
Ricci Curvature and Bochner Formula on
Alexandrov Spaces

Hui-Chun Zhang

Sun Yat-sen University

March 18, 2013

(work with Prof. Xi-Ping Zhu)

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Contents

Alexandrov Spaces

Generalized Ricci Curvature

Geometric and Analytic consequences

Dirichlet Form, Laplacian and Harmonic Functions

Bochner Formula and its Applications

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Contents

Alexandrov Spaces

Generalized Ricci Curvature

Geometric and Analytic consequences

Dirichlet Form, Laplacian and Harmonic Functions

Bochner Formula and its Applications

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Contents

Alexandrov Spaces

Generalized Ricci Curvature

Geometric and Analytic consequences

Dirichlet Form, Laplacian and Harmonic Functions

Bochner Formula and its Applications

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Contents

Alexandrov Spaces

Generalized Ricci Curvature

Geometric and Analytic consequences

Dirichlet Form, Laplacian and Harmonic Functions

Bochner Formula and its Applications

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Contents

Alexandrov Spaces

Generalized Ricci Curvature

Geometric and Analytic consequences

Dirichlet Form, Laplacian and Harmonic Functions

Bochner Formula and its Applications

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



1. Alexandrov Spaces

Alexandrov spaces are locally compact geodesic spaces with the
concept of (sectional) curvature bounded below.

A geodesic space X is called to have curvature > k if
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1. Alexandrov spaces

Basic examples of Alexandrov spaces:

Orbifolds

Polyhedrons

The limit spaces (Gromov-Hausdroff topology) of a family of
smooth manifolds with controlled curvature, diameter and
dimension.
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1. Alexandrov spaces

Burago–Gromov–Perelman:

The following basic concepts and facts are well established on
Alexandrov spaces

The dimension is always an integer

Tangent cones.
Regular points is dense (but irregular points might be dense
too)

Volume comparison (Bishop–Gromov type)

Parallel transportation

Compactness theorem.
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1. Alexandrov spaces

Some important results on Riemanian manifolds with lower bounds
of sectional curvature have been extended to Alexandrov spaces.

(Petrunin) Extended Synge theorem

(Milka) Extended Toponogov splitting theorem

(Perelman, Shioya-Yamaguchi, Rong-Xu, etc) Extended soul
theorem
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1. Alexandrov spaces

In PDE and Riemannian geometry, the differential calculus is the
most fundamental tools. Now we recall the calculus on Alexandrov
spces.

Ostu–Shioya:

Established a C 1-structure and a corresponding
C 0-Riemannian structure on the set of regular points

Perelman:

Extended it to a DC 1-structure and a corresponding
BV 0-Riemannian structure on the set of regular points
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1. Alexandrov spaces

Under Ostu-shioya-Perelman’s Riemannian structure.

let point p be regular, Reimannian structure gij around p, then

|gij(x)− δij | = o(1), as |px | → 0.

let point p be “smooth” in the sense of Perelman, then

|gij(x)− δij | = o(|px |), as |px | → 0.

−−−−−−−−−−−

Comparison with Riemannian manifolds:

|gij(x)− δij | = O(|px |2), as |px | → 0.
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2. Ricci curvature

Many fundamental results in Riemannian geometry assume only
the lower bounds on Ricci curvature. For example:

Bonnet–Myers diameter theorem

Bishop–Gromov volume comparison and Levy–Gromov
isoperimetric inequality

Cheeger–Gromoll splitting theorem and Cheng maximal
diameter theorem

Lichnerowicz’s eigenvalue estimate and Obata theorem

Yau’s gradient estimates and Li-Yau’s estimates

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



2. Ricci curvature

Many fundamental results in Riemannian geometry assume only
the lower bounds on Ricci curvature. For example:

Bonnet–Myers diameter theorem

Bishop–Gromov volume comparison and Levy–Gromov
isoperimetric inequality

Cheeger–Gromoll splitting theorem and Cheng maximal
diameter theorem

Lichnerowicz’s eigenvalue estimate and Obata theorem

Yau’s gradient estimates and Li-Yau’s estimates

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



2. Ricci curvature

Many fundamental results in Riemannian geometry assume only
the lower bounds on Ricci curvature. For example:

Bonnet–Myers diameter theorem

Bishop–Gromov volume comparison and Levy–Gromov
isoperimetric inequality

Cheeger–Gromoll splitting theorem and Cheng maximal
diameter theorem

Lichnerowicz’s eigenvalue estimate and Obata theorem

Yau’s gradient estimates and Li-Yau’s estimates

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



2. Ricci curvature

Many fundamental results in Riemannian geometry assume only
the lower bounds on Ricci curvature. For example:

Bonnet–Myers diameter theorem

Bishop–Gromov volume comparison and Levy–Gromov
isoperimetric inequality

Cheeger–Gromoll splitting theorem and Cheng maximal
diameter theorem

Lichnerowicz’s eigenvalue estimate and Obata theorem

Yau’s gradient estimates and Li-Yau’s estimates

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



2. Ricci curvature

Many fundamental results in Riemannian geometry assume only
the lower bounds on Ricci curvature. For example:

Bonnet–Myers diameter theorem

Bishop–Gromov volume comparison and Levy–Gromov
isoperimetric inequality

Cheeger–Gromoll splitting theorem and Cheng maximal
diameter theorem

Lichnerowicz’s eigenvalue estimate and Obata theorem

Yau’s gradient estimates and Li-Yau’s estimates

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



2. Ricci curvature

An interesting problem is to give a generalized notion of
lower bounds of Ricci curvature on singular spaces, and study its
geometric and analytic comsequences.

Nowadays, several such generalizations have appeared. To
recall them, let us recall the equivalent conditions for lower Ricci
bounds on Riemannian manifolds.
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2. Ricci curvature

In a Riemannian manifold, the condition Ric > K is equivalent to
each one of the following properties:

Bochner formula

Displacement K−convexity

Volume comparison

(average) Second variation formula of arc-length.
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2. Ricci curvature

In a Riemannian manifold, the condition Ric > K is equivalent to
each one of the following properties:

Bochner formula

Displacement K−convexity

Volume comparison

(averaging) Second variation formula of arc-length.

At last, clearly

sec > K =⇒ Ric > (n − 1)K .
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2. Ricci curvature

(1) Bochner formula:
For each C 3 function f ,

1

2
∆|∇f |2 = |∇2f |2 + 〈∇f ,∇∆f 〉+ Ric(∇f ,∇f )

>
(∆f )2

n
+ 〈∇f ,∇∆f 〉+ K |∇f |2

Lin–Yau: define Ricci curvature on locally finite graphs

Ambrosio–Gigli–Savaré: define Bakry-Emery
curvature-dimension condition on Dirichlet form
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2. Ricci curvature

(2) Displacement K−convexity:
Mn— Riemannian manifold.
P2(Mn, dW , vol)— L2−Wasserstein space

Ent(µ) =

∫
Mn

dµ

dx
· log

dµ

dx
dvol(x)

is K−convex in P2(Mn, dW , vol).

Sturm, Lott–Villani: define CD(K , n) on metric measure
spaces

Ambrosio–Gigli–Savaré: improve CD(K , n) to RCD(K , n).
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2. Ricci curvature

(3) Volume comparison:
Denote Ap(r , ξ) the density of the Riemannian measure on ∂Bp(r).
Then

Ap(r , ξ)(
sK (r/

√
n − 1)

)n−1
is non-increasing on r (for each ξ ∈ Σp), where(
sK (r/

√
n − 1)

)n−1
is the corresponding density of the space form.

Sturm, Ohta: define MCP(K , n) on metric measure spaces.

Kuwae–Shioya: define BG (K ) on Alexandrov spaces.
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2. Ricci curvature

(4)Second variation formula of arc-length:

ξT

( )εξ
1

ξ  

 

exp q  

1q  
2q

( )ξεTq2
exp  

γgeodesic

n−1∑
i=1

d
(

expq1(εξi ), expq2(εT ξi )
)

6 (n − 1)d(q1, q2)− K
d(q1, q2)

2!
ε2 + o(ε2)

where ξ1, · · · , ξn−1 is an (n − 1)−orthonormal frame at q1 and
orthogonal to γ.

Zhang–Zhu: Ric > K on Alexandrov spaces.
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2. Ricci curvature

On an n-dim Alexandrov space, the above notions
“CD(K , n)”, “RCD(K , n)”, “MCP(K , n)” and “Ric > K ”
make sense.

Relation:

Ric > K =⇒ CD(K , n)

Petrunin (K = 0), Zhang − Zhu (K 6= 0)

⇐⇒ RCD(K , n) Gigli−Kuwada−Ohta

=⇒ MCP(K , n) Sturm

⇐⇒ BG (K ) Kuwae− Shioya

Question:

Ric > K ⇐⇒ CD(K , n)?
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3. Geometric Results

Now let us recall the geometric consequences of above generalized
Ricci conditions.
From now on, we always consider M to be an n-dim Alexandrov
space.

BG (K ) =⇒ Bishop–Gromov volume comparison
Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

BG (n − 1) =⇒ Bonnet–Myers theorem: diameter ≤ π
Sturm, Lott–Vinalli, Kuwae–Shioya, Ohta

CD(n − 1, n) =⇒ Lichnerowicz estimate: λ1 ≥ n
Lott–Vinalli
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3. Geometric Results

Theorem

Topological splitting theorem (Kuwae–Shioya):

MCP(0, n), ∃ a line =⇒ M
hemeo∼= R× N.

Topological maximal diameter theorem (Ohta):
MCP(n − 1, n), diam = π

=⇒ M
hemeo∼= a spherical suspension [0, π]×sin N.
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3. Geometric Results

Under our definition of Ricci curvature, we gave a new geometric
argument to prove:

Theorem (Zhang–Zhu)

Splitting theorem:

Alexandov space M, Ric > 0, ∃ a line =⇒ M
isom∼= R× N.

Maximal diameter theorem:
n − dim Alexandov space M, Ric > n − 1, diam = π,

=⇒ M
isom∼= a spherical suspension [0, π]×sin N.

Remark: Very recently, Gigli generalizes Splitting theorem for
metric measure spaces under RCD(0, n).

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



3. Geometric Results

Under our definition of Ricci curvature, we gave a new geometric
argument to prove:

Theorem (Zhang–Zhu)

Splitting theorem:

Alexandov space M, Ric > 0, ∃ a line =⇒ M
isom∼= R× N.

Maximal diameter theorem:
n − dim Alexandov space M, Ric > n − 1, diam = π,

=⇒ M
isom∼= a spherical suspension [0, π]×sin N.

Remark: Very recently, Gigli generalizes Splitting theorem for
metric measure spaces under RCD(0, n).

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



3. Geometric Results

Since our defined Ricci condition is local, it can be lifted to the
covering spaces. Some topological consequences are given

Corrollaries

Alexandov space M, Ric > 0
=⇒

M compact, π1(M) has a finite index Bieberbach subgroup;
any finitely generated subgroup of π1(M) has polynomial
growth of degree 6 n.

Alexandov space M, Ric > (n − 1)K , diam 6 D
=⇒

b1(M) 6 C (n,KD2).
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3. Geometric Results

Question:
Levy–Gromov isoperimetric inequality for Alexandrov spaces?
i.e.,
Alexandrov space M with Ric > n − 1. Set a surface σα dividing
the volume of M in ratio α. Let sα be a geodesic sphere in Sn
dividing the volume of Sn in the same ratio α. Can one prove

vol(σα)

vol(M)
>

vol(sα)

vol(Sn)
?

Remark: Petrunin sketched a proof of the inequality under
assumption sectional curvature > 1.
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4. Dirichlet Form, Laplacian and Harmonic functions

Now let us consider the analysis on Alexandrov spaces. We will
begin from the canonical Dirichlet form and the definition of
Laplace operator.
Recall the following basic facts

A Lipschitz function has derivative almost everywhere
(Cheeger)

Sobolev spaces W 1,p(M) are well-defined
(Cheeger, Shanmugalingam) etc.

Canonical Dirichlet form

E (u, v) =

∫
M
〈∇u,∇v〉 dvol , ∀u, v ∈W 1,2(M).

(Kuwae– Machigashira–Shioya)
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4. Dirichlet Form, Laplacian and Harmonic Functions

We will understand the Laplician of a Sobolev function as a Radon
measure.

If u ∈W 1,2(M) such that

Lu(φ) := −
∫
M
〈∇u,∇φ〉 dvol 6

(>)

∫
M

f φdvol ,

for all φ ∈ Lip0(M), φ > 0,
=⇒ Lu is a signed Radon measure, say

∆u 6
(>)

f · vol .

Poisson equation
∆u = f · vol .

Under Lebesgue decomposition, it is

∆regu = f and ∆singu = 0.

In particular, the solution of ∆u = 0 is called a harmonic
function on M.
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4. Dirichlet Form, Laplacian and Harmonic Functions

To determine the regularity of harmonic functions on an
Alexandrov space M, one has the followings facts (from volume
comparison):

doubling property

Poincaré inequality and Sobolev inequality

De Giorgi, Nash–Moser iteration argument works

Every harmonic function is Hölder continuous
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4. Dirichlet Form, Laplacian and Harmonic Functions

The same regularity problem for harmonic maps have considered:

Jost, Lin: harmonic maps between Alexandrov spaces are
Hölder continuous

Korevaar–Schoen: harmonic maps from smooth manifolds to
Alexandrov spaces are Lipschitz continuous

A generalized Liouville theorem have proved:
Hua: CD(0, n) =⇒ the space of harmonic function with
polynomial growth of degree 6 d is finite dimensional for any
d ∈ R+.
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4. Dirichlet Form, Laplacian and Harmonic Functions

Question: Is any harmonic function on an Alexandrov space
Lipschitz continuous?

By using Ostu–Shioya, Perelman’s coordinate system, there exists
a BV 0

loc−Riemannian metric (gij). A harmonic function u is a
solution of

n∑
i ,j=1

∂i (
√

gg ij∂ju) = 0

in the sense of distribution.
The difficulty is the coefficient

√
gg ij might be not continuous on

a dense subset.
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4. Dirichlet Form, Laplacian and Harmonic Functions

Petrunin (1996, announced):
Let u be a harmonic function on an Alexandrov space with
(sectional) curvature > 0

=⇒ u is Lipschitz continuous.

Gigli–Kuwada–Ohta, Zhang–Zhu:
Let u be a harmonic function on an Alexandrov space,

=⇒ u is Lipschitz continuous.

Koskela–Rajala–Shanmugalingam:
Under a suitable condition for heat kernal, they obtained the
Lipschitz continuity for Cheeger harmonic functions.
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4. Dirichlet Form, Laplacian and Harmonic Functions

Open Question (Lin’s conjecture):

Is any harmonic maps between Alexandrov spaces Lipschitz
continuous?
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5. Bochner Formula and Its Applications

Bochner formula is one of most important tools in Riemannian
geometry.
On a Riemannian manifold with Ric > K , there holds that for any
C 3 function u,

1

2
∆|∇u|2 = |∇2u|2 + 〈∇u,∇∆u〉+ Ric(∇u,∇u)

>
(∆u)2

n
+ 〈∇u,∇∆u〉+ K |∇u|2

In Alexandrov spaces, ∆u is understood as a Radon measure,
but there is no sense of Hessian ∇2u

It is not know if an Alexandrov space can be approximated (in
GH distance) by smooth manifolds.
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5. Bochner Formula and Its Applications

Theorem (Bochner formula, Zhang–Zhu)

Let M be an Alexandrov space with Ric > K . Suppose f ∈ Lip(M)
and u satisfies

∆u = f · vol .

Then we have |∇u|2 ∈W 1,2
loc (M) and

−1

2

∫
M

〈
∇|∇u|2,∇φ

〉
dvol >

∫
M
φ
( f 2

n
+ 〈∇u,∇f 〉+ K |∇u|2

)
dvol

for every 0 6 φ ∈W 1,2
0 (M) ∩ L∞(M).
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Sketch of the proof

Step 1. Consider Hamilton-Jacobi semigroup

ut(x) = min
y
{u(y) +

|xy |2

2t
}, x ∈ M, t > 0.

For any t > 0 and almost any x ∈ M,

lim
s→0+

ut+s(x)− ut(x)

s
= −|∇xut |2

2

For any t > 0 and x regular,

⇒ ∃ unique y = expx(−t∇xut)

satisfying

ut(x) = u(y) +
|xy |2

2t
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Sketch of the proof

Step 2.

For each t > 0, define a map Ft : M → M by Ft(x) to be one
of point such that

ut(x) = u
(
Ft(x)

)
+
|xFt(x)|2

2t
.

For any t > 0 sufficiently small,

a2∆ut 6
(

f ◦Ft +
n(a− 1)2

t
− Kt

3
(a2 + a + 1)|∇ut |2

)
vol (∗)

for all a > 0.
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Sketch of the proof

To conclude the inequality (*), two essential facts of Alexandrov
spaces are used:

Comparison Property:
Let u be semi-concave, ∆u > 0 on Ω if and only if for any
small ball B b Ω, we have u > uB , where uB is harmonic on
B with the same boundary data of u.

For Perelman’s “smooth” points x and y , the assumption
Ric > 0 implies∫

Bo(δj )

(
| expx(aη) expy (Tη)|2 − |xy |2

)
dHn(η)

6 (1− a)2
ωn−1
n + 2

· δn+2
j + o(δn+2

j )

for any a > 0, as δj → 0.

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Sketch of the proof

To conclude the inequality (*), two essential facts of Alexandrov
spaces are used:

Comparison Property:
Let u be semi-concave, ∆u > 0 on Ω if and only if for any
small ball B b Ω, we have u > uB , where uB is harmonic on
B with the same boundary data of u.

For Perelman’s “smooth” points x and y , the assumption
Ric > 0 implies∫

Bo(δj )

(
| expx(aη) expy (Tη)|2 − |xy |2

)
dHn(η)

6 (1− a)2
ωn−1
n + 2

· δn+2
j + o(δn+2

j )

for any a > 0, as δj → 0.

Hui-Chun Zhang Ricci Curvature and Bochner Formula on Alexandrov Spaces



Sketch of the proof

A contradiction argument implies the inequality (*). Write the
RHS of (*) as w(x).
(i) If inequality (*) is wrong at point x , the continuity of f implies
that ∆ut > w near x , say Ω.
(ii) solve a function v such that ∆v = −w in Ω, and with the
same boundary data as ut . So, from the above comparison
property, v + ut have strict minimum in Ω. Then the function

H(x , y) := u(y) + v(x) + |xy |2/2t

has strict minimum in Ω× Ω.
(iii) By Petrunin’s perturbation argument, we can assume that the
minimum of H(x , y), say (x0, y0), is Perelman’s “smooth”. Now an
contradiction come from the combination of the facts: H(x , y) has
mimimum at (x0, y0) and mean inequalities for u and v .
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Sketch of the proof

Step 3.

by suitable choosing a in the inequality (*), we get

∆ut(x)− f (x)

t
6

f (Ft(x))− f (x)

t
− 1

n
f (x)f (Ft(x))

− K |∇ut(x)|2 + C |f (Ft(x))− f (x)|+ Ct

for some positive constant C .

By using the Lipschitz continuity of f and taking t → 0+, we
get

1

2
∆|∇u|2 >

( f 2

n
+ 〈∇u,∇f 〉+ K |∇u|2

)
vol .
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Application 1: Yau’s gradient estimate

Theorem (Yau’s gradient estimate, Zhang–Zhu)

Let M be an Alexandrov space with Ric > −(n− 1)k, (k > 0) and
u be a positive harmonic function. Then

max
x∈Bp(

R
2
)
|∇ log u| 6 C (n,

√
kR)(

√
k +

1

R
),

|∇ log u| 6 C (n, k).
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Application 2: Eigenvalue estimate, Obata type theorem

Theorem (Qian–Zhang–Zhu)

Let M be a compact n-dim Alexandrov space, and denote by
λ1(M) the first non-zero eigenvalue. Then

Ric(M) > (n − 1)K =⇒ λ1(M) > λ1(K , n, d),

where d is the diameter of M, and λ1(K , n, d) is the first non-zero
Neumann eigenvalue of following 1-dim model :

v ′′(x)− (n − 1)T (x)v ′(x) = −λv(x), x ∈ (−d
2 ,

d
2 ),

v ′(−d
2 ) = v ′(d2 ) = 0

and T (x) =

{√
K tan(

√
K x), K > 0;

−
√
−K tanh(

√
−K x), K < 0.

Remark: For smooth Riemannian manifolds, the theorem proved by
Bakry–Qian (analytic method), Chen–Wang (coupling method)
and Andrews–Clutterbuck (parabolic method).
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Application 2: Eigenvalue estimate, Obata type theorem

Corrollaries (Qian–Zhang–Zhu)

λ1(M) > 4s(1− s)π
2

d2 + sK

for all s ∈ [0, 1];

if in addition K > 0, then

λ1(M) > n
n−1K

and “=” holds if and only if M is a spherical suspension.
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Application 2: Eigenvalue estimate, Obata type theorem

Corrollaries (Qian–Zhang–Zhu)

λ1(M) > 4s(1− s)π
2

d2 + sK

for all s ∈ [0, 1];

if in addition K > 0, then

λ1(M) > n
n−1K

and “=” holds if and only if M is a spherical suspension.

Remark:

Lichnerouicz estimate, λ1(M) > n
n−1K , was earlier obtained

by Petrunin and Lott–Villani.
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Application 3: Li–Yau’s estimate

Theorem (Qian–Zhang–Zhu)

Let M be a compact Alexandrov space with Ric > 0. Assume
u(x , t) is a positive solution of heat equation. Then

|∇ log u|2 − ∂

∂t
log u 6

n

2t
,

for any t > 0.

(Sharp Harnack estimate)

u(x1, t1) 6 u(x2, t2)
( t2

t1

) n
2

exp
( |x1x2|2

4(t2 − t1)

)
for all x1, x2 ∈ M and 0 < t1 < t2 < +∞.
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Thank You !
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