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Introduction
Analysises on measure-metric spaces:
(Ch) Analogy of differentiable manifold, e.g. Rn

gradient, the Sobolev inequalities, differentiable strucure,....
Haj lasz: Sobolev spaces M1,p(X)
Shanmugalingam: Newtonian spaces N1,p(X)
Cheeger: H1,p(X)

Measurable differential structure

(Fr) Analysis on Fractals – Brownian motions
Limit of Discrete objects, for example, graph laplacian, Random walks
“proper scaling limit”
Dirichlet forms and (associated) Brownian motion
Sierpinski gasket(Kusuoka, Goldstein), Siperpinski carpet(Barlow-Bass)

Measurable Riemannian structure

(Rc) Ricci curvature lower bound, Bochner, Bakery-Emery
Curvature-dimension lower bounds —– CD(K,N), etc
Lott-Villani, Sturm, Ambrosio, Gigli, Savaré,.....
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Conjecture, obervation, impression, hocus-pocus?

(1) (Ch) ∩ (Fr) has positive measure.
(2) (Fr) ∩ (Rc) has “very small” measure.
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Cheeger’s result
(X, d, µ): a measure-metric space

Notation. B(x, r) = {y|y ∈ X, d(x, y) < r}, V (x, r) = µ(B(x, r)).

Assumption 0.1. For any x, y ∈ X, there exists a rectifiable curve γ
joining x and y.

Theorem 0.2 (Cheerger’s theorem).
(1, p)-Poincaré inequality(1 ≤ p <∞)

+ the volume doubling property of µ,
⇓

measurable differentiable structure on (X, d, µ)
which is a collection of pairs {(Xi, ξ

(i))}i≥1 that satisfies the conditions in
the next to the next slide:
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Definition 0.3 (Volume doubling property). µ has the volume
doubling propety ⇔

def
∃C > 0, ∀x ∈ X, r > 0

µ(B(x, 2r)) ≤ Cµ(B(x, r))

Definition 0.4 (Lipschitz functions). f : X → R: Lipchitz ⇔
def

sup
x,y∈X,x 6=y

|f(x)− f(y)|
d(x, y)

< +∞.

f : X → R: locally Lipschitz ⇔
def
∀x ∈ X, r > 0, f |B(x,r) is Lipschitz.

Lip(X) =
def

the collection of Lipschitz functions

Lip loc(X) =
def

the collection of locally Lipschitz functions
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For f : X → R, we define

lipf(x) =
def

lim inf
r↓0

sup
y∈B(x,r)

|f(x)− f(y)|
r

.

Definition 0.5 (Poincaré inequality). Let 1 ≤ q ≤ p <∞. A
metric-measure space (X, d, µ) admits a (q, p)-Poincaré inequality if
∃C,L ≥ 1, ∀f ∈ Lip(X), x ∈ X, r > 0,(

−
∫

B(x,r)

|f − fB|qdµ

) 1
q

≤ Cr

(
−
∫

B(x,Lr)

(lipf)pdµ

) 1
p

.

If q′ ≤ q ≤ p ≤ p′, then (q, p)-Poincaré ⇒ (q′, p′)-Poincaré.
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1 Xi is a measurable subset of X and µ(Xi) > 0. µ(X\ ∪i≥1 Xi) = 0.

2 ∀i, ξ(i) = (ξ
(i)
1 , . . . , ξ

(i)
mi) ∈ Lip(X)mi such that

sup
i≥1

mi < +∞ : the dimension of {(Xi, ξ
(i))}i≥1

3 ∀i, ∃a linear map di : Lip loc(X)→ {measurable functions on Xi}n

lim sup
y→x

|f(y)− f(x)− dif(x) · (ξ(i)(y)− ξ(i)(x))|
d(x, y)

= 0

for µ-a.e. x ∈ Xi. Moreover, di(fg) = fdig + gdif .

4 ∀i and for µ-a.e. x ∈ Xi, ∃a norm | · |i,x of Rmi, ∀f ∈ Lip loc(X),
|dif(x)|i,x is measurable,

|dif(x)|i,x = |djf(x)|j,x

for µ-a.e. x ∈ Xi ∩Xj.
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Theorem 0.6 (Sobolev space H1,p). Under the same assumptions as
Cheeger’s theorem, define

||f ||1,p = ||f ||p + ||df ||p,

where ||df ||p =
(∫

X

(|df(x)|x)pµ(dx)
)1/p

. Then the closure of

{u|u ∈ Lip loc(X), ||u||1,p < +∞},

which is denoted by H1,p(X), is a reflective Banach space.

||df ||pp is called the Cheeger p-energy.
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Example 0.7 (Heisenberg group). Define a (non-commutative) group
structure on R3 as follows

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ +
1

2
(xy′ − x′y))

Define
||(x, y, t)|| = ((x2 + y2)2 + t2)1/4

and d(a, b) = ||a−1 · b||, where a, b ∈ R. Let µ be the Lebesgue measure of
R3. Then (R3, d, µ) satisfies (1, 1)-Poincaré inequality. µ satisfies the
volume doubling property.
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Example 0.8. {Mn}n≥1: a sequence of Riemannian manifold which
satisfies

inf
n≥1

Ricci(Mn) > −∞

and
sup
n≥1

diam(Mn) < +∞.

(M, d, µ): Gromov-Hausdorff limit of {Mn}n≥1. Then (M, d, µ) satisfies
1-Poincaré inequality and the volume doubling property.

Example 0.9 (Fat Sierpinski carpet). J. Mackay, J. Tyson and K.
Wildrick, Modulus and Poincaré inequalities on non-self-similar Sierpinski
carpets with positive area

Reminiscence of differentiable structure..........
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Cheeger 2-energy as Dirichlet form

Theorem 0.10 (Cheeger). Assume that µ has the volume doubling
property and (X, d, µ) satisfies (2, 2)-Poincaré inequality. Then the Cheeger
2-energy is a local regular Dirichlet form on L2(X,µ).

2-Cheeger energy −→ Diffusion process on X

11



Dirichlet form (E ,F) on L2(X, µ) E(u, v) =

∫
Rn

n∑
i=1

∂u

∂xi

∂v

∂xi

dx

E : non-negative quadratic form F = W 1,2(R): Sobolev space
with the Markov property

↓ ↓
E(u, v) =

∫
X

u(Lv)dµ E(u, v) =
∫

Rn u(−∆v)dx

−L: Laplacian, L ≥ 0, self-adjoint ∆ =
n∑

i=1

∂2

∂xi
2

↓ ↓
∂u

∂t
= −Lu : Heat equation

∂u

∂t
= ∆u

↓ ↓
u(x, t) = e−tLu0= initial condition u(x, t) = et∆u0

↓ ↓
Process ({Xt}t>0, {Px}x∈X) with The Brownian motion on Rn

Ex(u(Xt)) = (e−tLu)(x)
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On the other hand, by Saloff-Coste, Grigor’yan

Poincaré inequality + volume doubling
⇓

Gaussian heat kernel esitimate

Heat kernel p(t, x, y) = the fundamental solution of the Heat equation:

∂u

∂t
= ∆u⇒ u(t, x) =

∫
X

p(t, x, y)u0(y)dµ

p(t, x, y) =
c1

tn/2
exp

(
− c2
|x− y|2

t

)
: ordinary heat kernel on Rn

13



p(t, x, y): the heat kernel associated with the 2-Cheeger energy

p(t, x, y) � c1

V (x,
√

t)
exp−

(
c2

d(x, y)2

t

)
while the heat kernels on many of fractals like the SG and SC satisfies the
sub-Gaussian estimate

p(t, x, y) � c1

V (x, t1/β)
exp−

(
c2

(d(x, y)β

t

) 1
β−1
)

for β > 2. (β = 2 is the Gaussian.)
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Analysis on Fractals
The Sierpinski Gasket K

dimH K =
log 3

log 2
the Hausdorff dimension with respect to the Euclidean metric
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1 1

1

G0 G1 G2

p1

p2 p3

The Sierpsinski Gasket: Approximation by Graphs Gm

Fi(z) = (z − pi)/2 + pi for i = 1, 2, 3

V0 = {p1, p2, p3}
Vm+1 = F1(Vm) ∪ F2(Vm) ∪ F3(Vm)

K = ∪m≥0Vm: the Sierpinski gasket

K = F1(K) ∪ F2(K) ∪ F3(K)
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xy 2−m

’s = Vm, x: direct neighbors of x in Vmx ∈ Vm

Define

Hm,xu =
∑

y∈Vm,x

(u(y)− u(x)) : Graph Laplacian

(∆νu)(x) = lim
m→∞

5mHm,xu
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ν =
def

the normalized
log 3

log 2
-dim. Hausdorff measure

= the self-similar measure with weight
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)
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The standard resistance form on K: (E ,F)

F = {u| lim
m→∞

Em(u, u) < +∞}

E(u, v) = lim
m→∞

Em(u, v)← Energy

where Em(u, u) =
1

2

∑
(p, q) is an edge of the Graph Gm

(5

3

)m

(u(p)− u(q))2 .

Fact:
Em(u, u) ≤ Em+1(u, u)

Theorem 0.11. F ⊆ C(K). (E ,F) is a local regular Dirichlet form on
L2(K, µ). In particular, (E ,F) is closed and

E(u, v) = −
∫

K

u∆µvdµ.
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5

3
= Resistance scaling

Attach a resistor of resistance 1 to each edge of Vm for any m. Then

The effective resistance between p1 and p2 =
3

2

(5

3

)m
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Asymptotic behavior of the heat kernel

Theorem 0.12 (Barlow-Perkins). For 0 < t ≤ 1,

pν(t, x, y) � c1

(tdH )1/dw
exp

(
− c2

(
|x− y|dw

t

)1/(dw−1)
)

,

where dw =
log 5

log 2
: the walk dimension,

dH = log 3/ log 2: the Hausdorff dimension
sub-Gaussian heat kernel estimate

dw > 2: slower than the Gaussian
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Figure 1: Sierpinski Carpet

Construction: Barlow-Bass, Kusuoka-Zhou
Heat kernel estimate: Barlow-Bass
Uniquensee: Barlow-Bass-Kumagai-Teplyaev
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Measurable Riemannian geometry
∃a harmonic quaisymmetric map Φ : K → R2 such that the statements of
the following pages are true. Let

KH = Φ(K) : the harmonic Sierpinski gasket

We are going to identify K with KH ⊂ R2.
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Riemannian volume = the Kusuoka measure
∃µ∗: Borel regular probability measure on KH – the Kusuoka measure

µ∗ is mutually singular to ν!

Riemannian metric

For µ∗-a.e. x ∈ KH ,
∃Z(x): 2× 2-matrix, rank Z(x) = 1, trace Z(x) = 1

the orthogonal projection to the “tangent space” of KH at x
Gradient
∀u ∈ F , ∃∇̃u : KH → R2: gradient of u

Theorem [Measurable Riemannian structure, Kusuoka]

E(u, v) =

∫
KH

(∇̃u, Z∇̃v)dµ∗ (MRS)

Moreover, let

C1(KH) = {u|KH
: ∃U ⊇ KH , an open subset of R2, such that u ∈ C1(U)}.

Then C1(KH) ⊆ F and ∀v ∈ C1(KH), ∇̃v = t
(∂v

∂x
,
∂v

∂y

)
.
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Riemannian distance: d∗(x, y)
For x, y ∈ KH

d∗(x, y) = inf{the length of a rectifiable curve in KH between x and y}

Theorem 0.13 (Gaussian heat kernel estimate).
Let p∗(t, x, y): the heat kernel associated with (E ,F) on L2(KH , µ∗). Then

p∗(t, x, y) � c1

Vd∗(x,
√

t)
exp

(
− c2

d∗(x, y)2

t

)
,

where Bd∗(x, r) = {y|d∗(x, y) < r} and Vd∗(x, r) = µ∗(Bd∗(x, r)).
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Theorem 0.14 (Kajino). ∀K ∈ R, N ∈ [1,∞], CD(K, N) nor MCP(K, N)
does not hold.

Cheeger construction from (KH , d∗, µ∗) −→
H1,2(KH) = F and E = the Cheeger 2-energy.

By Hino,
Stongly local regular Dirichlet form + finite index ⇒

measurable Riemannian structure (MRS)
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(E ,F): strongly local Dirichlet form on L2(X,µ)

Proposition 0.15 (Energy measure). Let (E ,F) be a strong local
Dirichlet form on L2(X, µ). ∀f ∈ F ∩ L∞(X),∃a Borel regular measure µf

on X such that ∀g ∈ F ∩ C0(X),∫
X

gdµf = 2E(f, fg)− E(f 2, g) .

µf : Energy measure of f
Note that

µf (X) = 2E(u, u) .
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Theorem 0.16 (Hino: existence of measurable Riemannian structure).
∃µ: a Borel regular measure on X such that ∀f ∈ F ,

E(f, f) =
1

2

∫
X

dµf

dµ
dµ

and µ is minimal among the meausres which have the above property.
Moreover, if the index p of (E ,F) is finite, then
∃∇ : F → {measurable functions on X}p, Zx : p× p-matrix such that
∀u, v ∈ F ,

E(u, v) =
1

2

∫
X

(Zx∇u,∇v)µ(dx) .
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Theorem 0.17 (Grigor’yan-Lau-Hu, Kumagai-Sturm). Assume
∃β ≥ 2, c1, c2, c3, ε > 0, ∀x, y ∈ X, t ∈ (0, 1],

c3

V (x, t1/β)
≤ p(t, x, y) ≤ c1

V (x, t1/β)
exp

(
− c2

(
|x− y|β

t

)1/(β−1)
)

Lower estimate ≤: for any x, y ∈ X with d(x, y) ≤ εtβ, near diagonal
Upper estimate ≤: for any x, y ∈ X, any t ∈ (0, 1].
Then for any g ∈ C0(X),

∫
X

gdµf � lim sup
r↓0

∫
X

g(x)

(
−
∫

B(x,r)

(
|f(x)− f(y)|

rβ/2

)2

µ(dy)

)
µ(dx)

Appriximation of the density
dµf

dµ
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Gaussian heat kernel estimate: β = 2 ⇒ (E , F ): Cheeger 2-energy
(Koskela-Zhou)

sub-Gaussian heat kernel estimate: β > 2 ???

(E ,F): a strongly local Dirichlet form → a measurable Riemannian
structure
⇓ Changing a measure µ and a distance d

measurable differentiable structure?

31


