
A stability theorem for elliptic Harnack inequalities

Richard Bass
University of Connecticut

r.bass@uconn.edu
www.math.uconn.edu/∼bass



The classical Harnack inequality

A function h is harmonic in a domain D if

∆h(x) =
d∑

i=1

∂2h

∂x2
i

(x) = 0, x ∈ D.



The (elliptic) Harnack inequality says that if h is harmonic and
non-negative in B(x0, 2R), then all the values of h in B(x0,R) are
comparable:

There exists c not depending on h, R, or x0 such that

h(x) ≤ ch(y), x , y ∈ B(x0,R).
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If we are in the case where the state space is R2 = C and if f is
analytic in a domain D, then Re f and Im f are harmonic there.



The subject of this talk

The general question we consider is:

When does the Harnack inequality hold?



We might want to consider other elliptic operators than the
Laplacian. And we might want to consider other state spaces than
Rd , such as fractals, manifolds, infinite graphs.

This has applications to PDE, geometry, analysis, mathematical
physics, and probability.
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If we have a Markov process Xt and we let

h(x) = E x f (XτD ),

then h is harmonic, provided we replace the Laplacian by the
infinitesimal generator of X . Here f is a function on the boundary
of a domain D, τD is the first exit time from D, and E x is the
expectation starting at x .



For example, suppose f = 1A for A a subset of the boundary of D.
If there is positive probability that X leaves D through A when
started at x , the Harnack inequality guarantees that there is
positive probability of leaving D through A when the process is
started at points near x .
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The Harnack inequality implies that harmonic functions are
continuous, so in fact Px(XτD ∈ A) will usually be a continuous
function.



Moser’s theorem

A landmark paper in studying Harnack inequalities is that of Moser
(1961). He considered functions that were harmonic with respect
to the operator given by

Lf (x) =
d∑

i ,j=1

∂

∂xi

(
aij(·)

∂f

∂xj
(·)
)

(x),

where the aij are uniformly elliptic (i.e., positive definite uniformly
in x) and bounded.

A function h is harmonic if Lh(x) = 0 for x ∈ D.



Moser’s theorem says that the Harnack inequality holds for
functions that are non-negative and harmonic in a domain in Rd .



Dirichlet forms

When the aij are only bounded and measurable, it is not even clear
how to make sense of the operator L. We have that

Lf = g

if ∫
(Lf )ϕ =

∫
gϕ

for all nice ϕ.



Note that ∫
ϕ(Lf ) =

∫ d∑
i ,j=1

ϕ
∂

∂xi

(
aij
∂f

∂xj

)

= −
∫ d∑

i ,j=1

aij
∂f

∂xj

∂ϕ

∂xi
.



We define Lf = g in the weak sense by requiring∫ d∑
i ,j=1

∂f

∂xj
(x)aij(x)

∂ϕ

∂xi
(x) dx = −

∫
g(x)ϕ(x) dx

for all nice ϕ, say ϕ ∈ C 1 with compact support in D.



E(f , h) =

∫ d∑
i ,j=1

∂f

∂xj
(x)aij(x)

∂h

∂xi
(x) dx

is the Dirichlet form associated to L.

A function is harmonic if

E(f , ϕ) = 0

for all nice ϕ.



Note that

EL(f , f ) =

∫ d∑
i ,j=1

aij(x)
∂f

∂xi
(x)

∂f

∂xj
(x) dx

is equivalent to E∆(f , f ), which means

c1E∆(f , f ) ≤ EL(f , f ) ≤ c2E∆(f , f )

for all f in the domain of E . This is a consequence of the uniform
ellipticity and boundedness of the matrix aij(x).

Observe that

E∆(f , f ) =

∫
|∇f (x)|2 dx .



Rephrasing the basic question

Our question about when the Harnack inequality holds can be split
into two.

(1) What are conditions on the space and operator such that the
Harnack inequality holds?

(2) If the Harnack inequality holds for E and E ′ is equivalent to E ,
does the Harnack inequality hold for E ′?



The parabolic Harnack inequality

Moser (1964) also proved a parabolic Harnack inequality. If u(x , t)
is parabolic, which means that

∂u

∂t
(x , t)− Lu(x , t) = 0

and u is non-negative in a larger domain, then we can say
something about the values in a smaller domain.

We have
sup
Q2

u ≤ c inf
Q1

u.
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Hebisch and Saloff-Coste (2001) have studied the difference
between the elliptic and parabolic Harnack inequality and
discovered that it is quite narrow.

But the difference does exist. We will talk a bit more about this
later.



Symmetric Markov chains

Now let’s look at some other state spaces and operators to which
we can address these questions.

Consider symmetric Markov chains on infinite graphs. It turns out
that if we can answer our question on infinite graphs, then we also
have our answer for all sorts of other domains, such as manifolds,
fractals, metric measure spaces, and so on.



The infinite graph consists of infinitely many vertices and a
collection of edges. We say x ∼ y if x and y are vertices and there
is an edge connecting x and y . Given a point x , there is a
conductance Cxy associated to every pair x , y with x ∼ y , with
Cxy = Cyx . Let Cxy = 0 if x and y do not form an edge.

Let
µx =

∑
{z:z∼x}

Cxz .

Starting at x , we look at a Markov chain X that waits at x an
exponential length of time and then jumps to a point y with
probability

Px(X jumps to y) =
Cxy

µx
.
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These are called symmetric Markov chains because their transition
densities p(x , y) with respect to µ(A) =

∑
x∈A µx are symmetric:

p(x , y) = p(y , x).



The infinitesimal generator corresponding to the process X is

Lf (x) =
∑
{y :x∼y}

(f (y)− f (x))Cxy ,

and the associated Dirichlet form is

E(f , g) =
∑
y

∑
x

(f (y)− f (x))(g(y)− g(x))Cxy .



If we have two graphs consisting of the same vertices and same
edges, but the conductances Cxy ,C

′
xy are different, then a

sufficient condition for the corresponding Dirichlet forms to be
equivalent is if there exist constants c1, c2 such that

c1Cxy ≤ C ′xy ≤ c2Cxy

for all x and y .



The main theorem of the present talk is that modulo some mild
regularity conditions, if an elliptic Harnack inequality holds for E
and E ′ is equivalent to E , then the elliptic Harnack inequality holds
for E ′.



A property is said to be stable if when it holds for one Dirichlet
form, it holds for all equivalent Dirichlet forms.

We can thus say that the elliptic Harnack inequality is stable.



More on the parabolic Harnack inequality

Let’s look at the parabolic Harnack inequality some more.
Saloff-Coste (1992) and Grigor’yan (1992) independently proved
that, provided the space satisfies some regularity conditions, then
the parabolic Harnack inequality holds if and only if volume
doubling and the Poincaré inequality hold.



A Dirichlet form E has associated with it a measure µ.

Volume doubling is a geometric condition:

µ(B(x , 2r)) ≤ cµ(B(x , r)),

where B(x , r) is the ball of radius r about x and c does not
depend on x or r .



The Poincaré inequality is an analytic inequality. In Rd it reads:∫
B(x0,r)

|f (x)− f |2 dx ≤ cr2

∫
B(x0,r)

|∇f |2 dx ,

where

f =
1

m(B(x , r))

∫
B(x ,r)

f (x) dx

and m is Lebesgue measure.



In general spaces, the Poincaré inequality reads∫
B(x0,r)

|f (x)− f |2 µ(dx) ≤ cr2EB(x0,r)(f , f ),

where EA is the analogue of
∫
A |∇f |2.

EA can be shown to be the Dirichlet form of the process X with
normal reflection on the boundary of A.



For symmetric chains, the Poincaré inequality reads∑
x∈B(x0,r)

|f (x)− f |2µx ≤ cr2
∑

x∈B(x0,r)

∑
y∼x

(f (y)− f (x))2Cxy .

Note that the Poincaré inequality is stable.



The regularity conditions needed on the space are that there are
enough cut-off functions that are nice. More specifically, for each x
and r there exists ϕ = ϕx ,r such that ϕ is 1 on B(x , r), 0 on
B(x , 2r)c , and the L∞ norm of |∇ϕ| is comparable to the L2 norm.



A nice consequence of the parabolic Harnack inequality is that one
gets Gaussian type estimates. If p(t, x , y) are the transition
probability densities, which are the same thing as the fundamental
solution to the heat equation ∂tu = Lu, then

c1t
−d/2e−d(x ,y)2/c2t ≤ p(t, x , y) ≤ c3t

−d/2e−d(x ,y)2/c4t .



If the parabolic Harnack inequality holds, then the elliptic Harnack
inequality holds. (Any harmonic function is parabolic.)

In Barlow-Bass (2004) it was shown that the converse does not
hold. Part of the issue is that the r2 scaling need not hold.



A more general type of Poincaré inequality is that∫
B(x0,r)

|f (x)− f |2 µ(dx) ≤ crβEB(x0,r)(f , f ).

This shows up when studying fractals or when studying manifolds
with many larger and larger obstructions.





It is not true that the parabolic Harnack inequality is equivalent to
volume doubling and the Poincaré inequality in the case where not
enough cut-off functions exist. Barlow-Bass showed that one needs
an additional condition, the cut-off inequality.



For each x0 and R there exists a function ϕ such that ϕ is 1 on
B(x ,R), 0 on B(x0, 2R)c , is Hölder continuous:

|ϕ(x)− ϕ(y)| ≤ c
(d(x , y)

R

)α
,

and ∑
x ,y∈B(x0,s)

f (x)2|ϕ(x)− ϕ(y)|2Cxy

≤ c
( s

R

)θ( ∑
x ,y∈B(x0,2s)

|f (x)− f (y)|2Cxy

+ s−β
∑

x∈B(x0,2s)

f (x)2µx

)
for all s ≤ R.

Note that this is stable.



We proved that the parabolic Harnack inequality (with parameter
β) holds if and only if the Poincaré inequality (with parameter β),
volume doubling, and the cut-off inequality hold.

One again gets Gaussian type estimates, but instead of d(x , y)2 in
the exponent, one gets d(x , y)β/(β−1).



A consequence of the characterization of the parabolic Harnack
inequality in Barlow-Bass is that the parabolic Harnack inequality
is stable. If it holds for E and E ′ is equivalent to E , then the
parabolic Harnack inequality holds for E ′.



For an example where the elliptic Harnack inequality does not
hold, look at two copies of R3 with the origins of both copies
connected by a one-dimensional line segment.
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Adjusted Poincaré inequality

If B(x , r) is the ball of radius r about x , let V (x , r) = µ(B(x , r))
be the volume.

Let C (x , r) be the capacity of the ball. In the case when our
process is transient, this can be defined by

C (x , r) = inf{E(f , f ) : f = 1 on B(x , r), f is 0 at ∞}.



This is the same as the notion of capacity in electrical network
theory.

When the process is not transient, there is a substitute we can use.

Let

E (x , r) =
V (x , r)

C (x , r)
.



When the state space is Rd , then V (x , r) ≈ rd , C (x , r) ≈ rd−2,
and so E (x , r) ≈ r2.

If the Harnack inequality does hold, it turns out that E (x , r) is
comparable to the expected amount of time for Xt to leave B(x , r)
when started at x .



We introduce the adjusted Poincaré inequality:∫
B(x0,r)

|f (x)− f |2 µ(dx) ≤ c1E (x0, r)EB(x0,2r)(f , f )

for all x0 and all r .

In the infinite graph case, it reads∑
|f (x)− f |2µx ≤ c1E (x0, r)

∑
x ,y∈B(x0,2r)

|f (y)− f (x)|2Cxy .

The adjusted Poincaré inequality is stable.



Assume the process is transient. (This assumption can be
removed.) Assume also that some mild regularity holds. (More
about this is a moment.)



The main theorems

Theorem 1. The elliptic Harnack inequality holds if and only if the
cut-off inequality and the adjusted Poincaré inequality hold.



Theorem 2. If the elliptic Harnack inequality holds for E and E ′ is
equivalent to E , then the elliptic Harnack inequality holds for E ′.



About the regularity

All known proofs of any kind of Harnack inequality rely on volume
doubling:

V (x , 2r) ≤ cV (x , r).

Yet Delmotte (2002) has an example of a graph where the elliptic
Harnack inequality holds but volume doubling does not.
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Figure 8. The graph ! = (G, O)#(G̃, Õ).

Proof of Theorem 2.9. Like in the proof of Theorem 3.1, it is sufficient to prove
the Harnack inequality with coefficient 20 instead of 2. Namely, there is a positive
constant C20 such that if u is non-negative and harmonic on B(x, 20r) then

sup
B(x,r)

u ! C20 inf
B(x,r)

u.

If O /∈ B(x, 2r) this is a consequence of the fact that both graphs G and G̃ satisfy
(HE). If O ∈ B(x, 2r), this is a consequence of the following Lemma 5.1.

LEMMA 5.1. With the hypotheses of Theorem 2.9, there is a positive constant C
such that, if u is non-negative and harmonic on B(x, 10r) and O ∈ B(x, r), then

min
G∩B(x,r)

u " αu(O), (5.7)

max
G∩B(x,r)

u ! Cu(O). (5.8)

Similarly, for a positive constant C̃,

min
G̃∩B(x,r)

u " α̃u(O),

max
G̃∩B(x,r)

u ! C̃u(O).

Proof. For the proof of (5.7), note that u " u(O)g8r on G ∩ B(O, 8r). By the
maximum principle, it is enough to check it on the boundary.

Now we consider M = maxG∩B(x,r) u. Denote

# =
∑

y∈G,y∼O

[u(y) − u(O)].



We assume volume doubling holds.

We assume capacity grows at a certain minimal rate:

C (x , r) ≤ ρC (x , 2r)

for some ρ < 1.



And we assume E (x , r), the expected exit times, grow at a certain
minimal rate:

E (x , r) ≤ ρE (x , 2r)

for some ρ < 1.



The last one has a probabilistic interpretation:

Of the time spent in B(x , 2r) before exiting, not all of the time is
spent in B(x , r) but at least some percentage of the time is spent
in B(x , 2r)− B(x , r).

The purpose of these assumptions is to show that E (x , r) and
E (y , r) are comparable if d(x , y) ≈ r . No useful information can
be obtained when d(x , y)� r .



When the process is not transient, one does the following. One lets
C̃ (x , r) be the capacity of B(x , r) relative to B(x , 2r).

C̃ (x , r) = inf{f : f = 1 on B(x , r), f = 0 on B(x , 2r)c}.



Our theorem applies to processes on manifolds, processes on
fractals, processes on infinite graphs (here the assumptions only
have to hold for r ≥ 1), and fairly general state spaces. We need
to have a measure, a metric, and a Dirichlet form. Spaces with
these three features are called metric measure Dirichlet spaces.



A few comments about the proof

Theorem 2 follows from Theorem 1 and the observation that the
adjusted Poincaré inequality and the cut-off inequality are stable.



Proving that the adjusted Poincaré inequality plus the cut-off
inequality implies the elliptic Harnack inequality is hard, but most
of the work has already been done in Moser as modified by
Barlow-Bass. One proves that it is enough to use the adjusted
Poincaré inequality instead of the usual Poincaré inequality.



To go the other direction, one needs to get estimates on the Green
function.

Supposing the elliptic Harnack inequality holds, one has, example,
that if ν is the distribution of charge on the boundary of B(x , s)
when the potential of B(x , s) is one, and G (x , y) is the Green
function, then

1 = Gν(x) =

∫
∂B(x ,s)

G (x , z) ν(dz)

≈ G (x , y)

∫
∂B(x ,s)

ν(dz)

= G (x , y)C (x , s),

with s = d(x , y). Hence

G (x , y) ≈ c

C (x , s)
, s = d(x , y).



Integrating this over B(x , r), we get∫
B(x ,r)

G (x , y)µ(dy) ≈ cV (x , r)

C (x , r)
= cE (x , r).

In other words, the amount of time spent in B(x , r) is comparable
to E (x , r).



Let GD is the Green function for the process killed on exiting a
domain D. Using

GD(x , y) = G (x , y)− E xG (XτD , y),

where τD is the first exit time of the domain D, we get an estimate
for GD(x , y) ball when D is a ball such that x , y are in D and are
far from the boundary.



If Gα
D is the α-resolvent density:

Gα
D f (x) = E x

∫ τD

0
e−αt f (Xt) dt

and

Gα
D f (x) =

∫
Gα
D(x , y)f (y)µ(dy),

then

Gα
D(x , y) = GD(x , y)− αGDG

α
D(x , y)

≥ GD(x , y)− α(GD)2(x , y),

by the resolvent density.



When α = 1/E (x0, r) and D = B(x0, cr), we then get a lower
bound for Gα

D(x , y).



Let B = B(x0, r), D = B(x0, cr).

From the lower bound we derive the inequality∫
B

(f (y)− fB)2 µ(dy) ≤ c(‖f ‖2
L2(D) − ‖αGα

D f ‖L2(D)).



Some work with the spectral theorem shows that this is bounded by

cE (x0, r)ED(f , f ),

where D = B(x0, cr).


