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Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object |Df | which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and ∇f . More precisely, given
two Sobolev functions f ,g we can define

Df (∇g)

2) this is useful for understanding both analysis and geometry of mms

Neither doubling nor Poincaré are assumed.



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object |Df | which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and ∇f . More precisely, given
two Sobolev functions f ,g we can define

Df (∇g)

2) this is useful for understanding both analysis and geometry of mms

Neither doubling nor Poincaré are assumed.



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object |Df | which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and ∇f . More precisely, given
two Sobolev functions f ,g we can define

Df (∇g)

2) this is useful for understanding both analysis and geometry of mms

Neither doubling nor Poincaré are assumed.



Aim of the talk

On mms there is a well established notion of Sobolev space.

Given a Sobolev function f it is well defined the object |Df | which
plays the role of the modulus of the distributional differential.

Goals are to show that:
1) it is possible to speak also about Df and ∇f . More precisely, given
two Sobolev functions f ,g we can define

Df (∇g)

2) this is useful for understanding both analysis and geometry of mms

Neither doubling nor Poincaré are assumed.



Content

I Preliminaries
I Sobolev space over a metric measure space
I Differential calculus on normed spaces

I Analysis
I Differentials and gradients
I Horizontal and vertical derivatives
I Averaging out the unsmoothness
I Distributional Laplacian
I Laplacian comparison estimates

I Geometry
I The splitting theorem



Content

I Preliminaries
I Sobolev space over a metric measure space
I Differential calculus on normed spaces

I Analysis
I Differentials and gradients
I Horizontal and vertical derivatives
I Averaging out the unsmoothness
I Distributional Laplacian
I Laplacian comparison estimates

I Geometry
I The splitting theorem



Test plans

Let (X ,d) be complete and separable and m a non-negative Radon
measure on it.

Let π ∈P(C([0,1],X )). We say that π is a test plan provided:
I for some C > 0 it holds

et ]π ≤ Cm, ∀t ∈ [0, 1].

I it holds ∫∫ 1

0
|γ̇t |2 dt dπ <∞



The Sobolev class S2(X ,d ,m)

We say that f : X → R belongs to S2(X ,d ,m) provided there exists
G ∈ L2(X ,m) such that∫ ∣∣f (γ1)− f (γ0)

∣∣dπ(γ) ≤
∫∫ 1

0
G(γt )|γ̇t |dt dπ(γ)

for any test plan π.

Any such G is called ‘weak upper gradient’ of f .

The minimal G in the m-a.e. sense will be denoted by |Df |



Basic properties

Locality
|Df | = |Dg| m-a.e. on {f = g}

Chain rule
|D(ϕ ◦ f )| = |ϕ′| ◦ f |Df |

for ϕ Lipschitz

‘Leibniz rule’
|D(fg)| ≤ |f ||Dg|+ |g||Df |

for f ,g ∈ S2 ∩ L∞



The Sobolev space W 1,2(X ,d ,m)

The Sobolev space is defined as

W 1,2(X ,d ,m) := L2(X ,m) ∩ S2(X ,d ,m)

endowed with the norm

‖f‖W 1,2 :=
√
‖f‖2

L2 + ‖|Df |‖2
L2
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Differentials

Given f : Rd → R smooth, its differential Df : Rd → T ∗Rd is
intrinsically defined by

Df (x)(v) := lim
t→0

f (x + tv)− f (x)

t
, ∀x ∈ Rd , v ∈ TxRd



Gradients

To define the gradient of a smooth f we need more structure: a norm.

A way to get it is starting from the observation that for any tangent
vector w it holds

Df (x)(w) ≤ ‖Df (x)‖∗‖w‖ ≤
1
2
‖Df (x)‖2

∗ +
1
2
‖w‖2.

Then we can say that v = ∇f (x) provided = holds, or equivalently

Df (x)(v) ≥ 1
2
‖Df (x)‖2

∗ +
1
2
‖v‖2

Rmk.
Uniqueness holds iff the norm is strictly convex

Linearity holds iff the norm comes from a scalar product.
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An important identity

max
v∈∇g(x)

Df (v) = inf
ε>0

‖D(g + εf )‖2
∗(x)− ‖Dg‖2

∗(x)

2ε

min
v∈∇g(x)

Df (v) = sup
ε<0

‖D(g + εf )‖2
∗(x)− ‖Dg‖2

∗(x)

2ε
.
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The object D±f (∇g)

For f ,g ∈ S2, the functions D±f (∇g) : X → R are defined by

D+f (∇g) := inf
ε>0

|D(g + εf )|2 − |Dg|2

2ε

D−f (∇g) := sup
ε<0

|D(g + εf )|2 − |Dg|2

2ε

Notice that

D−f (∇g) ≤ D+f (∇g), m − a.e.

|D±f (∇g)| ≤ |Df ||Dg| ∈ L1(X ,m),

D+(−f )(∇g) = −D−f (∇g) = D+f (∇(−g)), m − a.e.
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Calculus rules

Locality

D±f (∇g) = D± f̃ (∇g̃), m-a.e. on {f = f̃} ∩ {g = g̃}

Chain rule

D±(ϕ ◦ f )(∇g) = ϕ′ ◦ f D±sign(ϕ′◦f )f (∇g),

D±f (∇(ϕ ◦ g)) = ϕ′ ◦ g D±sign(ϕ′◦g)f (∇g)

for ϕ Lipschitz

Leibniz rule

D+(f1f2)(∇g) ≤ f1 D sign(f1)f2(∇g) + f2 D sign(f2)f1(∇g),

D−(f1f2)(∇g) ≥ f1 D−sign(f1)f2(∇g) + f2 D−sign(f2)f1(∇g)

For f1, f2 ∈ S2 ∩ L∞, and g ∈ S2.
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Special situations

(X ,d ,m) is infinitesimally strictly convex provided

D+f (∇g) = D−f (∇g), m − a.e.

for any f ,g ∈ S2. In this case the common value will be denoted by
Df (∇g). For g ∈ S2 the map

S2 3 f 7→ Df (∇g)

is linear.

(X ,d ,m) is infinitesimally Hilbertian if f 7→
∫
|Df |2 dm is a quadratic

form. In this case

D+f (∇g) = D−f (∇g) = D+g(∇f ) = D−g(∇f ), m − a.e.

and we denote these quantities by ∇f · ∇g.
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Plan representing gradients: definition

For g ∈ S2 and π ∈P(C([0,1],X )) test plan it holds

lim
t↓0

∫
g(γt )− g(γ)

t
dπ ≤ 1

2

∫
|Dg|2(γ0) dπ + lim

t↓0

1
2t

∫∫ t

0
|γ̇s|2 ds dπ

We say that π represents ∇g, provided it holds
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t
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Plan representing gradients: existence

Theorem (G. ’12, Ambrosio-G.-Savaré ’11).
For g ∈ S2 and µ ∈ P(X ) such that µ ≤ Cm, a plan π representing
∇g and such that e0 ]π = µ exists.



First order differentiation formula

Let f ,g ∈ S2, and π which represents ∇g.
Then

lim
t↓0

∫
f (γt )− f (γ0)

t
dπ

≥ lim
t↓0

∫
f (γt )− f (γ0)

t
dπ



First order differentiation formula

Let f ,g ∈ S2, and π which represents ∇g.
Then∫

D+f (∇g)(γ0) dπ ≥ lim
t↓0

∫
f (γt )− f (γ0)

t
dπ

≥ lim
t↓0

∫
f (γt )− f (γ0)

t
dπ ≥

∫
D−f (∇g)(γ0) dπ
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Integrating a function to get improved regularity

Theorem (G. ’13) Let:
I (X ,d,m) be infinitesimally Hilbertian,
I t 7→ µt a W2-geodesic such that

I ∪t supp(µt) bounded
I µt ≤ Cm for every t ∈ [0, 1]
I with densities continuous in Lp for some (and thus any) p <∞

I f ∈ S2(X ,d,m) ∩ L1(X ,m)

Then the map t 7→
∫

f dµt is C1

and its derivative is given by

d
dt

∫
f dµt = −

∫
∇f · ∇ϕt dµt

where ϕt
1−t is any Kantorovich potential from µt to µ1.
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Distributional Laplacian

Let (X ,d ,m) be infinitesimally strictly convex, Ω ⊂ X open, g ∈ S2(Ω)

We say that g ∈ D(∆,Ω) if there exists a Radon measure µ on Ω such
that

−
∫

Ω

Df (∇g) dm =

∫
Ω

f dµ,

holds for every f Lipschitz in L1(|µ|) with m(supp(f )) <∞ with support
contained in Ω. In this case we put ∆g|Ω := µ



Calculus rules

Chain rule
∆(ϕ ◦ g) = ϕ′ ◦ g ∆g + ϕ′′ ◦ g|Dg|2m

On infinitesimally Hilbertian spaces:

Linearity
∆(g1 + g2) = ∆g1 + ∆g2

Leibniz rule

∆(g1g2) = g1∆g2 + g2∆g1 + 2∇g1 · ∇g2m



Nonlinear potential theory (p = 2)

It is the study of 2-minimizers, defined as those g ∈ S2 such that∫
Ω

|Dg|2 dm ≤
∫

Ω

|D(g + f )|2 dm,

for every f ∈ S2 with compact support contained in Ω.

Typically under the assumptions that the measure is doubling and the
space supports a 2-Poincaré inequality.



Relation with nonlinear potential theory

Theorem (G. Mondino ’12) Let (X ,d ,m) be a doubling space
supporting a 2-Poincaré inequality and infinitesimally strictly convex.

Then g is a 2-minimizer on Ω if and only if g ∈ D(∆,Ω) and ∆g|Ω = 0.
Similar results hold for sub/super-minimizers.

In particular, sub/super-minimizer have the sheaf property.
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Laplacian comparison

On a Riemannian manifold M with Ric ≥ 0, dim ≤ N it holds

∆
1
2

d2(·, x) ≤ N

in the sense of distributions.

Does the same hold on abstract spaces?

Theorem (G. ’12) Let (X ,d,m) be an infinitesimally strictly convex
CD(0,N) space and x ∈ X . Then

∆
d2(·, x)

2
≤ Nm
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Versions of the splitting theorem

Splitting (Cheeger-Gromoll ’71)
Let M be a Riemannian manifold with Ric ≥ 0 which contains a line.
Then M = N × R for some Riemannian manifold N.

Almost splitting (Cheeger-Colding ’96)
Let M be a Riemannian manifold with Ric ≥ −ε which contains a
geodesic with length L. ε,L−1 � 1
Then ‘a big portion of M is GH-close to a product’
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An equivalent version of the almost splitting

Let (Mn) be a sequence of Riemannian manifolds with uniformly
bounded dimension, Ric(Mn) ≥ −εn containing lines γn of length Ln,
with εn,L−1

n → 0.

Assume that (Mn) converges in the pGH-sense to a limit space (X ,d).

Then (X ,d) splits.



Non-smooth splitting

Question: Let (X ,d,m) be a CD(0,N) space containing a line.

Can we say that there exists a CD(0,N − 1) space (X ′,d′,m′) such
that (X ,d,m) is isomorphic to

(X ′ × R,d′ ⊗ dEucl,m′ × L1),

where

(d′ ⊗ dEucl)
(
(x ′, t), (y ′, s)

)
:=
√

d′(x ′, y ′)2 + |t − s|2

?
Answer: No. (Cordero Erasquin-Villani-Sturm ’06)

Theorem (G. ’13)
The answer become yes if we add the assumption that the space is
infinitesimally Hilbertian.
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Don’t forget the stability

The non-smooth splitting would be of little use if we don’t know that

CD(0,N) + infinitesimal Hilbertianity

is stable.

This is true and follows from the study of the heat flow
G. ’09
G.-Kuwada-Ohta ’10
Ambrosio-G.-Savaré ’11 I-II
Ambrosio-G.-Mondino-Rajala ’12
G.-Mondino-Savaré ’13
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Thank you


