
Geometric implications of Poincaré
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Dpto. de Matemática Aplicada

IPAM program “Interactions between Analysis and Geometry”
Workshop I: Analysis on metric spaces

IPAM, UCLA
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Lipschitz function spaces

(X, d) metric space

Definition
A function f : X −→ R is Lipschitz if there is a constant C > 0
such that

|f (x)− f (y)| ≤ C d(x, y) ∀x, y ∈ X.

? LIP(X) = {f : X −→ R : f is Lipschitz}
? LIP∞(X) = {f : X −→ R : f is Lipschitz and bounded}

‖f‖LIP∞ = ‖f‖∞ + LIP(f )
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Pointwise Lipschitz function spaces

Definition
Given a function f : X→ R the pointwise Lipschitz constant of
f at x ∈ X is defined as

Lip f (x) = lim sup
y→x
y6=x

|f (x)− f (y)|
d(x, y)

.

Example
If f ∈ C1(Ω), Ω

op
⊂ Rn (or of a Riemannian manifold), then

Lip f (x) = |∇f (x)| ∀x ∈ Ω.
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Doubling measures

(X, d, µ) metric measure space, µ Borel regular measure

Definition
µ is doubling if ∃C > 0 constant such that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞ ∀ x ∈ X, r > 0.

X complete + µ doubling =⇒ X proper

Definition
A curve in X is a continuous mapping γ : [a, b]→ X.
A rectifiable curve is a curve with finite length.
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Examples

(Rn, | · |,L n) C = 2n

(C, | · |,H
log2
log3 )

([0, 1], |x− y|1/2,H 2)

f (x) = x
|f (x)− f (y)|
|x− y|1/2 = |x− y|1/2 y→x−→ 0



Sierpiński carpet

Q0 = [0, 1]2



Sierpiński carpet
Q1



Sierpiński carpet
Q2



Sierpiński carpet
Q3



Sierpiński carpet
Q4



Sierpiński carpet

…	  



Sierpiński carpet: S3 = (X, d, µ)
d = de|X

Equally distributing unit mass over Qn leads to a natural
probability doubling measure µ on S3.
( µ is comparable toHs, s =

log 8
log 3 ).



Classical Poincaré inequality
One way to view the Fundamental Theorem of Calculus is:

infinitesimal data local control

This principle can apply in very general situation in the form of
a Poincaré inequality:

∃C = C(n) > 0: ∀B ≡ B(x, r) ⊂ Rn ∀f ∈W1,p(Rn)∫
B
|f − fB|dL n ≤ C(n) r

(∫
B
|∇f |pdL n

)1/p

Notation: ∫
B

f dL n = fB =
1

L n(B)

∫
B

f dL n
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Poincaré inequalities in metric measure spaces
(X, d, µ) metric measure space

Definition (Heinonen-Koskela 98)
A non-negative Borel function g on X is an upper gradient for
f : X→ R ∪ {±∞} if

|f (x)− f (y)| ≤
∫
γ

g,

∀x, y ∈ X and every rectifiable curve γxy.

Examples

g ≡ ∞ is an upper gradient of every function on X.
If there are no rectifiable curves in X then g ≡ 0 is an upper
gradient of every function.
If f ∈ LIP(X) then g ≡ LIP(f ) and g(x) = Lip f (x) are upper
gradients for f .
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p-Poincaré inequality

Definition (Heinonen-Koskela 98)
Let 1 ≤ p <∞.We say that (X, d, µ) supports a weak p-Poincaré
inequality if there exist constants Cp > 0 and λ ≥ 1 such that for
every Borel measurable function f : X→ R and every upper
gradient g : X→ [0,∞] of f , the pair (f , g) satisfies the
inequality∫

B(x,r)
|f − fB(x,r)| dµ ≤ Cp r

(∫
B(x,λr)

gpdµ
)1/p

∀B(x, r) ⊂ X.

Notation: ∫
B

f dµ = fB =
1

µ(B)

∫
B

f dµ



Examples

(Rn, | · |,L n)

Riemannian manifolds with non-negative Ricci curvature
Heisenberg group with its Carnot-Carathéodory metric
and Haar measure Subriemannian geometry
Boundaries of certain hyperbolic buildings: Bourdon-Pajot
spaces Geometric group theory
Laakso spaces, . . .



Geometric implications of p-Poincaré inequalities

X is connected

Semmes 98 p <∞

X complete p-PI

µ doubling

}
=⇒ X is quasiconvex

Definition
A metric space (X, d) is quasiconvex if there exists a constant
C ≥ 1 such that for each pair of points x, y ∈ X, there exists a
curve γ connecting x and y with

`(γ) ≤ Cd(x, y).
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Counterexample

(S3, d, µ) does not admit a 1-PI

Let Tn be the vertical strip of width 3−n.
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Counterexample

T3



Counterexample∫
B(x,r)
|f − fB(x,r)| dµ ≤ C r

(∫
B(x,r)

gpdµ
)1/p

Tn

Define fn ∈ LIP(S3) such that
∫

S3

|fn − (fn)S3 |dµ > C but

∫
S3

lip(fn)dµ = 3n · µ(Tn) = 3n · 2n

8n → 0 (n→∞)



Counterexample

(S3, d, µ) does not admit any p-PI

Bourdon-Pajot 02 Let (X, d, µ) be a bounded metric measure
space with µ doubling and p-PI, and let f : X −→ I be a
surjective Lipschitz function from X onto an interval I ⊂ R.
Then, L 1

|I � f#µ. Here f#µ denotes the push-forward measure
of µ under f .

Proof.
Let f be the projection on the horizontal axis. It can be checked
that f#µ⊥L 1.

Question Higher dimensions?



Generalized Sierpinski carpets: Sa

a = (a−1
1 , a−1

2 , . . .) ∈
{

1
3 ,

1
5 ,

1
7 , . . .

}N

For a =
(1

a
,

1
a
,

1
a
, . . .

)
a odd,

Sa does not admit any p−PI

Mackay, Tyson, Wildrick (To appear)
(Sa, d, µ) supports a 1-PI if and only if a ∈ `1

(Sa, d, µ) supports a p-PI for some p > 1 if and only if a ∈ `2
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Which is the role of the exponent p?∫
B(x,r)
|f − fB(x,r)| dµ ≤ Cr

(∫
B(x,λr)

gpdµ
)1/p

Hölder inequality: p-PI=⇒q-PI for q ≥ p

Federer-Fleming, Mazýa 60 Miranda 03
(Rn) p = 1 ⇐⇒ Isoperimetric inequality

Example Example

X := {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ xm}

(X, | · |,L 2
|X) X has p−PI ⇐⇒

p > m + 1
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Glueing spaces together

Heinonen-Koskela 98
Suppose X and Y are locally compact Q−regular metric
measure spaces and that A is a closed subset of X that has an
isometric copy inside Y. Suppose there are numbers
Q ≥ s > Q− p and C ≥ 1 so thatH∞s (A ∩ BR) ≥ C−1Rs for all
balls BR either in X or in Y that are centered at A with radius
0 < R < min{diamX,diamY}.

If X and Y admit a p- PI =⇒ X∪AY admits a p- PI.



What happens when p→∞?

∫
B(x,r)
|f − fB(x,r)| dµ ≤ Cr

(∫
B(x,λr)

gpdµ
)1/p

Hölder inequality: p-PI=⇒q-PI for q ≥ p

Definition
(X, d, µ) supports a weak∞-Poincaré inequality if there exist
constants C > 0 and λ ≥ 1 such that for every function
f : X→ R and every upper gradient g of f , the pair (f , g)
satisfies ∫

B(x,r)
|f − fB(x,r)| dµ ≤ Cr‖g‖L∞(B(x,λr))

∀B(x, r) ⊂ X.
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X complete and∞-PI

µ doubling

}
=⇒X is quasiconvex

:

Sierpiński carpet

d = de|X µ = Hs, s =
log 8
log 3

(X, d) is quasiconvex
(X, d, µ) does not admit
any p-PI, 1 ≤ p ≤ ∞



Modulus of a family of curves
Definition
Let Γ ⊂ Υ = {non constant rectifiable curves of X} and
1 ≤ p ≤ ∞. For Γ ⊂ Υ, let F(Γ) be the family of all Borel
measurable functions ρ : X→ [0,∞] such that∫

γ
ρ ≥ 1 for all γ ∈ Γ.

Modp(Γ) =

 infρ∈F(Γ)

∫
X ρ

p dµ, if p <∞

infρ∈F(Γ) ‖ρ‖L∞ , if p =∞

If some property holds for all curves γ ∈ Υ\Γ, where
Modp Γ = 0, then we say that the property holds for p−a.e.
curve.

Remark
Modp is an outer measure



Lemma
Let Γ ⊂ Υ and 1 ≤ p ≤ ∞. The following conditions are equivalent:
(a) Modp Γ = 0.
(b) There exists a Borel function 0 ≤ ρ ∈ Lp(X) such that∫

γ ρ = +∞, for each γ ∈ Γ and ‖ρ‖L∞ = 0.

Examples
Rn,n ≥ 2



p-“thick” quasiconvexity

Definition
(X, d, µ) is a p-“thick” quasiconvex space if there exists C ≥ 1
such that ∀ x, y ∈ X, 0 < ε < 1

4 d(x, y),

Modp(Γ(B(x, ε),B(y, ε),C)) > 0,

where Γ(B(x, ε),B(y, ε),C) denotes the set of curves γp,q
connecting p ∈ B(x, ε) and q ∈ B(y, ε) with `(γp,q) ≤ Cd(p, q).



Geometric characterization: p =∞

D-C, Jaramillo, Shanmugalingam 11
Let (X, d, µ) be a complete metric space with µ doubling. Then,

X is∞-“thick” quasi-convex ⇐⇒ X admits∞-PI

Remark
If µ ∼ λ =⇒Mod∞(Γ, µ) = Mod∞(Γ, λ)
=⇒ (X, d, µ)admits∞-PI if and only if (X, d, λ)admits∞-PI



Analytic characterization

D-C, Jaramillo, Shanmugalingam 11 Let (X, d, µ) be a
connected complete metric space supporting a doubling Borel
measure µ. Then

LIP∞(X) = N1,∞(X) with c.e.s. ⇐⇒ X admits∞-PI



Geometric implications of p-PI

X complete and p-PI

µ doubling

}
=⇒X is p-“thick” quasiconvex

Remarks

p-“thick” quasiconvex =⇒ quasiconvex
The characterization is no longer true for p <∞ :

Question Are there∞-thick qc spaces which are not p-thick qc
for any p <∞?



A counterexample

µ =
∑

j χQj · µj doubling measure

X is p-thick quasi-convex 1 ≤ p ≤ ∞ =⇒∞-PI
X admits an∞-PI but does not admit any p-PI
(1 ≤ p <∞)



Persistence of p-PI under GH-limits

Cheeger 99
If {Xn, dn, µn}n with µn doubling measures supporting a p-PI
p <∞ (with constants uniformly bounded), and

{Xn, dn, µn}n
G−H−→ (X, d, µ), then (X, d, µ) has µ doubling and

supports a p-PI.

Corollary
The∞-PI is non-stable under measured Gromov-Hausdorff limits.



Not Self-improvement of∞-PI

Keith-Zhong 08 If X is a complete metric space equipped with a
doubling measure satisfying a p-Poincaré inequality for some
1 < p <∞, then there exists ε > 0 such that X supports a
q-Poincaré inequality for all q > p− ε.



∞-admissible weights

Definition
w ≥ 0, w ∈ L1

loc(R
n) is a p-admissible weight with p ≥ 1 if the

measure µ given by dµ = wdL n is doubling, and (Rn, | · |, µ)
admits a weak p-Poincaré inequality.

Muckenhoupt-Wheeden 74
1 ≤ p <∞ w ∈ Ap =⇒ w is p-admissible

Remark
A∞ weights are∞-admissible

A∞ =
⋃
p>1

Ap :



A counterexample

(R, | · |, µ) admits an∞-PI but no p-PI

In R, the Riesz product

dν(x) =

∞∏
k=1

(1 + a cos(3k · 2πx))dL 1(x) |a| < 1

is a doubling measure and ν⊥L 1.

Idea construct a sequence of weights wk, k ≥ 1 such that wkdL 1

“approximates” dν better as k→∞:

w(x) = w1(x)χ(−∞,2](x) +
∞∑

k=2

wk(x− k)χ[k,k+1](x),

and dµ = w dL 1.



Measured differentiable structures

X complete, µ doubling

Cheeger 99

X supports p-PI

1 ≤ p <∞

}
=⇒ X admits a “differentiable structure”

Keith 04

X satisfies Lip-lip =⇒ X admits a“differentiable structure”



Lip-lip condition
“The infinitesimal behaviour at a generic point is essentially independent of
the scales used for the blow-up at that point”

Definition

X satisfies Lip-lip if ∃C > 0 such that ∀f ∈ LIP(X),

Lip f (x) ≤ C lip f (x) µ-a.e.x

Here,
Lip f (x) := lim sup

r→0
sup

0<d(y,x)<r

|f (y)− f (x)|
r

,

and
lip f (x) := lim inf

r→0
sup

0<d(y,x)<r

|f (y)− f (x)|
r

.

Remark
If µ ∼ λ =⇒ (X, d, µ) has Lip-lip iff (X, d, λ) has Lip-lip



Lip-lip condition
Keith 02

X complete and p-PI

µ doubling

}
=⇒ X has the Lip-lip condition

:

Proof.
For µ-a.e.x,

1
C

Lip f (x) ≤ lim sup
r→0

1
r

∫
B(x,r)
|f − fB(x,r)| dµ

≤ L lim sup
r→0

(∫
B(x,r)

lip f (x)pdµ
) 1

p
= L lip f (x)
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Question

X complete and∞-PI

µ doubling

}
?

=⇒ X has the Lip-lip condition

Bate (Preprint 12), Gong (Preprint 12)

X satisfies σ−Lip-lip

µ pointwise doubling

}
⇐⇒ X admits a“differentiable structure”



Thank you for your attention!


