Geometric implications of Poincaré inequalities in metric measure spaces

Estibalitz Durand Cartagena

UNED (Spain) Dpto. de Matemática Aplicada

IPAM program "Interactions between Analysis and Geometry" Workshop I: Analysis on metric spaces IPAM, UCLA

- Jesús A. Jaramillo (Universidad Complutense de Madrid)
- Nages Shanmugalingam (University of Cincinnati)
- Alex Williams (Texas Tech University)

Analysis on metric spaces

Lipschitz function spaces

(X, d) metric space

Definition

A function $f : X \longrightarrow \mathbb{R}$ is Lipschitz if there is a constant C > 0 such that

 $|f(x) - f(y)| \le C d(x, y) \quad \forall x, y \in X.$

Lipschitz function spaces

(X, d) metric space

Definition

A function $f : X \longrightarrow \mathbb{R}$ is Lipschitz if there is a constant C > 0 such that

 $|f(x) - f(y)| \le C d(x, y) \quad \forall x, y \in X.$

★ LIP(X) = {
$$f : X \longrightarrow \mathbb{R} : f$$
 is Lipschitz}
★ LIP[∞](X) = { $f : X \longrightarrow \mathbb{R} : f$ is Lipschitz and bounded}

$$\|f\|_{\mathrm{LIP}^{\infty}} = \|f\|_{\infty} + \mathrm{LIP}(f)$$

Pointwise Lipschitz function spaces

Definition

Given a function $f : X \to \mathbb{R}$ the pointwise Lipschitz constant of f at $x \in X$ is defined as

$$\operatorname{Lip} f(x) = \limsup_{\substack{y \to x \\ y \neq x}} \frac{|f(x) - f(y)|}{d(x, y)}.$$

Pointwise Lipschitz function spaces

Definition

Given a function $f : X \to \mathbb{R}$ the pointwise Lipschitz constant of f at $x \in X$ is defined as

$$\operatorname{Lip} f(x) = \limsup_{\substack{y \to x \\ y \neq x}} \frac{|f(x) - f(y)|}{d(x, y)}$$

Example If $f \in C^1(\Omega)$, $\Omega \stackrel{\text{op}}{\subset} \mathbb{R}^n$ (or of a Riemannian manifold), then $\operatorname{Lip} f(x) = |\nabla f(x)| \quad \forall x \in \Omega.$

Doubling measures

 (X,d,μ) metric measure space, μ Borel regular measure

Doubling measures

 (X,d,μ) metric measure space, μ Borel regular measure

Definition μ is doubling if $\exists C > 0$ constant such that

 $0 < \mu(B(x,2r)) \le C \, \mu(B(x,r)) < \infty \quad \forall \, x \in X, r > 0.$

• *X* complete + μ doubling \Longrightarrow *X* proper

Doubling measures

 (X,d,μ) metric measure space, μ Borel regular measure

Definition μ is doubling if $\exists C > 0$ constant such that

 $0 < \mu(B(x,2r)) \le C \, \mu(B(x,r)) < \infty \quad \forall \, x \in X, r > 0.$

• *X* complete + μ doubling \Longrightarrow *X* proper

Definition

A curve in *X* is a continuous mapping $\gamma : [a, b] \rightarrow X$. A rectifiable curve is a curve with finite length.

Examples

•
$$(\mathbb{R}^n, |\cdot|, \mathscr{L}^n) C = 2^n$$

• $(C, |\cdot|, \mathscr{H}^{\frac{\log 2}{\log 3})}$

—			
<u> </u>			
\mathbf{H}	\vdash	\vdash	H
нн	нн	нн	нн

•
$$([0,1], |x-y|^{1/2}, \mathscr{H}^2)$$

 $f(x) = x$

$$\frac{|f(x) - f(y)|}{|x - y|^{1/2}} = |x - y|^{1/2} \xrightarrow{y \to x} 0$$

Sierpiński carpet $Q_0 = [0,1]^2$

Sierpiński carpet Q_1

 Q_2

Sierpiński carpet Q_4

Sierpiński carpet

Sierpiński carpet: $S_3 = (X, d, \mu)$

$$d = d_{e|X}$$

Equally distributing unit mass over Q_n leads to a natural probability doubling measure μ on S_3 . (μ is comparable to \mathcal{H}^s , $s = \frac{\log 8}{\log 3}$).

Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

infinitesimal data \rightsquigarrow local control

Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

infinitesimal data \rightsquigarrow local control

This principle can apply in very general situation in the form of a Poincaré inequality:

Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

infinitesimal data \rightsquigarrow local control

This principle can apply in very general situation in the form of a Poincaré inequality:

$$\exists C = C(n) > 0: \forall B \equiv B(x, r) \subset \mathbb{R}^n \ \forall f \in W^{1, p}(\mathbb{R}^n)$$
$$\int_B |f - f_B| d\mathscr{L}^n \le C(n) \ r \Big(\int_B |\nabla f|^p d\mathscr{L}^n \Big)^{1/p}$$

Notation:

$$\int_{B} f \, d\mathcal{L}^{n} = f_{B} = \frac{1}{\mathcal{L}^{n}(B)} \int_{B} f \, d\mathcal{L}^{n}$$

Poincaré inequalities in metric measure spaces (X, d, μ) metric measure space

Poincaré inequalities in metric measure spaces (X, d, μ) metric measure space

Definition (*Heinonen-Koskela 98*)

A non-negative Borel function *g* on *X* is an upper gradient for $f: X \to \mathbb{R} \cup \{\pm \infty\}$ if

$$|f(x)-f(y)|\leq \int_{\gamma}g,$$

 $\forall x, y \in X$ and every rectifiable curve γ_{xy} .

Examples

- $g \equiv \infty$ is an upper gradient of every function on *X*.
- If there are no rectifiable curves in *X* then $g \equiv 0$ is an upper gradient of every function.
- If $f \in LIP(X)$ then $g \equiv LIP(f)$ and g(x) = Lip f(x) are upper gradients for f.

p-Poincaré inequality

Definition (Heinonen-Koskela 98)

Let $1 \le p < \infty$. We say that (X, d, μ) supports a weak *p*-Poincaré inequality if there exist constants $C_p > 0$ and $\lambda \ge 1$ such that for every Borel measurable function $f : X \to \overline{\mathbb{R}}$ and every upper gradient $g : X \to [0, \infty]$ of f, the pair (f, g) satisfies the inequality

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le C_p \, r \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

$$\forall \, B(x,r) \subset X.$$

Notation:

$$\int_{B} f \, d\mu = f_{B} = \frac{1}{\mu(B)} \int_{B} f \, d\mu$$

Examples

- $(\mathbb{R}^n, |\cdot|, \mathscr{L}^n)$
- Riemannian manifolds with non-negative Ricci curvature
- Heisenberg group with its Carnot-Carathéodory metric and Haar measure ~> Subriemannian geometry
- Boundaries of certain hyperbolic buildings: Bourdon-Pajot spaces → Geometric group theory
- Laakso spaces, ...

• *X* is connected

- *X* is connected
- Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex}$$

- *X* is connected
- Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex}$$

Definition

A metric space (X, d) is quasiconvex if there exists a constant $C \ge 1$ such that for each pair of points $x, y \in X$, there exists a curve γ connecting x and y with

$$\ell(\gamma) \le Cd(x,y).$$

- *X* is connected
- Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex} \end{array}$$

 \Leftarrow (*S*₃, *d*, μ) is quasiconvex but does not admit any *p*-PI

- *X* is connected
- Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex}$$

 \Leftarrow (*S*₃, *d*, μ) is quasiconvex but does not admit any *p*-PI

• Heinonen-Koskela 98, Kinnunen-Latvala 02, Saloff-Coste 02, Keith 03, Miranda 03, Korte 07,

• (S_3, d, μ) does not admit a 1-PI

• (S_3, d, μ) does not admit a 1-PI

Let T_n be the vertical strip of width 3^{-n} .

 T_1

 T_2

 T_3

Define
$$f_n \in \text{LIP}(S_3)$$
 such that $\int_{S_3} |f_n - (f_n)_{S_3}| d\mu > C$ but

$$\int_{S_3} \operatorname{lip}(f_n) d\mu = 3^n \cdot \mu(T_n) = 3^n \cdot \frac{1}{8^n} \to 0 \ (n \to \infty)$$

• (S_3, d, μ) does not admit any *p*-PI

Bourdon-Pajot 02 Let (X, d, μ) be a bounded metric measure space with μ doubling and p-PI, and let $f : X \longrightarrow I$ be a surjective Lipschitz function from X onto an interval $I \subset \mathbb{R}$. Then, $\mathscr{L}^1_{|I} \ll f_{\#}\mu$. Here $f_{\#}\mu$ denotes the push-forward measure of μ under f.

Proof.

Let *f* be the projection on the horizontal axis. It can be checked that $f_{\#}\mu \perp \mathscr{L}^1$.

Question Higher dimensions?

Generalized Sierpinski carpets: Sa

$$\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\}^{\mathbb{N}}$$

Generalized Sierpinski carpets: Sa

$$\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{ \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots \right\}^{\mathbb{N}}$$

For $\mathbf{a} = \left(\frac{1}{a}, \frac{1}{a}, \frac{1}{a}, \ldots \right) a$ odd,

• *S*_a does not admit any *p*-PI

Generalized Sierpinski carpets: S_a

$$\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{ \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots \right\}^{\mathbb{N}}$$

For $\mathbf{a} = \left(\frac{1}{a}, \frac{1}{a}, \frac{1}{a}, \ldots \right) a$ odd,

• *S*_a does not admit any *p*-PI

Mackay, Tyson, Wildrick (To appear)

- $(S_{\mathbf{a}}, d, \mu)$ supports a 1-PI if and only if $\mathbf{a} \in \ell^1$
- $(S_{\mathbf{a}}, d, \mu)$ supports a *p*-PI for some p > 1 if and only if $\mathbf{a} \in \ell^2$

Which is the role of the exponent *p*?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: *p*-PI \Longrightarrow *q*-PI for *q* \ge *p*

Which is the role of the exponent *p*?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: *p*-PI \Longrightarrow *q*-PI for *q* \ge *p*

Federer-Fleming, Mazýa 60 Miranda 03 $(\mathbb{R}^n) p = 1 \iff$ Isoperimetric inequality Which is the role of the exponent *p*?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: p-PI \Longrightarrow q-PI for $q \ge p$

Federer-Fleming, Mazýa 60 Miranda 03 $(\mathbb{R}^n) p = 1 \iff$ Isoperimetric inequality •

 $\begin{array}{ll} \begin{pmatrix} \mathsf{Y}_1 \\ \mathsf{Y}_{0.75} \\ \mathsf{Y}_{0.5} \\ \end{pmatrix} & \begin{array}{l} \mathsf{Example} \\ \mathsf{X}_{:=} \left\{ (x,y) \in \mathbb{R}^2 : x \ge 0, 0 \le y \le x^m \right\} \\ \begin{pmatrix} \mathsf{Y}_{0.25} \\ \mathsf{Y}_0 \\ \end{array} & \begin{array}{l} (X, |\cdot|, \mathscr{L}^2_{|X}) X \text{ has } p - \mathrm{PI} \\ \end{array} & \begin{array}{l} \longleftrightarrow \\ p > m + 1 \end{array}$

Glueing spaces together

Heinonen-Koskela 98

Suppose *X* and *Y* are locally compact *Q*–regular metric measure spaces and that *A* is a closed subset of *X* that has an isometric copy inside *Y*. Suppose there are numbers $Q \ge s > Q - p$ and $C \ge 1$ so that $\mathcal{H}_s^{\infty}(A \cap B_R) \ge C^{-1}R^s$ for all balls B_R either in *X* or in *Y* that are centered at *A* with radius $0 < R < \min\{\text{diam}X, \text{diam}Y\}$.

If *X* and *Y* admit a *p*- PI \Longrightarrow *X* \cup *AY* admits a *p*- PI.

What happens when $p \to \infty$?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: p-PI \Longrightarrow q-PI for $q \ge p$

What happens when $p \to \infty$?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: p-PI \Longrightarrow q-PI for $q \ge p$

Definition

 (X, d, μ) supports a weak ∞ -Poincaré inequality if there exist constants C > 0 and $\lambda \ge 1$ such that for every function $f : X \to \mathbb{R}$ and every upper gradient g of f, the pair (f, g) satisfies

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \leq Cr ||g||_{L^{\infty}(B(x,\lambda r))}$$
$$\forall B(x,r) \subset X.$$

$\left. \begin{array}{c} X \text{ complete and } \infty \text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex}$

#

Sierpiński carpet

•
$$d = d_{e|X}$$
 $\mu = \mathcal{H}^s, s = \frac{\log 8}{\log 3}$

•
$$(X, d)$$
 is quasiconvex

•
$$(X, d, \mu)$$
 does not admit any *p*-PI, $1 \le p \le \infty$

Modulus of a family of curves

Definition

Let $\Gamma \subset \Upsilon = \{\text{non constant rectifiable curves of } X\}$ and $1 \leq p \leq \infty$. For $\Gamma \subset \Upsilon$, let $F(\Gamma)$ be the family of all Borel measurable functions $\rho : X \to [0, \infty]$ such that

$$\int_{\gamma} \rho \ge 1 \text{ for all } \gamma \in \Gamma.$$

$$\operatorname{Mod}_{p}(\Gamma) = \begin{cases} \inf_{\rho \in F(\Gamma)} \int_{X} \rho^{p} d\mu, & \text{if } p < \infty \\ \inf_{\rho \in F(\Gamma)} \|\rho\|_{L^{\infty}}, & \text{if } p = \infty \end{cases}$$

If some property holds for all curves $\gamma \in \Upsilon \setminus \Gamma$, where $Mod_p \Gamma = 0$, then we say that the property holds for *p*-a.e. curve.

Remark Mod_p is an outer measure

Lemma

Let $\Gamma \subset \Upsilon$ and $1 \le p \le \infty$. The following conditions are equivalent: (a) Mod_p $\Gamma = 0$.

(b) There exists a Borel function $0 \le \rho \in L^p(X)$ such that $\int_{\gamma} \rho = +\infty$, for each $\gamma \in \Gamma$ and $\|\rho\|_{L^{\infty}} = 0$.

Examples

 $\mathbb{R}^n, n \ge 2$

p-"thick" quasiconvexity

Definition

 (X, d, μ) is a *p*-"thick" quasiconvex space if there exists $C \ge 1$ such that $\forall x, y \in X$, $0 < \varepsilon < \frac{1}{4}d(x, y)$,

$$\operatorname{Mod}_p(\Gamma(B(x,\varepsilon),B(y,\varepsilon),C))>0,$$

where $\Gamma(B(x, \varepsilon), B(y, \varepsilon), C)$ denotes the set of curves $\gamma_{p,q}$ connecting $p \in B(x, \varepsilon)$ and $q \in B(y, \varepsilon)$ with $\ell(\gamma_{p,q}) \leq Cd(p,q)$.

Geometric characterization: $p = \infty$

D-C, Jaramillo, Shanmugalingam 11

Let (X, d, μ) be a complete metric space with μ doubling. Then,

X is ∞ -"thick" quasi-convex \iff X admits ∞ -PI

Remark

If $\mu \sim \lambda \Longrightarrow \operatorname{Mod}_{\infty}(\Gamma, \mu) = \operatorname{Mod}_{\infty}(\Gamma, \lambda)$ $\Longrightarrow (X, d, \mu)$ admits ∞ -PI if and only if (X, d, λ) admits ∞ -PI

D-C, Jaramillo, Shanmugalingam 11 Let (X, d, μ) be a connected complete metric space supporting a doubling Borel measure μ . Then

 $LIP^{\infty}(X) = N^{1,\infty}(X)$ with c.e.s. $\iff X$ admits ∞ -PI

Geometric implications of *p*-PI

$$X \text{ complete and } p-\text{PI} \\ \mu \text{ doubling} \end{cases} \Longrightarrow X \text{ is } p-\text{"thick" quasiconvex}$$

Remarks

- *p*-"thick" quasiconvex \implies quasiconvex
- The characterization is no longer true for $p < \infty$ \checkmark

Question Are there ∞ -thick qc spaces which are not *p*-thick qc for any $p < \infty$?

A counterexample

$$\mu = \sum_{j} \chi_{Q_j} \cdot \mu_j$$
 doubling measure

- *X* is *p*-thick quasi-convex $1 \le p \le \infty \Longrightarrow \infty$ -PI
- X admits an ∞ -PI but does not admit any *p*-PI $(1 \le p < \infty)$

Persistence of *p*-PI under GH-limits

Cheeger 99 If $\{X_n, d_n, \mu_n\}_n$ with μ_n doubling measures supporting a *p*-PI $p < \infty$ (with constants uniformly bounded), and $\{X_n, d_n, \mu_n\}_n \xrightarrow{G-H} (X, d, \mu)$, then (X, d, μ) has μ doubling and supports a *p*-PI.

Corollary

The ∞ -PI is non-stable under measured Gromov-Hausdorff limits.

Not Self-improvement of ∞ -PI

Keith-Zhong 08 If *X* is a complete metric space equipped with a doubling measure satisfying a *p*-Poincaré inequality for some $1 , then there exists <math>\varepsilon > 0$ such that *X* supports a *q*-Poincaré inequality for all $q > p - \varepsilon$.

∞ -admissible weights

Definition

 $w \ge 0$, $w \in L^1_{loc}(\mathbb{R}^n)$ is a *p*-admissible weight with $p \ge 1$ if the measure μ given by $d\mu = wd\mathscr{L}^n$ is doubling, and $(\mathbb{R}^n, |\cdot|, \mu)$ admits a weak *p*-Poincaré inequality.

Muckenhoupt-Wheeden 74

$$1 \le p < \infty \ w \in A_p \Longrightarrow w$$
 is *p*-admissible

Remark

 \mathcal{A}_{∞} weights are ∞ -admissible

$$\mathcal{A}_{\infty} = \bigcup_{p>1} A_p \qquad \Leftarrow$$

A counterexample

 $(\mathbb{R}, |\cdot|, \mu)$ admits an ∞ -PI but no *p*-PI In \mathbb{R} , the *Riesz product*

$$d\nu(x) = \prod_{k=1}^{\infty} (1 + a\cos(3^k \cdot 2\pi x))d\mathscr{L}^1(x) \quad |a| < 1$$

is a doubling measure and $\nu \perp \mathscr{L}^1$.

Idea construct a sequence of weights w_k , $k \ge 1$ such that $w_k d\mathscr{L}^1$ "approximates" $d\nu$ better as $k \to \infty$:

$$w(x) = w_1(x)\chi_{(-\infty,2]}(x) + \sum_{k=2}^{\infty} w_k(x-k)\chi_{[k,k+1]}(x),$$

and $d\mu = w d\mathcal{L}^1$.

Measured differentiable structures

X complete, μ doubling

Cheeger 99

$$\left. \begin{array}{c} X \text{ supports } p\text{-PI} \\ 1 \le p < \infty \end{array} \right\} \Longrightarrow X \text{ admits a "differentiable structure"}$$

Keith 04

X satisfies Lip-lip \implies X admits a "differentiable structure"

Lip-lip condition

"The infinitesimal behaviour at a generic point is essentially independent of the scales used for the blow-up at that point"

Definition

X satisfies Lip-lip if $\exists C > 0$ such that $\forall f \in LIP(X)$,

 $\operatorname{Lip} f(x) \le C \operatorname{lip} f(x) \quad \mu\text{-}a.e.x$

Here,

$$\operatorname{Lip} f(x) := \limsup_{r \to 0} \sup_{0 < d(y,x) < r} \frac{|f(y) - f(x)|}{r},$$

and

$$\operatorname{lip}_{f(x)} := \liminf_{r \to 0} \sup_{0 < d(y,x) < r} \frac{|f(y) - f(x)|}{r}$$

Remark If $\mu \sim \lambda \Longrightarrow (X, d, \mu)$ has Lip-lip iff (X, d, λ) has Lip-lip

Lip-lip condition Keith 02 X complete and p-PI μ doubling $\Rightarrow X$ has the Lip-lip condition

Lip-lip condition Keith 02 X complete and p-PI μ doubling $\Rightarrow X$ has the Lip-lip condition

#

Ouestion

$\left. \begin{array}{c} X \text{ complete and } \infty \text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \stackrel{?}{\Longrightarrow} X \text{ has the Lip-lip condition}$

Bate (Preprint 12), Gong (Preprint 12)

 $X \text{ satisfies } \sigma - \text{Lip-lip}$ $\mu \text{ pointwise doubling}$ $\iff X \text{ admits a "differentiable structure"}$

Thank you for your attention!

