Analysises on metric-measure spaces —
Cheeger energy and the measurable

Riemannian structure
Jun Kigami
Kyoto University, Japan



Introduction

Analysises on measure-metric spaces:

(Ch) Analogy of differentiable manifold, e.g. R"
gradient, the Sobolev inequalities, differentiable strucure,....

Hajtasz: Sobolev spaces M7 (X)

Shanmugalingam: Newtonian spaces N'P(X)

Cheeger: HP(X)

| Measurable differential structure

(Fr) Analysis on Fractals — Brownian motions

Limit of Discrete objects, for example, graph laplacian, Random walks
“proper scaling limit”

Dirichlet forms and (associated) Brownian motion

Sierpinski gasket(Kusuoka, Goldstein), Siperpinski carpet(Barlow-Bass)

’ Measurable Riemannian structure‘

(Re) Ricci curvature lower bound, Bochner, Bakery-Emery
Curvature-dimension lower bounds CD(K,N), etc
Lott-Villani, Sturm, Ambrosio, Gigli, Savaré,.....




Conjecture, obervation, impression, hocus-pocus?
(1) (Ch) N (Fr) has positive measure.
(2) (Fr) N (Re) has “very small” measure.



Cheeger’s result
(X,d, u): a measure-metric space

Notation. B(z,r) = {yly € X,d(z,y) <r}, V(z,r) = p(B(z,1)).

Assumption 0.1. For any x,y € X, there exists a rectifiable curve ~
joining = and y.

Theorem 0.2 (Cheerger’s theorem).
(1, p)-Poincaré inequality(1 < p < o0)
+ the volume doubling property of 1,
4
measurable differentiable structure on (X, d, u)
which is a collection of pairs {(X;,£")}i>1 that satisfies the conditions in
the next to the next slide:



Definition 0.3 (Volume doubling property). u has the volume
doubling propety < 3¢ >0,Vz e X,r >0

p(B(x,2r)) < Cu(B(z,r))

Definition 0.4 (Lipschitz functions). f: X — R: Lipchitz Cﬁ

[f(x) - f(¥)

sup — < +o0.
z,yeX, x#y d(I, y)

f : X — R: locally Lipschitz < Vo € X,r >0, f|p(w, is Lipschitz.

Lip(X) = the collection of Lipschitz functions
def

Lipoe(X) = the collection of locally Lipschitz functions



For f: X — R, we define

. o /(@) = fy)l
lipf(z) = llr?l(l)nf yesBu(gr) . :

Definition 0.5 (Poincaré inequality). Let 1 <¢<p<oo. A
metric-measure space (X, d, ) admits a (g, p)-Poincaré inequality if
AC, L > 1,Vf € Lip(X),x € X,r >0,

( ][ f - fB\Qdu) < cr( ][ (lipf)pdu) !
B(z,r) B(z,Lr)

If ¢ <q<p<y, then (q,p)-Poincaré = (¢, p")-Poincaré.



1 X, is a measurable subset of X and p(X;) > 0. p(X\ Ui>1 X;) =0.
2 Vi, W = ( fi), e 7(2) € Lip(X)™ such that

supm; < 400 : the dimension of {(X;, ")} iz

i>1

8 Vi, Ja linear map d' : Lip,,.(X) — {measurable functions on X;}"

: [f(y) — fz) —d'f(x) - (€9(y) = €V (2)] _
hglj;lp d(z,y) =0

for p-a.e. v € X;. Moreover, d'(fg) = fd'g + gd'f.

4 Vi and for pi-a.e. x € X;, 3a norm |- |;, of R™, Vf € Lip, (X),
|d" f()];.2 is measurable,

A f (@) i = 1 f(2)

for p-a.e. v € X;NXj.



Theorem 0.6 (Sobolev space H'?). Under the same assumptions as
Cheeger’s theorem, define

e = 11l =+ [df ],
1/p
where ||df||, = (/X(|df(x)|x)pu(dx)> . Then the closure of

{U|U S ‘Ciploc(X)v ||u||1ap < +OO}7
which is denoted by H'*?(X), is a reflective Banach space.

||df| [P is called the Cheeger p-energy.



Example 0.7 (Heisenberg group). Define a (non-commutative) group
structure on R? as follows

1
(:C7 Y, t) ’ (xla y/7 t/) = (Q: + x/7 Y+ 3/7 t+ t' + é(xyl - :E/y))
Define
1@,y )| = ((2® +¢°)? + 3
and d(a,b) = ||la™! - b||, where a,b € R. Let p be the Lebesgue measure of
R3. Then (R?,d, i) satisfies (1, 1)-Poincaré inequality. p satisfies the
volume doubling property.



Example 0.8. {M,},>1: a sequence of Riemannian manifold which

satisfies
inf Ricci(M,,) > —oo

n>

and
sup diam(M,,) < +o0.

n>1

(M,d, p): Gromov-Hausdorff limit of {M,,},>1. Then (M, d, u) satisfies
1-Poincaré inequality and the volume doubling property.

Example 0.9 (Fat Sierpinski carpet). J. Mackay, J. Tyson and K.
Wildrick, Modulus and Poincaré inequalities on non-self-similar Sierpinski
carpets with positive area

Reminiscence of differentiable structure..........



Cheeger 2-energy as Dirichlet form

Theorem 0.10 (Cheeger). Assume that p has the volume doubling
property and (X, d, ) satisfies (2,2)-Poincaré inequality. Then the Cheeger
2-energy is a local regular Dirichlet form on L*(X, p).

’2—Cheeger energy — Diffusion process on X ‘




ox; 0:{Z
Sobolev space

Dirichlet form (&€, F) on L*(X, i) (u,v) / Z Ou OU
(R):

£ : non-negative quadratic foom F = W12(R
with the Markov property

!
v) = [ u(Lv)dp E(u,v) = [pn u(—Av)dz
nooa2
—L: Laplacian, L > 0, self-adjoint A= 0 5
1=1 aTl
0 ! 0
8_1: = —Lu : Heat equation 8_7; = Au
| |
u(x,t) = e Luy= initial condition u(xw,t) = ePug
| |

Process ({X;}i~0, { P }zex) with  The Brownian motion on R
Eo(u(Xy)) = (e u)(x)



On the other hand, by Saloff-Coste, Grigor’yan

Poincaré inequality + volume doubling

4

Gaussian heat kernel esitimate

Heat kernel p(¢, x,y) = the fundamental solution of the Heat equation:

ou
5 = du= ulta) = [ st pulds
ot x
2
p(t,z,y) = % exp < — ¢y it > : ordinary heat kernel on R"



p(t,z,y): the heat kernel associated with the 2-Cheeger energy

(&1
t,x,y) X ————exp—|c
p(t,z,y) Vv P (2

d(z, 10)2)

t

while the heat kernels on many of fractals like the SG and SC satisfies the
sub-Gaussian estimate

d(z, y)ﬁ> )

(t2,y) = (e
r,Y) X ——exp—|c
PR =y my P 72

for 5 > 2. (6 =2 is the Gaussian.)



Analysis on Fractals

The Sierpinski Gasket K
log 3

dimg K =
log 2
the Hausdorff dimension with respect to the Euclidean metric



y41

P2 GO p3 Gy G
The Sierpsinski Gasket: Approximation by Graphs G,,
Fi(z)=(z—pi)/2+p; fori=1,2,3

‘/E) = {p17p27p3}
Vm+1 = F1<Vm> U FQ(Vm) U F3(Vm)

K = U0V, the Sierpinski gasket

K = F\(K)U Fy(K) U F3(K)




Yy 2= x
x €V, o's=V,, drect neighbors of z in V,,

Define

Hppu = Z (u(y) — u(x))|: Graph Laplacian

YEVm,z

(Ayu)(x) = lim 5" H,, u

m—00
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lo 3—dim. Hausdorff measure

v = the normalized
def og

o . . 111
= the self-similar measure with weight (5, 3 §>

NeJ I

O+



The standard resistance form on K: (£, F)

F =A{u| lim &,(u,u) < +o0}

E(u,v) = lim &,(u,v) < Energy

where | &, (u,u) = ; Z (§>m(u(p) —u(qg))?|

(p, q) is an edge of the Graph Gy,

Fact:
5m(u, ’LL) S ngrl (u> u)

Theorem 0.11. F C C(K). (€,F) is a local regular Dirichlet form on
L*(K, ). In particular, (€,F) is closed and

E(u,v) = —/ u vdp.
K



y41

— = Resistance scaling

W | Ot

Attach a resistor of resistance 1 to each edge of V,,, for any m. Then

3 /5\™m
The effective resistance between p; and py = 3 <§)



Asymptotic behavior of the heat kernel

Theorem 0.12 (Barlow-Perkins). For 0 <t <1,

c ‘, o duw 1/(dw71)
1 T Yy
pu(t,x,y) < WGXP —C2<t> ,

log 5

where d,, = : the walk dimension,

~ log?2
dy =log3/log2: the Hausdorff dimension
sub-Gaussian heat kernel estimate

d,, > 2: slower than the Gaussian



Figure 1: Sierpinski Carpet

Construction: Barlow-Bass, Kusuoka-Zhou
Heat kernel estimate: Barlow-Bass
Uniquensee: Barlow-Bass-Kumagai-Teplyaev



Measurable Riemannian geometry
Ja harmonic quaisymmetric map ® : K — R? such that the statements of
the following pages are true. Let

Ky = ®(K) : the harmonic Sierpinski gasket

We are going to identify K with Ky C R2.






Riemannian volume = the Kusuoka measure
du.: Borel regular probability measure on Ky — the Kusuoka measure

‘,u,* is mutually singular to v/! ‘

Riemannian metric

For p.-ae. x € Ky,
37(x): 2 x 2-matrix, rank Z(z) = 1, trace Z(z) = 1
the orthogonal projection to the “tangent space” of Ky at x
Gradient
Vu € F, IVu : Ky — R?%: gradient of u

Theorem [Measurable Riemannian structure, Kusuokal

5(u7v)—/K (Vu, ZV0)du, (MRS)

Moreover, let

CYKpy) = {u|k, : 3U D Ky , an open subset of R? such that u € C'(U)}.

Then CY(Ky) C F and Vv € CY(Ky), Vo = t(gi’ g;) :




Riemannian distance: d.(z,y)
For x,y € Ky
d.(z,y) = inf{the length of a rectifiable curve in Ky between z and y}

Theorem 0.13 (Gaussian heat kernel estimate).
Let p.(t,z,y): the heat kernel associated with (€,F) on L*(Kg, ). Then

1 d*([E, y>2

L,y X —————ex — cp————— | |,
p«(t, 7, y) Vi D p( — >

where By, (x,1) = {y|d.(z,y) < r} and Vi, (x,r) = p.(Bg, (z,7)).




Theorem 0.14 (Kajino). VK € R, N € [1,00]|, CD(K, N) nor MCP(K, N)
does not hold.

Cheeger construction from (K, dy, p.) —
H'Y2(Ky) = F and £ = the Cheeger 2-energy.

By Hino,
Stongly local regular Dirichlet form + finite index =
measurable Riemannian structure (MRS)



(€, F): strongly local Dirichlet form on L*(X, )

Proposition 0.15 (Energy measure). Let (£, F) be a strong local
Dirichlet form on L*(X, u). Vf € F N L>*(X),3a Borel reqular measure i,
on X such that Vg € F N Cy(X),

/nguf =28(f. f9) —E(f%9)|

(t¢: Energy measure of f
Note that

pr(X) =2E(u,u) |




Theorem 0.16 (Hino: existence of measurable Riemannian structure).
du: a Borel regular measure on X such thatVf € F,

1 d
& =5 [ Fhdn

and p 1s minimal among the meausres which have the above property.
Moreover, if the index p of (£, F) is finite, then

IV : F — {measurable functions on X}P, Z, : p X p-matriz such that
Yu,v € F,

E(u,v) = %/X(ZQCVu, Vo)u(dz)|.




Theorem 0.17 (Grigor’yan-Lau-Hu, Kumagai-Sturm). Assume
Elﬁ Z 27017C27037€ > 07 v‘7“7y € X7t S (07 1]7

C3

e 1(B-1)
<ty < ———exp | — lz—y"
V(:C,tl/d) — - V(Q?,tl/ﬁ) t

Lower estimate <: for any x,y € X with d(z,y) < et®, near diagonal
Upper estimate <: for any z,y € X, any t € (0, 1].
Then for any g € Cy(X),

d
Apprizimation of the density %
M




Gaussian heat kernel estimate: =2 = (&, F'): Cheeger 2-energy
(Koskela-Zhou)

sub-Gaussian heat kernel estimate: 5 > 2 777

(€, F): a strongly local Dirichlet form — a measurable Riemannian
structure
|l Changing a measure p and a distance d
measurable differentiable structure?



