|^2 \right) \text{vol}.
\]
Application 1: Yau’s gradient estimate

Theorem (Yau’s gradient estimate, Zhang–Zhu)

Let M be an Alexandrov space with $\text{Ric} \geq -(n - 1)k$, $(k \geq 0)$ and u be a positive harmonic function. Then

\[
\max_{x \in B_p(\frac{R}{2})} |\nabla \log u| \leq C(n, \sqrt{k}R)(\sqrt{k} + \frac{1}{R}),
\]

and

\[
|\nabla \log u| \leq C(n, k).
\]
Application 1: Yau’s gradient estimate

Theorem (Yau’s gradient estimate, Zhang–Zhu)

Let M be an Alexandrov space with $\text{Ric} \geq -(n-1)k$, $(k \geq 0)$ and u be a positive harmonic function. Then

\[
\max_{x \in B_p \left(\frac{R}{2} \right)} |\nabla \log u| \leq C(n, \sqrt{kR})(\sqrt{k} + \frac{1}{R}),
\]

\[
|\nabla \log u| \leq C(n, k).
\]
Application 2: Eigenvalue estimate, Obata type theorem

Theorem (Qian–Zhang–Zhu)

Let M be a compact n-dim Alexandrov space, and denote by $\lambda_1(M)$ the first non-zero eigenvalue. Then

$$\text{Ric}(M) \geq (n-1)K \implies \lambda_1(M) \geq \lambda_1(K, n, d),$$

where d is the diameter of M, and $\lambda_1(K, n, d)$ is the first non-zero Neumann eigenvalue of following 1-dim model:

$$v''(x) - (n-1)T(x)v'(x) = -\lambda v(x), \quad x \in \left(-\frac{d}{2}, \frac{d}{2}\right),$$

$$v'(-\frac{d}{2}) = v'(\frac{d}{2}) = 0$$

and $T(x) = \begin{cases} \sqrt{K} \tan(\sqrt{K} x), & K \geq 0; \\ -\sqrt{-K} \tanh(\sqrt{-K} x), & K < 0. \end{cases}$

Remark: For smooth Riemannian manifolds, the theorem proved by Bakry–Qian (analytic method), Chen–Wang (coupling method) and Andrews–Clutterbuck (parabolic method).
Corollaries (Qian–Zhang–Zhu)

\[
\lambda_1(M) \geq 4s(1 - s) \frac{\pi^2}{d^2} + sK
\]

for all \(s \in [0, 1] \);

if in addition \(K > 0 \), then

\[
\lambda_1(M) \geq \frac{n}{n-1} K
\]

and “=” holds if and only if \(M \) is a spherical suspension.
Corollaries (Qian–Zhang–Zhu)

\[\lambda_1(M) \geq 4s(1-s)\frac{\pi^2}{d^2} + sK \]

for all \(s \in [0, 1] \);

if in addition \(K > 0 \), then

\[\lambda_1(M) \geq \frac{n}{n-1} K \]

and “=” holds if and only if \(M \) is a spherical suspension.
Corollaries (Qian–Zhang–Zhu)

\[\lambda_1(M) \geq 4s(1 - s)\frac{\pi^2}{d^2} + sK \]

for all \(s \in [0, 1] \);

if in addition \(K > 0 \), then

\[\lambda_1(M) \geq \frac{n}{n-1} K \]

and “=” holds if and only if \(M \) is a spherical suspension.

Remark:

- Lichnerovicz estimate, \(\lambda_1(M) \geq \frac{n}{n-1} K \), was earlier obtained by Petrunin and Lott–Villani.
Theorem (Qian–Zhang–Zhu)

Let M be a compact Alexandrov space with $\text{Ric} \geq 0$. Assume $u(x, t)$ is a positive solution of heat equation. Then

$$|\nabla \log u|^2 - \frac{\partial}{\partial t} \log u \leq \frac{n}{2t},$$

for any $t > 0$.

(Sharp Harnack estimate)

$$u(x_1, t_1) \leq u(x_2, t_2) \left(\frac{t_2}{t_1} \right)^\frac{n}{2} \exp \left(\frac{|x_1 x_2|^2}{4(t_2 - t_1)} \right),$$

for all $x_1, x_2 \in M$ and $0 < t_1 < t_2 < +\infty$.
Theorem (Qian–Zhang–Zhu)

Let M be a compact Alexandrov space with $\text{Ric} \geq 0$. Assume $u(x, t)$ is a positive solution of heat equation. Then

1. \[
|\nabla \log u|^2 - \frac{\partial}{\partial t} \log u \leq \frac{n}{2t},
\]
 for any $t > 0$.

2. **(Sharp Harnack estimate)**

 \[
u(x_1, t_1) \leq u(x_2, t_2) \left(\frac{t_2}{t_1}\right)^{\frac{n}{2}} \exp \left(\frac{|x_1 x_2|^2}{4(t_2 - t_1)}\right)
\]
 for all $x_1, x_2 \in M$ and $0 < t_1 < t_2 < +\infty$.

Hui-Chun Zhang

Ricci Curvature and Bochner Formula on Alexandrov Spaces
Thank You!