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The space (P(X ),W2)

Question (Existence of optimal maps)

When is the/an optimal plan induced by a map? (σ = (id ,T )#µ
for some map T : X → X)

The usual steps in the proof are (given two measures
µ, ν ∈ P(X )):

1 Prove that any optimal plan from µ to ν is induced by a map.

2 Linear combinations of optimal plans are optimal.

3 The combination of two different optimal maps is not a map.
Hence there is only one optimal map.
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Existence of optimal maps

The existence of optimal maps for the quadratic cost has been
obtained for example by

Brenier (1991) in R
n with µ ≪ Ln. (Earlier steps by Brenier

1987 and Knott & Smith 1984)

McCann (1995) in R
n with µ(E ) = 0 for n − 1-rectifiable E .

Gangbo & McCann (1996) in R
n with µ(E ) = 0 for all

c − c-hypersurfaces E .

McCann (2001) for Riemannian manifolds M with µ ≪ vol.

Gigli (2011) for Riemannian manifolds M there exists an
optimal map from µ to every µ if and only if µ(E ) = 0 for all
c − c-hypersurfaces E .

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds



Optimal mass transportation
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Existence of optimal maps

and . . .

Bertrand (2008) for finite dimensional Alexandrov spaces with
µ ≪ Hd .

Gigli (2012) for non-braching CD(K ,N)-spaces, N < ∞, with
µ ≪ m. For non-branching CD(K ,∞)-spaces with
µ, ν ∈ D(Entm).

Rajala & Sturm (2012) for RCD(K ,∞)-spaces with µ, ν ≪ m.

Cavalletti & Huesmann (2013) for non-branching
MCP(K ,N)-spaces with µ ≪ m.
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The space (P(X ),W2) for (X , d) geodesic

(All the geodesics in this talk are constant speed geodesics
parametrized by [0, 1].)

If (X , d) is geodesic, then (P(X ),W2) is geodesic.

A geodesic (µt) ⊂ Geo(P(X )) can be realized as a probability
measure π ∈ P(Geo(X )) in the sense that for all t ∈ [0, 1] we
have (et)#π = (µt).
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From Geo(P(X )) to P(Geo(X ))

Optimal plan between µ0 and µ1 as a geodesic in P(X ).

µ0

µ1

µ 1
2
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in metric spaces
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From Geo(P(X )) to P(Geo(X ))

Optimal plan between µ0 and µ1 as a measure in P(Geo(X )).

µ0

µ1
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Optimal plans σ vs. Geo(P(X )) vs. P(Geo(X ))

Denote by OptGeo(µ0, µ1) ⊂ P(Geo(X )) the set of all π for
which (et)#π is a geodesic connecting µ0 and µ1. The space
OptGeo(µ0, µ1) has the most information on transports between
µ0 and µ1: Usually neither of the maps

OptGeo(µ0, µ1) → Geo(P(X )) : π 7→ (t 7→ (et)#π),

OptGeo(µ0, µ1) → P(X × X )) : π 7→ (e0, e1)#π

is injective.
Moreover, a geodesic (µt)

1
t=0 does not (in general) define an

optimal plan σ, nor does σ define (µt)
1
t=0.
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Optimal mass transportation
CD(K ,∞)-spaces

RCD(K ,∞)-spaces

definition
branching vs. non-branching
local Poincaré inequalities

Optimal transport on Riemannian manifolds

Curvature changes the size of the
support of the transported mass.

zero curvature

positive curvature
negative curvature
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Theorem (Otto & Villani 2000, Cordero-Erausquin, McCann &
Schmuckenschläger 2001, von Renesse & Sturm 2005)

For any smooth connected Riemannian manifold M and any
K ∈ R the following properties are equivalent:

1 Ric(M) ≥ K in the sense that Ricx(v , v) ≥ K |v |2 for all
x ∈ M and v ∈ TxM.

2 Entvol is K-convex on P2(M).

Here Entvol(ρvol) =
∫

M
ρ log ρdvol and K -convexity of Entvol on

P2(M) means that along every geodesic (µt)
1
t=0 ⊂ P2(M) we have

Entvol(µs) ≤ (1− s)Entvol(µ0) + sEntvol(µ1)

−
K

2
s(1− s)W 2

2 (µ0, µ1)

for all s ∈ [0, 1].
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Ricci-curvature bounds in metric spaces

Definition (Sturm (2006))

(X , d,m) is a CD(K ,∞)-space (K ∈ R) if between any two
absolutely continuous measures there exists a geodesic
(µt) ∈ Geo(P(X )) along which the entropy
Entm(ρm) =

∫

ρ log ρ dm is K -convex:

Entm(µs) ≤ (1− s)Entm(µ0) + sEntm(µ1)

−
K

2
s(1− s)W 2

2 (µ0, µ1)

for all s ∈ [0, 1].

There is also a slightly stronger definition by Lott and Villani.
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RCD(K ,∞)-spaces

definition
branching vs. non-branching
local Poincaré inequalities

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani
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definition
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local Poincaré inequalities

Branching geodesics

One problematic feature of the definition is that CD(K ,∞)-spaces
include also spaces with branching geodesics; like (R2, || · ||∞,L2).
We say that two geodesics γ1 6= γ2, branch if there exists
t0 ∈ (0, 1) so that γ1t = γ2t for all t ∈ [0, t0].

γ10 = γ20 γ1t0 = γ2t0
γ1

γ2

A space where there are no branching geodesics is called
non-branching.
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Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

CD(K ,∞) + non-branching
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Localization in time with branching

µ0 µ1µs

µt

Entm
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definition
branching vs. non-branching
local Poincaré inequalities

Localization in time with branching

Not only does the new geodesic satisfy the K -convexity inequality
between any three times 0 < t1 < s < t2 < 1, but also the
measures along the geodesic have bounded densities (under some
assumptions on the initial and final measures). This is true for
instance if we start with two measures µ0 and µ1 having bounded
densities and bounded supports.
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Iterating minimization fails for CD(K ,N)

In CD(K ,N)-spaces, minimizing the (Rényi) entropy
∫

X
ρ1−1/N dm

does not always produce a geodesic along which the inequalities
required by CD(K ,N)-condition hold.

µ0 µ1µ 1
2

µ 1
4

µt

Entm
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Iterating minimization fails for CD(K ,N)

In CD(K ,N)-spaces, minimizing the (Rényi) entropy
∫

X
ρ1−1/N dm

does not always produce a geodesic along which the inequalities
required by CD(K ,N)-condition hold.
However, if one of the measures is singular with respect to m, we
get the correct CD(K ,N)-bounds when taking intermediate points
towards this measure.
Combining this observation with the density bounds gives

Theorem

CD(K ,N) ⇒ MCP(K ,N) (by Ohta).
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Definition

A space (X , d ,m) is said to satisfy the measure contraction
property MCP(K ,N) (in the sense of Ohta) if for every x ∈ X and
A ⊂ X (and A ⊂ B(x , π

√

(N − 1)/K ) if K > 0) with
0 < m(A) < ∞ there exists

π ∈ GeoOpt

(

δx ,
1

m(A)
m|A

)

so that
dm ≥ (et)#

(

tNβt(γ0, γ1)m(A)dπ(γ)
)

.
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local Poincaré inequality in non-branching MCP(K ,N)

Theorem (Lott & Villani, von Renesse, Sturm, Hinde & Petersen,
Cheeger & Colding)

Suppose that (X , d,m) is a nonbranching MCP(K ,N)-space with
K ∈ R. Then the weak local Poincaré inequality

−

∫

B(x ,r)
|u − 〈u〉B(x ,r)|dm ≤ C (N,K , r)r−

∫

B(x ,2r)
g dm

holds for any measurable function u defined on X , any upper
gradient g of u and for each point x ∈ X and radius r > 0.
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local Poincaré inequality in CD(K ,∞)

Theorem

Suppose that (X , d,m) is a CD(K ,∞)-space (in the sense of
Sturm) with K ∈ R. Then the weak local Poincaré inequality

∫

B(x ,r)
|u − 〈u〉B(x ,r)|dm ≤ 4reK

−r2

∫

B(x ,2r)
g dm

holds for any measurable function u defined on X , any upper
gradient g of u and for each point x ∈ X and radius r > 0.

Observe that we do not have average integrals in this theorem.
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Proof of the local Poincaré inequality

Let us prove the CD(0,∞) case for simplicity. We have to show
that

∫

B(x ,r)
|u − 〈u〉B(x ,r)|dm ≤ 4r

∫

B(x ,2r)
g dm.

Abbreviate B = B(x , r) and denote

M = inf

{

a ∈ R : m({u > a}) ≤
m(B)

2

}

.

Split the ball B into two Borel sets B+ and B− so that
B = B+ ∪ B−, B+ ∩ B− = ∅, m(B+) = m(B−) and

u(x) ≤ M ≤ u(y) for all x ∈ B−, y ∈ B+.
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Proof of the local Poincaré inequality

Let (µt)
1
t=0 be a geodesic between 1

m(B+)m|B+ and 1
m(B−)

m|B−

along which we have the density bound (writing µt = ρtm)

ρt(y) ≤
2

m(B)

for all t ∈ [0, 1] at m-almost every y ∈ X . Let π be a
corresponding measure on the set of geodesics.
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definition
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Proof of the local Poincaré inequality

From u(z) ≤ M ≤ u(y) for all (z , y) ∈ B− × B+ we get

|u(γ(0)) − u(γ(1))| = |u(γ(0)) −M|+ |M − u(γ(1))|

for π-almost every γ ∈ Geo(X ). Therefore

∫

Geo(X )
|u(γ(0)) − u(γ(1))|dπ(γ)

=

∫

Geo(X )
|u(γ(0)) −M|dπ(γ) +

∫

Geo(X )
|M − u(γ(1))|dπ(γ)

=
2

m(B)

∫

B+

|u(z)−M|dm(z) +
2

m(B)

∫

B−

|M − u(z)|dm(z)

=
2

m(B)

∫

B

|u(z)−M|dm(z).
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Proof of the local Poincaré inequality

∫

B(x ,r)
|u − 〈u〉B(x ,r)|dm ≤

1

m(B)

∫∫

B×B

|u(z)− u(y)|dm(z)dm(y)

≤
1

m(B)

∫∫

B×B

(|u(z)−M|+ |M − u(y)|)dm(z)dm(y)

= 2

∫

B

|u(z)−M|dm(z) = m(B)

∫

Geo(X )
|u(γ(0)) − u(γ(1))|dπ(γ)

≤ 2rm(B)

∫

Geo(X )

∫ 1

0
g(γ(t)) dt dπ(γ)

= 2rm(B)

∫ 1

0

∫

X

g(z)ρt(z)dm(z)dt

≤ 4r

∫ 1

0

∫

B(x ,2r)
g(z)dm(z)dt = 4r

∫

B(x ,2r)
g dm.
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CD(K ,∞)-spaces

RCD(K ,∞)-spaces

definition
essential non-branching

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

CD(K ,∞) + non-branching
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Question

Does there exist a stable definition of Ricci curvature lower bounds
that excludes branching?
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RCD(K ,∞)

Definition (Ambrosio, Gigli & Savaré, 2011 (preprint))

A metric measure space (X , d,m) has Riemannian Ricci curvature
bounded below by K ∈ R, or RCD(K ,∞) for short, if one of the
following equivalent conditions hold:

1 (X , d,m) is a CD(K ,∞) space and the Cheeger-energy
Ch(f ) = 1

2

∫

|Df |2w is a quadratic form on L2(X ,m).

2 (X , d,m) is a CD(K ,∞) space and the W2 gradient flow of
Entm is additive on P2(X ).

3 Any µ ∈ P2(X ) is the starting point of an EVIK gradient flow
of Entm.

Theorem (Daneri & Savaré, 2008)

EVIK implies strong displacement K-convexity.
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definition
essential non-branching

RCD(K ,∞) ⇒ essential non-branching

Theorem (R. & Sturm, 2012 (preprint))

Strong CD(K ,∞)-spaces are essentially non-branching. In
particular RCD(K ,∞)-spaces are essentially non-branching.

Corollary (of essential non-branching and Gigli’s result)

There exist optimal transport maps in strong CD(K ,∞)-spaces
between µ0, µ1 ≪ m.

Definition

A space (X , d,m) is called essentially non-branching if for every
µ0, µ1 ∈ P2(X ) that are absolutely continuous with respect to m

we have that any π ∈ OptGeo(µ0, µ1) is concentrated on a set of
non-branching geodesics. (Meaning that π(Γ) = 1 for some
Γ ⊂ Geo(X ) so that there are no two branching geodesics in Γ.)
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RCD(K ,∞)-spaces

definition
essential non-branching

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

RCD(K ,∞)

CD(K ,∞) + essential non-branching
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“Proof” Suppose that the claim is not true so that there exists a
measure π that is not concentrated on non-branching geodesics.
By restricting the measure π we may assume that there are
0 < t1 < t2 < 1 with |t1 − t2| small and two sets of geodesics
Γ1, Γ2 so that

(et)#π|Γ1 = (et)#π|Γ2 for all t ∈ [0, t1]

and
(et)#π|Γ1 ⊥ (et)#π|Γ2 for all t ∈ [t2, 1]

for all t ∈ [t2, 1].
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0 1t1 t2

Γ1

Γ2
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Entm
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0 1t1 t2

Γ1

Γ2

Entm

log 2
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Why is ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞} =: M?.
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Consider the curve Γ ∈ P(Geo(X )) between the marginals
corresponding to the part of the measure which we want to
redistribute along which Entm is displacement convex. We have

Entm(Γ 1
2
) ≤

1

2
Entm(Γ0) +

1

2
Entm(Γ1) ≤ logM.

On the other hand, by Jensen’s inequality we always have

Entm(Γ 1
2
) =

∫

E

ρ 1
2
log ρ 1

2
dm

≥ m(E )

(

−

∫

E

ρ 1
2
dm

)

log

(

−

∫

E

ρ 1
2
dm

)

≥ log
1

m(E )
,

where E = {x ∈ X : ρ 1
2
(x) > 0} and Γt = ρtm. Thus

m(E ) ≥
1

M
.
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This is why ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞}.

The CD(K ,∞) condition gives a new well spread midpoint for the
high-density part of the old midpoint.
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This is why ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞}.

Taking a weighted combination of this new midpoint measure and
the old one lowers the entropy.
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This is why ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞}.

Therefore at the minimum of the entropy among the midpoints we
have the density bound.
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The rest of the geodesic.

When we continue taking minimizers in the next level midpoints
the bound is preserved.
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The rest of the geodesic.

Finally we end up with a complete geodesic with the density bound.
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Question

MCP(K ,N) ⇒ Local Poincaré?

Question

Does there exist optimal maps in CD(K ,N)-spaces from every
µ ≪ m? (not all plans are given by maps)

Question

Local-to-global for CD(K ,∞)?

Question

Are RCD(K ,∞)-spaces non-branching?

Question

Are RCD(K ,∞)-spaces Ricci-limits?
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Thank you!
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