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Lipschitz function spaces

(X, d) metric space

Definition
A function f : X — Ris Lipschitz if there is a constant C > 0
such that

flx) =fw)l < Cd(x,y) vx,y € X.




Lipschitz function spaces

(X, d) metric space

Definition
A function f : X — Ris Lipschitz if there is a constant C > 0
such that

flx) =fw)l < Cd(x,y) vx,y € X.

* LIP(X) = {f : X — R : f is Lipschitz}
* LIP*(X) = {f : X — R : f is Lipschitz and bounded}

Il = [Iflloo + LIP(f)




Pointwise Lipschitz function spaces

Definition
Given a function f : X — R the pointwise Lipschitz constant of
f at x € X is defined as

Lipf(x) = limsu
pf(x) nSUP )
v




Pointwise Lipschitz function spaces

Definition
Given a function f : X — R the pointwise Lipschitz constant of
f at x € X is defined as

Lipf(x) = limsu
pf(x) nSUP )
v

Example
Iff € CH(Q), Q & R" (or of a Riemannian manifold), then

Lipf(x) = |Vf(x)] Vxe Q.
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(X,d, ) metric measure space, 1. Borel regular measure
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Definition
p is doubling if 3C > 0 constant such that

0 < u(B(x,2r)) < Cu(B(x,r)) <oo VxeX,r>0.

@ X complete + ;1 doubling = X proper




Doubling measures

(X,d, ) metric measure space, 1. Borel regular measure

Definition
p is doubling if 3C > 0 constant such that

0 < u(B(x,2r)) < Cu(B(x,r)) <oo VxeX,r>0.

@ X complete + ;1 doubling = X proper

Definition
A curve in X is a continuous mapping 7 : [a,b] — X.
A rectifiable curve is a curve with finite length.
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Sierpinski carpet

Qo = [0,1]2
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Sierpiniski carpet: S3 = (X, d, 1)
d = dex

Equally distributing unit mass over Q, leads to a natural

probability doubling measure p on Ss.

_ logS)
~ log3/*

(v is comparable to H?, s



Classical Poincaré inequality
One way to view the Fundamental Theorem of Calculus is:

| infinitesimal data ~ local control |
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Classical Poincaré inequality
One way to view the Fundamental Theorem of Calculus is:

‘ infinitesimal data ~~ local control ‘

This principle can apply in very general situation in the form of
a Poincaré inequality:

3C =C(n) > 0: VB = B(x,r) C R" Vf € WIP(R")

f = puldzr < con( f orrazn)”

Notation:

][dez” =fz= %/def”
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Poincaré inequalities in metric measure spaces
(X, d, ;1) metric measure space
Definition (Heinonen-Koskela 98)
A non-negative Borel function g on X is an upper gradient for
f: X —>RU{*oo}if
'y

f) -l < [ & 5/

v X
Vx,y € X and every rectifiable curve ~y,.
Examples

@ ¢ = oo is an upper gradient of every function on X.

o If there are no rectifiable curves in X then ¢ = 0 is an upper
gradient of every function.

o If f € LIP(X) then g = LIP(f) and g(x) = Lipf(x) are upper
gradients for f.




p-Poincaré inequality

Definition (Heinonen-Koskela 98)

Let1 < p < co.We say that (X,d, ) supports a weak p-Poincaré
inequality if there exist constants C, > 0 and A > 1 such that for
every Borel measurable function f : X — R and every upper
gradient g : X — [0, oo] of f, the pair (f, g) satisfies the
inequality

1/p
— du <C Pd
][B(x,r)lf Foen| i < pr(][B(x,)\r)g “)
VB(x,r) C X.

Notation:

fofan=fa= s [ o




Examples

o (R",|-|,.2")
@ Riemannian manifolds with non-negative Ricci curvature

@ Heisenberg group with its Carnot-Carathéodory metric
and Haar measure ~~ Subriemannian geometry

@ Boundaries of certain hyperbolic buildings: Bourdon-Pajot
spaces~» Geometric group theory

@ Laakso spaces, ...
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Geometric implications of p-Poincaré inequalities

@ X is connected

@ Semmes 98 p < oo

X complete p-PI . .
. = X is quasiconvex
p doubling

Definition

A metric space (X, d) is quasiconvex if there exists a constant
C > 1 such that for each pair of points x,y € X, there exists a
curve v connecting x and y with

(n) < Cd(x, ). e
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Geometric implications of p-Poincaré inequalities

@ X is connected

@ Semmes 98 p < oo

X complete p-PI ) )
. —> X is quasiconvex
p doubling

(S3,d, i) is quasiconvex but does not admit any p-PI

@ Heinonen-Koskela 98, Kinnunen-Latvala 02, Saloff-Coste
02, Keith 03, Miranda 03, Korte 07, ....




Counterexample

@ (S3,d, ) does not admit a 1-PI




Counterexample

@ (S3,d, ) does not admit a 1-PI

Let T, be the vertical strip of width 37".
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Counterexample

1/p
_ < P
][B (x,r)lf feeenldp <C 7( ][B(M)g d#)

S5 8"




Counterexample

@ (S3,d, 1) does not admit any p-PI

Bourdon-Pajot 02 Let (X, d, ) be a bounded metric measure
space with ; doubling and p-PI, and letf : X — I be a
surjective Lipschitz function from X onto an interval I C R.
Then, cgﬁ < fup. Here fu o denotes the push-forward measure
of ;1 under f.

Proof.
Let f be the projection on the horizontal axis. It can be checked
that fyul #1. O

Question Higher dimensions?




Generalized Sierpinski carpets: S,
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Generalized Sierpinski carpets: S,

,..)aodd,

@ S, does not admit any p—PI

Mackay, Tyson, Wildrick (To appear)
® (Sa,d, i) supports a 1-PLif and only if a € ¢!
@ (Sa,d, i) supports a p-PI for some p > 1 if and only if a € ¢



Which is the role of the exponent p?
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(R")p =1 <= Isoperimetric inequality ®




Which is the role of the exponent p?
1/p
— P
]/B(x’r)[f feeenldp < Cr( ][B o dﬂ)

Holder inequality: p-PI==>g-PI for g > p
Federer-Fleming, Mazya 60 Miranda 03
(R")p =1 <= Isoperimetric inequality ®

Example

m Yo.75

Yo.s XZZ{(X,]/)GRZ :xZ0,0Snym}

Yous X, |- ,32 X has p—PI «<—
D¢ p
p>m+1

Yo




Glueing spaces together

Heinonen-Koskela 98

Suppose X and Y are locally compact Q—regular metric
measure spaces and that A is a closed subset of X that has an
isometric copy inside Y. Suppose there are numbers
Q>s>Q—pand C > 1so that H°(A N Bgr) > C'R® for all
balls By either in X or in Y that are centered at A with radius
0 < R < min{diamX, diamY}.

If X and Y admit a p- PI = XU, Y admits a p- PL.




What happens when p — 00?

1/p
— du < ( Pd
fB(xJ)lf feeenldp < r(]l B, Arg M)

Holder inequality: p-PI=>g-PI for g > p




What happens when p — 00?

1/p
- du < Pd
][B<x,r)[f fe@nl u_Cr( ][B(x’mg u)

Holder inequality: p-PI=>g-PI for g > p

Definition

(X,d, ) supports a weak co-Poincaré inequality if there exist
constants C > 0 and A > 1 such that for every function

f : X — R and every upper gradient g of f, the pair (f, g)
satisfies

][B(x’r)v — fen | di < CrllgllLee Bx, )

VB(x,r) C X.




X complete and oco-PI ) )
. =X is quasiconvex
@ doubling

gt o _ays . _ log8
o d=d,x M_H’S_logS

@ (X,d) is quasiconvex

e (X,d,p)does admit

any p-PI,1 <p < oo

Sierpiniski carpet



Modulus of a family of curves

Definition

LetI' C T = {non constant rectifiable curves of X} and
1 <p<oo.ForI' C7T,let F(I') be the family of all Borel
measurable functions p : X — [0, o] such that

/le forall v €T.
.

inf epry [y pPdp, if p<oo

inf,erry [[pllLee,  if

If some property holds for all curves v € T\I', where
Mod, I' = 0, then we say that the property holds for p—a.e.
curve.

Remark
Modp is an outer measure




Lemma
LetT' C Tand 1 < p < oo. The following conditions are equivalent:

(a) Mod, I' = 0.
(b) There exists a Borel function 0 < p € LP(X) such that
[, p = +oo, for each y € T and ||p|| = = 0.

Examples
R*n>2
- A g
. E o "u . i
" o R 5
e e o
,I \\- .‘_”I .\\.
— \ '\_-.._
Mndrff't) =0 .
rp: =1 -XE MOJF (’F‘fﬂ‘) =




p-"thick” quasiconvexity
Definition
(X,d, p) is a p-“thick” quasiconvex space if there exists C > 1
suchthatVx,y e X,0 <e < }Ld(x,y),
Mod,,(T'(B(x,¢), B(y,¢),C)) > 0,

where I'(B(x, ), B(y, €), C) denotes the set of curves v,
connecting p € B(x,¢) and q € B(y, <) with £(v,4) < Cd(p, q).




Geometric characterization: p = oo

D-C, Jaramillo, Shanmugalingam 11
Let (X, d, 1) be a complete metric space with ;1 doubling. Then,

’ X is oo-"thick” quasi-convex <= X admits oo-PI

Remark
If p ~ X = Mod (T, t) = Mod (T, A)
= (X, d, p)admits oo-PI if and only if (X, d, \)admits co-PI




Analytic characterization

D-C, Jaramillo, Shanmugalingam 11 Let (X,d, ) be a
connected complete metric space supporting a doubling Borel
measure u. Then

LIP*(X) = NV (X) with c.e.s. <= X admits co-PI




Geometric implications of p-PI

X complete and p-PI ) ) )
. — X is p-"thick” quasiconvex
p doubling

Remarks

@ p-“thick” quasiconvex = quasiconvex
@ The characterization is no longer true for p < oo

Question Are there oo-thick qc spaces which are not p-thick qc
for any p < o0?




A counterexample

W= Zi Xq; - #j doubling measure

O o 0
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@ X is p-thick quasi-convex 1 < p < oo = oo-PI
@ X admits an oo-PI but does admit any p-PI

(I1<p<o0)




Persistence of p-PI under GH-limits

Cheeger 99
If { Xy, dn, pn }n with g1, doubling measures supporting a p-PI

(with constants uniformly bounded), and

{Xnsdn, pintn N (X,d, p), then (X, d, 1) has o doubling and
supports a p-PI.

Corollary

The oco-PI is non-stable under measured Gromov-Hausdorff limits.




Not Self-improvement of co-P1

Keith-Zhong 08 If X is a complete metric space equipped with a
doubling measure satisfying a p-Poincaré inequality for some

1 < p < oo, then there exists € > 0 such that X supports a
g-Poincaré inequality forallg > p —e.

[m] 000D

O 0O 0O elJeslJeo
[m] 000D

[m]

0 0

)
DDDED




oo-admissible weights

Definition

w>0,w e Ll _(R")is a p-admissible weight with p > 1 if the
measure p given by dy = wd " is doubling, and (R", | - |, p1)
admits a weak p-Poincaré inequality.

Muckenhoupt-Wheeden 74
1<p<oo we A, = wis p-admissible

Remark
Ao weights are oo-admissible

Aw =] 4,

p>1




A counterexample

(R, ||, x) admits an co-PI but p-PI

In R, the Riesz product
dv(x) = [](1 +acos(3"- 27x))dL" (x) |a| <1
k=1

is a doubling measure and v 1.

Idea construct a sequence of weights wy, k > 1 such that wyd.Z 1
“approximates” dv better as k — oo:

w(x) = w1 (X)X (—o02) "‘Zwkx_ X[k e+1] (%),

and dy = wd ..




Measured differentiable structures

X complete, i« doubling
Cheeger 99

X supports p-PI . .
= X admits a “differentiable structure”
1<p<oo

Keith 04

X satisfies Lip-lip = X admits a”differentiable structure”




Lip-lip condition
“The infinitesimal behaviour at a generic point is essentially independent of

the scales used for the blow-up at that point”
Definition
X satisfies Lip-lip if 3C > 0 such that Vf € LIP(X),

Lipf(x) < Clipf(x) p-a.ex

Here,
Lipf(x) ;= lim sup sup M’
r—0 0<d(y,x)<r r
and
hpf(x) = liminf sup M
0 0<d(y,x)<r r
Remark

If 4 ~ A\ = (X,d, p) has Lip-lip iff (X,d, A) has Lip-lip




Lip-lip condition
Keith 02
X complete and p-PI

. — X has the Lip-lip condition
p doubling
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Lip-lip condition
Keith 02

X complete and p-PI o .
. — X has the Lip-lip condition
p doubling

Proof.
For p-a.e.x,

1_. ) 1
SLipf() <timsup £ 1f el

r—0 r B(X,T’

< Llimsup <][B(x ) lipf(x)i’d,u> Po_ Llipf(x)

r—0




Question

X complete and co-PI 2 o .
. — X has the Lip-lip condition
w1 doubling

Bate (Preprint 12), Gong (Preprint 12)

X satisfies o —Lip-lip . . )
o . <= X admits a“differentiable structure”
w1 pointwise doubling




Thank you for your attention!




