Notions of differential structure on metric
measure spaces and applications

Nicola Gigli

Université de Nice

19 March 2013



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object |Df| which
plays the role of the modulus of the distributional differential.



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object |Df| which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and Vf. More precisely, given
two Sobolev functions f, g we can define

Df(Vg)



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object | Df| which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and Vf. More precisely, given
two Sobolev functions f, g we can define

Df(Vg)

2) this is useful for understanding both analysis and geometry of mms



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object | Df| which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and Vf. More precisely, given
two Sobolev functions f, g we can define

Df(Vg)

2) this is useful for understanding both analysis and geometry of mms

Neither doubling nor Poincaré are assumed.
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Test plans

Let (X, d) be complete and separable and m a non-negative Radon
measure on it.

Let m € Z(C([0, 1], X)). We say that = is a test plan provided:
» for some C > 0 it holds

e < Cm, vt e [0, 1].

1
// 4|2 dt dme < o0
0

» it holds



The Sobolev class S?(X, d, m)

We say that f : X — R belongs to S?(X, d, m) provided there exists
G € L3(X, m) such that

1
/ (1) = f(70)| dm(7) < / /O G(7o) |7 dt dme ()

for any test plan .
Any such G is called ‘weak upper gradient’ of f.

The minimal G in the m-a.e. sense will be denoted by | Df|



Basic properties

Locality
|Df| = |Dg| m-a.e.on{f =g}

Chain rule
|D(p o f)| = |¢'| o f|Df|

for ¢ Lipschitz

‘Leibniz rule’
|D(fg)| < |f||Dg| + |9l|Df|

forf,g e S?nL>®



The Sobolev space W'2(X, d, m)

The Sobolev space is defined as
W'2(X,d, m) := L?3(X,m)n S?(X,d,m)

endowed with the norm

1fllws2 == y/IIflIZ. + 1 DAIIZ.
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Differentials

Given f : R? — R smooth, its differential Df : R — T*R% is
intrinsically defined by

DA(x)(v) = lim X+ W) =100

, vx e RY, v e T,RY
t—0 t
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Gradients

To define the gradient of a smooth f we need more structure: a norm.

A way to get it is starting from the observation that for any tangent
vector w it holds

1 1
Di(x)(w) < [ DF(x)I|[[wll < SIDFIE + 5 llwl®.
Then we can say that v = Vf(x) provided = holds, or equivalently

DI(X)(v) > JIDII2 + 4 vIP

Rmk.
Unigueness holds iff the norm is strictly convex

Linearity holds iff the norm comes from a scalar product.



An important identity

max Df(v) =
vevg(x)

min Df(v) =
vevg(x)

g 1D(g + NIZ(x) — [Dgll2(x)

e>0 2¢

sup 1P+ eNIE(x) — DglE(x)

e<0 2¢
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The object D*f(Vg)

For f, g € S?, the functions D*f(Vg) : X — R are defined by
inf |D(g+€f)|2_‘Dg|2
e>0 2¢

D f)|? — |Dg|?
D-1(vg) - sup |2 +=NE ~ 1Dyl
e<0 2e

Dtf(Vg) =




The object D*f(Vg)

For f, g € S?, the functions D*f(Vg) : X — R are defined by

2 _ 2

+ R
Dri(ve) = e>0 2¢e
D f)|? — |Dg|?
D-1(vg) - sup |2 +=NE ~ 1Dyl
e<0 2e

Notice that
D~ f(Vg) < D'f(Vg), m-—ae.
|D*f(Vg)| < |Df||Dg| € L'(X, m),
Dt (-f)(Vg) = —D f(Vg) = DT f(V(-9)), m— a.e.
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Calculus rules
Locality

D*f(Vg) = D*f(V), mae on{f=Ffn{g=3a}

Chain rule

D¥(p o f)(Vg) = ¢ o f D Nf(vg),
DFf(V(pog)) = ¢ 0 g D=9 f(vg)

for ¢ Lipschitz

Leibniz rule

D*(h)(Vg) < i D =W p(Vg) + D =D, (Vg),
D~ (h£)(Vg) = h D=1 (Vg) + f, D=8, (Vg)

Forfi,fb € SN L>®,and g € S
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Special situations

(X, d, m) is infinitesimally strictly convex provided
D*f(Vg) = D~ f(Vg), m— a.e.

for any f,g € S2. In this case the common value will be denoted by
Df(Vg). For g € S the map

Ssf = Df(Vg)

is linear.

(X,d, m) is infinitesimally Hilbertian if f — [ |Df|2 dm is a quadratic
form. In this case

D*f(Vg) = D f(Vg) = D*g(Vf) = D~ g(Vf), m-—ae.

and we denote these quantities by V£ - Vg.
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Plan representing gradients: definition

For g € S?2 and m € £2(C([0, 1], X)) test plan it holds

— [ 9(yw) —9(7) 1/ > -1//’.2
im / I I < 5 [ 1DgP () +Tim 5 [ [ ol ds

We say that = represents Vg, provided it holds

: 9(v) —9(v) 1 / 2 1 //t ;|2
S A LA > N
It|¢mo/ ; dr > |Dg|=(70) dﬂ-—i—ltlj/m0 5t |, |¥s|” dsdm



Plan representing gradients: existence

Theorem (G. '12, Ambrosio-G.-Savaré '11).
For g € S? and 1 € #(X) such that © < Cm, a plan = representing
Vg and such that ey = 1 exists.



First order differentiation formula

Let f,g € S?, and 7 which represents Vg.
Then

i [ 100~ 00 g,
, f(e) = (30) 4.
>'t'ﬂ>‘/t d



First order differentiation formula

Let f,g € S?, and 7 which represents Vg.
Then

/D+f(vg)(70) dr > @/ f('Yt) _t f(’YO) dmr

i / Ltf(vo) dr > / D=H(Vg)(r0) dm

> lim
tl0
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Integrating a function to get improved regularity

Theorem (G. '13) Let:
» (X,d, m) be infinitesimally Hilbertian,
» t— u; a Wh-geodesic such that

> U; supp(ut) bounded
> s < Cmforevery t € [0,1]
» with densities continuous in LP for some (and thus any) p < oo

» fe S3(X,d,m)n L' (X, m)



Integrating a function to get improved regularity

Theorem (G. '13) Let:
» (X,d, m) be infinitesimally Hilbertian,
» t— u; a Wh-geodesic such that

> U; supp(ut) bounded
> s < Cmforevery t € [0,1]
» with densities continuous in LP for some (and thus any) p < oo

» fe S3(X,d,m)n L' (X, m)

Thenthemap t +— /fdu, is C'

and its derivative is given by

ad
E/fdﬂt:_/Vf'v%‘th

where 17 is any Kantorovich potential from ¢ to p4.
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Distributional Laplacian

Let (X, d, m) be infinitesimally strictly convex, Q c X open, g € S?(Q)
We say that g € D(A, Q) if there exists a Radon measure 1 on Q2 such

that
_ / Df(Vg) dm — / fdp,
Q Q

holds for every f Lipschitz in L'(|x|) with m(supp(f)) < oo with support
contained in Q. In this case we put Ag|Q =pu



Calculus rules

Chain rule
A(pog)=¢ ogAg+¢”og|DgPm

On infinitesimally Hilbertian spaces:

Linearity
A(gr +92) = Agi + Ag

Leibniz rule

A(9192) = 914G + g2Agt +2V gy - Vgom



Nonlinear potential theory (p = 2)

It is the study of 2-minimizers, defined as those g € S? such that
| 1bgPdm< [ |D(g-+ 1) dm.
Q Q

for every f € S? with compact support contained in Q.

Typically under the assumptions that the measure is doubling and the
space supports a 2-Poincaré inequality.



Relation with nonlinear potential theory

Theorem (G. Mondino ’12) Let (X, d, m) be a doubling space
supporting a 2-Poincaré inequality and infinitesimally strictly convex.

Then g is a 2-minimizer on Q if and only if g € D(A, Q) and Ag|, =0.
Similar results hold for sub/super-minimizers.



Relation with nonlinear potential theory

Theorem (G. Mondino ’12) Let (X, d, m) be a doubling space
supporting a 2-Poincaré inequality and infinitesimally strictly convex.

Then g is a 2-minimizer on Q if and only if g € D(A, Q) and Ag|, =0.
Similar results hold for sub/super-minimizers.

In particular, sub/super-minimizer have the sheaf property.
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Laplacian comparison
On a Riemannian manifold M with Ric > 0, dim < N it holds
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Laplacian comparison
On a Riemannian manifold M with Ric > 0, dim < N it holds

A%dz(.,y) <N
in the sense of distributions.
Does the same hold on abstract spaces?

Theorem (G. '12) Let (X, d, m) be an infinitesimally strictly convex
CD(0, N) space and X € X. Then

2(. %
A%gNm
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Versions of the splitting theorem

Splitting (Cheeger-Gromoll '71)
Let M be a Riemannian manifold with Ric > 0 which contains a line.
Then M = N x R for some Riemannian manifold N.

Almost splitting (Cheeger-Colding '96)

Let M be a Riemannian manifold with Ric > —e which contains a
geodesic with length L. ¢, L1 < 1

Then ‘a big portion of M is GH-close to a product’



An equivalent version of the almost splitting

Let (M,) be a sequence of Riemannian manifolds with uniformly
bounded dimension, Ric(M,) > —e, containing lines ~, of length L,
with g5, L, ' — 0.

Assume that (M) converges in the pGH-sense to a limit space (X, d).

Then (X, d) splits.
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Non-smooth splitting

Question: Let (X,d, m) be a CD(0, N) space containing a line.

Can we say that there exists a CD(0, N — 1) space (X’,d’, m’) such
that (X, d, m) is isomorphic to

(X' x R,d" @ dgyar, M x L),

where

(d' @ dga) (X', 1) =,y |t 2

?
Answer: No. (Cordero Erasquin-Villani-Sturm '06)
Theorem (G. ’'13)

The answer become yes if we add the assumption that the space is
infinitesimally Hilbertian.



Don't forget the stability
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CD(0, N) + infinitesimal Hilbertianity

is stable.



Don't forget the stability

The non-smooth splitting would be of little use if we don’t know that
CD(0, N) + infinitesimal Hilbertianity

is stable.

This is true and follows from the study of the heat flow
G.’09

G.-Kuwada-Ohta ’10

Ambrosio-G.-Savaré '11 I
Ambrosio-G.-Mondino-Rajala ’12
G.-Mondino-Savaré '13



Thank you



