Sobolev and *BV* functions on metric measure spaces and weak gradients¹

L. Ambrosio

Scuola Normale Superiore, Pisa http://cvgmt.sns.it

¹Papers in collaboration with N.Gigli, G.Savaré, M.Colombo, S.Di Marino

Luigi Ambrosio (SNS)

IPAM, LA, March 2013 1 / 24

- 2 Reflexivity of Sobolev spaces
- 3 The spaces *W*^{1,1} and *BV*
- A dual representation for the *p*-modulus of curves
- 5 Null sets for parametric and non-parametric sets of curves

Weak definitions of gradient

Standing assumptions. (X, d) complete and separable. *m* Borel nonnegative measure on (X, d), finite on bounded sets.

Notation. The slope |Df|, or local Lipschitz constant, is defined by

$$|Df|(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{\mathsf{d}(y, x)}$$

We need also the so-called asymptotic Lipschitz constant:

$$\operatorname{Lip}_{a}(f, x) := \inf_{r>0} \operatorname{Lip}(f, B_{r}(x)).$$

It is easy to see that $\operatorname{Lip}_a(f, \cdot) \ge |Df|^*$, with equality if (X, d) is length. The metric derivative $|\dot{\gamma}| \in L^p(a, b)$ of $\gamma \in AC^p([a, b]; X)$ is defined by

$$|\dot{\gamma}_t| := \lim_{h \to 0} \frac{\mathsf{d}(\gamma_{t+h}, \gamma_t)}{|h|}.$$

The strongest definition: relaxation in L^q of Lip_a^q

Let $q \in (1, \infty)$ and $f \in L^q(X, \mathbf{m})$. We say that $f \in H^{1,q}(X, d, \mathbf{m})$ if there exists Lipschitz functions $f_n \in L^q(X, \mathbf{m})$ satisfying $f_n \to f$ in L^q and

$$\limsup_{n\to\infty}\int_X\operatorname{Lip}_a^q(f_n,x)\,d\boldsymbol{m}(x)<\infty.$$

Remarks. A minor (but technically important) variant of Cheeger's definition, who used pairs (f, g) with g upper gradient of f. Recall (Heinonen-Koskela) that a Borel function $g : X \to [0, \infty]$ is an upper gradient of f if

$$|f(\gamma_b) - f(\gamma_a)| \leq \int_a^b g(\gamma_s) |\dot{\gamma}_s| \, ds \quad \text{for all } \gamma \in AC([a, b]; X).$$

Another intermediate definition would be (f, |Df|), because |Df| is an upper gradient of f. All lead, as we will see, to the same result.

The strongest definition: relaxation in L^q of Lip_a^q

Along with the definition of $H^{1,q}(X, \mathbf{d}, \mathbf{m})$ we have the notion of *relaxed slope*, i.e. a weak $L^q(X, \mathbf{m})$ limit of $\operatorname{Lip}_a(f_n, \cdot)$ for some $f_n \to f$ in L^q . The *minimal relaxed slope* $|Df|_{*,q}$ is the one having smallest L^q norm, and it can be used to define Cheeger's energy:

$$C(f) := rac{1}{q} \int_X |Df|^q_{*,q} \, dm{m} \qquad f \in H^{1,q}(X,d,m{m})$$

One can then show that $|Df|_{*,q}$ enjoys a *pointwise* minimality property

 $|Df|_{*,q} \leq g$ *m*-a.e. in *X*, for all relaxed slope *g* of *f*

and develop reasonable calculus rules (chain rule, even integration by parts) with this gradient.

The weakest definition: weak upper gradients

Idea: we can define a weak Sobolev space $W^{1,q}(X, d, m)$ by requiring the validity of the upper gradient property along "almost every curve".

History: Levi 1901 (in \mathbb{R}^2 , with horizontal and vertical lines), Fuglede 1957 (in \mathbb{R}^n , using the notion of *q*-modulus), Koskela-MacManus, Shanmugalingham 1998-99 (in metric measure spaces), AGS 2011 (in metric measure spaces, using test plans).

Test plan. For $1 \le p \le \infty$, we say that $\pi \in \mathscr{P}(C([0, 1]; X))$ is a *p*-test plan if:

(a) π is concentrated on $AC^{p}([0, 1]; X);$

(b) for some $C = C(\pi) \ge 0$, $(e_t)_{\sharp}\pi \le Cm$ for all $t \in [0, 1]$.

Here, for $t \in [0, 1]$, $e_t : C([0, 1]; X) \to X$ is the evaluation map at time t, namely $e_t(\gamma) := \gamma_t$.

p-null sets: We say that $\Gamma \subset AC^{p}([0, 1]; X)$ is *p*-null if $\pi^{*}(\Gamma) = 0$ for all *p*-test plans π .

The weakest definition: weak upper gradients

Definition. We say that $g \in L^q(X, \mathbf{m})$ is a *q*-weak upper gradient of *f*, and write $g \in WUG_q(f)$, if the u.g. inequality

$$|f(\gamma_1) - f(\gamma_0)| \leq \int_0^1 g(\gamma_s) |\dot{\gamma}_s| \, dx \quad ext{for all } \gamma \in AC([0,1];X).$$

holds for *p*-almost every curve, with p = q' = q/(q - 1).

Remark. Because of the non-concentration condition (b) imposed on test plans, the notion " $g \in WUG_q(f)$ " is invariant in the *m*-equivalence classes of *f* and *g* (the *p*-modulus notion, instead, has only invariance w.r.t *g*).

Adapting an argument of Hajlasz, one can show that $WUG_q(f)$ is a lattice and define a *minimal q*-wug, in the *m*-almost everywhere sense, that we shall denote by $|Df|_{w,q}$.

The identification theorem

Easy inclusion and inequality. $H^{1,q}(X, d, m) \subset W^{1,q}(X, d, m)$ and $|Df|_{w,q} \leq |Df|_{*,q}$. This is a consequence of the fact that $\operatorname{Lip}_a(f, \cdot)$ is an upper gradient and the stability (Fuglede) of weak upper gradients:

 $f_n \to f \text{ in } L^q, \, g_n \to g \text{ weakly in } L^q, \, g_n \in WUG_q(f_n) \implies g \in WUG_q(f).$

Theorem. [AGS, 2011] $H^{1,q} = W^{1,q}$ and $|Df|_{w,q} = |Df|_{*,q}$ *m*-a.e. in *X*. **Sketch of proof.** We need to build Lipschitz functions $f_n \to f$ in $L^q(X, m)$ satisfying

$$\limsup_{n\to\infty}\int_X \operatorname{Lip}_a^q(f_n,x)\,d\boldsymbol{m}(x)\leq \int_X |Df|_{w,q}^q(x)\,d\boldsymbol{m}(x).$$

The identification theorem

This is achieved by looking at the dissipation rate, along the gradient flow of C_q , of a suitable energy. In the simple case q = p = 2, after a reduction of the problem to the approximation of \sqrt{f} , with *f* probability density, the energy is the Boltzmann-Shannon entropy

$$E(f) := \int_X f \log f \, d\boldsymbol{m}.$$

This provides a family f_t of probability densities satisfying

$$\limsup_{t\downarrow 0} \frac{1}{t} \int_0^t \frac{1}{2} \int_X |D\sqrt{f_s}|^2_{*,2} \, ds \leq \frac{1}{2} \int_X |D\sqrt{f}|^2_{w,2} \, dm.$$

Since (by definition of C₂) $\sqrt{f_s}$ can be well approximated by Lipschitz functions, a diagonal argument gives the result.

Comparison with the other previous approaches Let $\mathscr{C}(X) = AC([0, 1]; X)/\sim$ be the collection of non-parametric continuous curves with finite length. Recall that the *q*-modulus (Buerling-Ahlfors) Mod_{*q*}(Σ) of a family $\Sigma \subset \mathscr{C}(X)$ is given by

$$\min\left\{\int_X g^q\, doldsymbol{m}:\; g\geq 0 ext{ Borel}, \int_\gamma g\geq 1 ext{ for all } \gamma\in \Sigma
ight\}.$$

According to Koskela-MacManus, Shanmugalingham, we may define weak upper gradients $|Df|_{q,S}$ by requiring the validity of the upper gradient inequality along Mod_q-almost every curve.

Lemma. If Σ is Mod_q -negligible, then any corresponding set $\Gamma \subset AC^q([0, 1]; X)$ is q-negligible.

Proof. For any *p*-test plan π with $\int \int_0^1 |\dot{\gamma}|^p ds \, s\pi(\gamma) \leq L$ and any admissible *g*, Hölder's inequality gives

$$\boldsymbol{\pi}(\Gamma) \leq \int_0^1 \int \boldsymbol{g}(\gamma_t) |\dot{\gamma}_t| \, \boldsymbol{d}\boldsymbol{\pi}(\gamma) \, \boldsymbol{d}t \leq L^{1/p} [\boldsymbol{C}(\boldsymbol{\pi})]^{1/q} \|\boldsymbol{g}\|_{L^q(\boldsymbol{X},\boldsymbol{m})}.$$

Comparison with the other previous approaches

By minimization, we obtain that $\pi(\Gamma) \leq L^{1/p}[C(\pi)]^{1/q} [\operatorname{Mod}_q(\Sigma)]^{1/q}$, proving the lemma.

It follows that $|Df|_{w,q} \le |Df|_{S,q} \le |Df|_{*,q}$ and the identification theorem shows that they all these notions of gradient coincide.

This is somehow surprising, since the converse in the previous lemma fails: namely, $\Gamma \subset AC^q([0, 1]; X)$ *q*-negligible *does not* imply in general that its projection on $\mathscr{C}(X)$ is Mod_q-negligible.

Example. Let $X = [0,1]^2$, $\mathbf{m} = \mathscr{L}^2$ and $\Gamma = \{\gamma_x\}_{x \in [0,1]}$, with $\gamma_x(t) := (x, t), t \in [0,1]$. Then obviously $\operatorname{Mod}_2(\Gamma) = 1 > 0$, on the other hand $\pi(\Gamma) = 0$ for any *q*-test plan π simply because, for all $t \in [0,1]$, $e_t(\gamma_x) = (x, t)$ is **m**-negligible (and one *t* would be enough to get the same conclusion).

This shows that, to hope for a reverse inclusion, convenient parameterizations and curve decompositions should be chosen.

Reflexivity of Sobolev spaces

Theorem. [Cheeger, '2000] If (X, d, \mathbf{m}) is doubling and supports a (1, q)-Poincaré inequality, then $W^{1,q}(X, d, \mathbf{m})$ is reflexive for all $q \in (1, \infty)$.

Part of the more general program developed by Cheeger on Rademacher theorem and the existence of a cotangent bundle. The next result holds without Poincaré inequality and replacing the doubling property on (X, d, m) with the weaker metric doubling property.

Theorem. [A.-Colombo-Di Marino] If (X,d) is doubling, then $W^{1,q}(X,d,m)$ is reflexive.

Sketch of proof. We consider a Borel decomposition of *X* in sets A_i^{δ} on scale δ :

$$B(z_i^{\delta},rac{\delta}{3})\subset A_i^{\delta}\subset B(z_i^{\delta},rac{5}{4}\delta).$$

Reflexivity of Sobolev spaces

Then, doubling ensures that for all *i* the set of "neighbours" A_j^{δ} of A_i^{δ} has controlled cardinality. As in the literature on *q*-energy and Dirichlet forms on fractals (Sturm 1998, Herman-Peirone-Strichartz 2004, see also Korevaar-Schoen), we define

$$C_q^{\delta}(f) := \sum_i \mu(A_i^{\delta}) \sum_{j \sim i} \frac{|f_{A_i^{\delta}} - f_{A_j^{\delta}}|^q}{\delta^q} \quad \text{with} \quad f_{A_k^{\delta}} := \frac{1}{m(A_i^{\delta})} \int_{A_i^{\delta}} f.$$

Since $|Du|_{*,q}$ is obtained by the relaxation of $\operatorname{Lip}_a(f, \cdot)$, it is fairly easy to show that

$$\Gamma - \limsup_{\delta \downarrow 0} \mathrm{C}_q^{\delta}(f) \leq C \int_X |Df|_{*,q}^q \, d\mathbf{m},$$

where C depends only on q and on the maximal cardinality of neighbours.

Reflexivity of Sobolev spaces

On the other hand, the weak upper gradient property has a nice discrete counterpart: it is not too hard to prove that

$$4\sum_{i}\frac{|f_{\mathcal{A}_{i}^{\delta}}-f_{\mathcal{A}_{j}^{\delta}}|}{\delta}\mathbf{1}_{\mathcal{A}_{i}^{\delta}}$$

is a *q*-weak upper gradient, up to scale δ , for the piecewise constant approximation f_{δ} of *f*, namely $\sum_{i} f_{A_{i}^{\delta}} \mathbf{1}_{A_{i}^{\delta}}$. Hence, stability of weak gradients on progressively smaller scales gives

$$rac{1}{4^q}\int_X |Df|^q_{w,q}\, d{m m} \leq \Gamma - \liminf_{\delta \downarrow 0} \mathrm{C}_q^\delta(f).$$

Eventually we can use the equivalence theorem to say that any Γ -limit of C_q^{δ} is equivalent to C_q ; in the quadratic case p = 2, since Γ -limits of quadratic forms are quadratic forms, reflexivity is immediate. In generation one can use the Clarkson inequalities and the Milman-Pettis theorem.

Luigi Ambrosio (SNS)

The space $W^{1,1}$

The proof of the identification theorem fails in the case q = 1, by the lack of semicontinuity of $f \mapsto \int_X |Df| d\mathbf{m}$ even in nice spaces.

4 possible definitions:

- One could define $W^{1,1}(X, d, m)$ via weak upper gradients (using 1-test plans or 1-modulus)
- One could define $H^{1,1}(X, d, m)$ considering approximating sequences for which $\operatorname{Lip}_a(f_n, \cdot)$ are *m*-equiintegrable;
- One could define $H^{1,1}(X, d, m)$ as the subspace of all $f \in BV(X, d, m)$ such that $|\mathbf{D}f| \ll m$.

In general, the equivalence between these definitions is an open problem (they coincide under doubling & Poincaré).

The space BV

Definition. (Miranda Jr, 1996) Let $f \in L^1(X, d, m)$. We say that $f \in BV(X, d, m)$ if

$$|\mathbf{D}f|(X) := \inf \left\{ \liminf_{n \to \infty} \int_X |Df_n| \, d\mathbf{m} : f_n \to f \text{ in } L^1(X), f_n \in \operatorname{Lip}_{\operatorname{loc}}(X) \right\} < \infty.$$

Miranda proved that, for $f \in L^1_{loc}(X)$, in locally compact spaces the set function $A \mapsto |\mathbf{D}f|(A)$ is always the restriction to open sets of X of a Borel (possibly infinite) measure, the so-called total variation measure. For instance, under doubling and Poincaré and for characteristic functions $f = \mathbf{1}_E$ we have (A, 2001)

$$c\mathcal{S}^h \sqcup \partial^* E \leq |\mathbf{D}\mathbf{1}_E| \leq rac{1}{c} \mathcal{S}^h \sqcup \partial^* E,$$

where c > 0 and the "spherical Hausdorff measure" S^h is built, with Carathédory's construction, out of $h(B_\rho(x)) := m(B_\rho(x))/\rho$.

The space BV

Is there an equivalent definition of BV and of $|\mathbf{D}f|$ based on (measure) weak upper gradients?

Does it work also in non locally compact situations?

Having in mind the BV 1-dimensional estimate (for nice functions f)

$$\begin{aligned} |f \circ \gamma(\mathbf{1}) - f \circ \gamma(\mathbf{0})| &\leq |\mathbf{D}(f \circ \gamma)|(\mathbf{0}, \mathbf{1}) = \int_0^1 |Df|(\gamma_t)|\gamma_t'| \, dt \\ &\leq \operatorname{Lip}(\gamma) \int_0^1 |Df|(\gamma_t)| \, dt \end{aligned}$$

we may average the inequality w.r.t. γ and give the following "weak upper gradient" definition of the space *BV*.

The space BV

Definition. Let $f \in L^1(X, \mathbf{m})$, we say that $f \in BV_w(X, d, \mathbf{m})$ if there exists a positive finite measure μ in X satisfying

$$\int \gamma_{\sharp} |\mathbf{D}(f \circ \gamma)| \, d\pi(\gamma) \leq C(\pi) \|\operatorname{Lip}(\gamma)\|_{L^{\infty}(\pi)} \mu$$

for all ∞ -test plans π . The minimal measure μ with this property will be denoted by $|\mathbf{D}f|_{w}$.

Theorem. (A-Di Marino, 2012) $BV_w(X, d, m) = BV(X, d, m)$ and $|\mathbf{D}f|_w = |\mathbf{D}f|$.

Thanks to this result, one can also prove a non-obvious fact, namely that Miranda's definition of the set function $A \mapsto |\mathbf{D}f|(A)$ provides a σ -additive measure even without local compactness assumptions. The proof involves the gradient flow of $f \mapsto |\mathbf{D}f|(X)$ and suitable limiting versions as $p \to \infty$ of the tools (Hamilton-Jacobi equations, superposition principle) used in [AGS] in the Sobolev case.

A dual representation for the *p*-modulus of curves

We would like to understand whether also the notion of *p*-modulus can be rephrased, as in the axiomatization of test plans, in terms of suitable probability measures in the space $\mathscr{C}(X)$ of non-parametric curves.

In order to gain a convex/linear structure, it is natural to embed $\mathscr{C}(X)$ into $\mathscr{M}_+(X)$ via the map

$$J\gamma := \gamma_{\sharp}(|\dot{\gamma}|\mathscr{L}^{1} \sqcup [0,1]) = N(\gamma, \cdot) \mathscr{H}^{1},$$

where $N(\gamma, x) = \operatorname{card}(\gamma^{-1}(x))$ is the multiplicity function of γ and \mathscr{H}^1 is 1-dimensional Hausdorff measure.

In this way we can rephrase the upper gradient inequality in the form

$$|f(\gamma_{\mathit{fin}}) - f(\gamma_{\mathit{ini}})| \leq \int_X g \, dJ\gamma \qquad orall \gamma \in \mathscr{C}(X).$$

A dual representation for the *p*-modulus of curves

Definition. [Plans with baycenter in $L^{p}(X, m)$] Let $\eta \in \mathscr{P}(\mathscr{M}_{+}(X))$. We say that η has barycenter in $L^{p}(X, m)$ if the expected measure

$$ar{oldsymbol{\eta}} := \int_{\mathscr{M}_+(X)} \mu \, doldsymbol{\eta}(\mu)$$

has the form bm for some $b \in L^p(X, m)$.

There exists a general duality formula between plans of measures η with barycenter in $L^{p}(X, \mathbf{m})$ and Mod_{q} . The latter can now defined even for families Σ of positive finite measures in *X*:

$$\min\left\{\int_X g^q\, doldsymbol{m}:\; oldsymbol{g}\geq {\sf 0} \; {\sf Borel}, \, \int_X g\, d\mu\geq {\sf 1} \; {\sf for} \; {\sf all} \; \mu\in \Sigma
ight\}.$$

We state duality just in the classical case of families $\Sigma \subset \mathscr{C}(X)$.

A dual formula for $Mod_q(\Sigma)$

An easy duality inequality coming from Holder's inequality is:

$$\left\{rac{oldsymbol{\eta}(\Sigma)}{\|oldsymbol{b}\|_{L^p(X,oldsymbol{m})}}
ight\}^q \leq \int_X g^q\,doldsymbol{m}$$

for all $\eta \in \mathscr{P}(\mathscr{C}(X))$ with barycenter $\int J\gamma \, d\eta(\gamma) = b\mathbf{m}$ in $L^p(X, \mathbf{m})$ and all g satisfying $\int g \, dJ\gamma \geq 1$ for all $\gamma \in \Sigma$. The following result shows that there is no duality gap:

Theorem. [A.-Di Marino-Savaré, 2013] For $\Sigma \subset \mathscr{C}(X)$, define

$$\operatorname{Cap}_{q}(\Sigma) := \max\left\{ \left[rac{\eta(\Sigma)}{\|m{b}\|_{L^{p}(X, \boldsymbol{m})}}
ight]^{q}
ight\},$$

where the maximization runs among $\eta \in \mathscr{P}(\mathscr{C}(X))$ with barycenter $\int J\gamma \, d\eta(\gamma) = b\mathbf{m}$ in $L^p(X, \mathbf{m})$, p = q/(q-1). Then

 $\operatorname{Cap}_q(\Sigma) = \operatorname{Mod}_q(\Sigma)$ for all Suslin sets $\Sigma \subset \mathscr{C}(X)$.

A dual formula for $Mod_q(\Sigma)$

Remark. The optimal η_{opt} , which is concentrated on Σ , provides somehow a more precise information, compared to the optimal g_{opt} : for instance in general it need not be $\int_{\gamma} g_{opt} = 1 \operatorname{Mod}_{q}$ -a.e. on Σ , just take

$$X = [0, 1], \qquad \Sigma = \left\{ [0, \frac{1}{2}], \quad [\frac{1}{2}, 1], \quad [0, 1] \right\}, \qquad g_{opt} = 2.$$

On the other hand, the absence of a duality gap gives $\int_{\gamma} g_{\text{opt}} = 1$ η_{opt} -a.e.; this way one can canonically find a subset $\Sigma' \subset \Sigma$ with the same *q*-modulus on which the constraint is saturated, i.e. $\int_{\gamma} g_{\text{opt}} = 1$ on Σ' . In the previous example

$$\Sigma = \left\{ [0, \frac{1}{2}], \quad [\frac{1}{2}, 1] \right\}.$$

An application of the duality formula

As an application of the duality formula, we can prove a partial converse to the implication that Mod_q -negligible sets are *q*-negligible. Remember that the "Levi" example shows the necessity to consider subcurves and convenient reparameterizations of them.

Theorem. Let $\Sigma \subset \mathscr{C}(X)$ with $\operatorname{Mod}_q(\Sigma) > 0$. Then there exist subfamilies Σ_i which exhaust Σ , families $\Gamma_i \subset AC^q([0,1];X)$, $\pi_i \in \mathscr{P}(C([0,1];X))$ concentrated on Γ_i and $g_i \in L^p(X, \boldsymbol{m})$ such that

$$(\mathbf{e}_t)_{\sharp} \boldsymbol{\pi}_i \leq g_i \boldsymbol{m} \qquad \forall t \in [0, 1], \ i \in \mathbb{N}.$$

The result is not yet optimal, because we would like $g_i \in L^{\infty}(X, \mathbf{m})$ to achieve that π_i are indeed test plans.

References

[1] L. Ambrosio, N. Gigli, and G. Savaré, *Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below.* Preprint 2011, to appear on Inventiones Mathematicae.

[2] L. Ambrosio, N. Gigli, and G. Savaré, *Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces*, Revista Matematica Iberoamericana, 2012.

[3] L. Ambrosio, S. DiMarino, *Weak and relaxed gradients for BV functions on metric measure spaces*, Preprint, 2012.

[4] J. Cheeger, *Differentiability of Lipschitz functions on metric measure spaces*, Geom. Funct. Anal., 9 (1999), pp. 428–517.

[5] B. Fuglede, Extremal length and functional completion, Acta Math., 98 (1957), pp. 171–219.

[6] J. Heinonen and P. Koskela, *Quasiconformal maps in metric spaces with controlled geometry*, Acta Math., 181 (1998), pp. 1–61.

[7] P. Koskela and P. MacManus, *Quasiconformal mappings and Sobolev spaces*, Studia Math., 131 (1998), pp. 1–17.

[8] M. Miranda, Jr., Functions of bounded variation on "good" metric spaces, J. Math. Pures Appl. (9), 82 (2003), pp. 975–1004.

[9] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure

spaces, Rev. Mat. Iberoamericana, 16 (2000), pp. 243-279.

