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Motivations

• Curse of dimensionality in making prediction for spatio-temporal chaos.

• Recent development in prediction involves a reduced order filtering strategy,

an Ensemble Kalman Filter (for series of EnKF papers, see e.g. Evensen

1994, Houtekamer and Mitchell 1998, Bishop et al. 2001, Anderson 2001, Ott

et al. 2001, etc).

• A new problem arises from ensemble approach, that is: how large is the

ensemble size needed for stable and accurate filtering ?

• In this presentation, we focus on possibility of using large time steps to obtain

stable and accurate filtering. In this sense, we can then afford a large

ensemble size.

• Failure of standard (Cohn and Dee 1988) finite difference observability criteria

(Grote and Majda, PNAS 2006).
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Outline of the talk:

A. Offline Testing Criteria (Majda-Grote, PNAS 2007)

1. analogue of Von-Neumann

2. Information criteria

B. Test of theory

1. Complex scalar Ornstein-Uhlenbeck process

2. Scalar wave equation with weak damping

C. Filtering the “poorman” stochastic model for Lorenz-96 model
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Offline Testing Criteria (M-G, PNAS 2007): The general setting

The simplest canonical test problem for modeling a turbulent flow is to be given as

follow:

∂

∂t
u = P

(
∂

∂x

)
u− γ

(
∂

∂x

)
u + σ(x) ˙̃W (t), u(x, 0) = uo

where u = u(x, t) ∈ R, x is 2π-periodic, and a canonical observations that

available at discrete time tm and space xj .

v(xj, tm) = Gu(xj, tm) + σo, σo ∼ N (0, ro)

In this talk, we focus on uniformly distributed observations that available on every

discretized model grid point: {xj = jh : 0 ≤ j ≤ 2N, (2N + 1)h = 2π}.
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Offline Testing Criteria: The Fourier domain analog

In Fourier space, the filtering problem for each wave number k is an independent

scalar complex problem:

dûk = −λkûkdt + σkdẆk

v̂k = Gûk + σ̂o
k, with σ̂o

k ∼ N (0,
ro

2N + 1
)

with ûk, v̂k ∈ C, and λk = γk + iωk.

Remarks:

• Each SDE (Ornstein-Uhlenbeck process) has climatological energy spectra:

Ek =
σ2

k

2γk
,

• and correlation time Tcorr = γ−1
k .

• In each filtering problem, we are interested for the case observation time

Tobs = ∆t, where ∆t is the discrete time step.
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”True” signal: The exact solution of the SDE is given by:

ûm+1 = e−λ∆tûm + Θm+1, where Θm+1 ∼ N (0, r),

with system noise variance

r =
σ2

2γ
(1− e−2λ∆t)

”True” filter: We define prior state ûm+1|m and posterior state ûm|m to

distinguish the filtered solution and the true signal ûm+1. So the true filter is the

solution of the following pair:

ûm+1|m = e−λ∆tûm|m + Θm+1

v̂m+1 = Gûm+1 + σ̂o
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Approximate filters: Filtered solution with both temporal and spatial

discretized numerical approximation of the scalar SDE

• λ will be affected by different choice of spatial discretization (e.g. upwind).

• Temporally, we check forward Euler, backward-Euler, and trapezoidal. In

general, we write the approximate filters with:

ûh,m+1|m = Fhûh,m|m + σh,m+1, where σh,m+1 ∼ N (0, rh),

with Fh denotes the approximate dynamical operator and rh denotes the

system noise variance.

• We are interested in the unstable case (|Fh| > 1) with forward Euler and the

stable case (|Fh| < 1) with backward Euler and trapezoidal.
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Reviewing Kalman filter equation Given our scalar filtering problem:

ûm+1|m = Fûm|m + σm+1,

v̂m+1 = Gûm+1 + σ̂o,

The basic Kalman filter solution is:

offline: Km = rm|m−1G(G2rm|m−1 + 〈σ̂o〉)−1

rm|m = (1−KmG)rm|m−1

rm|m−1 = F 2rm−1|m−1 + 〈σ2
m+1〉

online: ûm|m = (1−KmG)ûm|m−1 + Kmv̂m
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Offline Criteria: The stability, observability, and controllability

Given our scalar filtering problem

ûm+1|m = Fûm|m + σm+1,

v̂m+1 = Gûm+1 + σ̂o.

The classical Stability of filtering (see Anderson and Moore 1979, p.77) is

satisfied (i.e. there exists a limiting Kalman gain K∞ and |F (1−K∞G)| < 1).

• for a time invariant and stable dynamics |F | < 1.

• for a time invariant dynamics that is not necessarily stable but fully observable

and controllable.

Definition:

• observable means |F | 6= 0 and this is ignorable,

• and controllable means rm+1 = 〈σ2
m+1〉 6= 0.
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Offline Criteria: Mean model error

By model errors, we mean the errors due to finite difference schemes. The mean

model errors

ym = E(ûh,m|m−1 − ûm)

is computed iteratively with

ym+1 = (e−λ∆t − Fh)E[ûm] + Fh(1− kh,mG)ym

where

E[ûm] = e−λm∆tE[û0].

Remark: M-G (PNAS, 2007) shows that for |Fh| > 1,

|ym| ≤ |(e−λ∆t − Fh)||E[û0]|
m−1∑
`=0

e−λ`∆t|Fh|−(m−1−`)

This inequality explains why a stable filtering is possible even with unstable

difference approximation.
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Summary on Offline Testing
In the offline testing, we check several quantities:

• The amplitude of the dynamical operator |Fh|

• the limiting Kalman gain K∞,

• the limiting stability amplification factor |Fh(1−K∞G)|,

• the mean model error ym, and

• Controllability (nonzero system noise variance rh 6= 0).
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Information Criteria:

• In the previous exposition, we have the true system variance r and each

difference approximation provides a straightforward time discretized system

noise variance rh.

• M-G (PNAS, 2007) suggests an alternative way to choose system noise, that

is with information criteria. The idea is to minimize the relative entropy

S(p, ph) =

∫
p log(p/ph)

where p and ph are density functions of the true and approximate filters,

respectively.

• This suggests us to choose rh such that K∞ = Kh,∞.

When |Fh| > 1 and K∞ ≤ 1− |Fh|−2 , we choose rh = 0.
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Example 1: Testing Ornstein-Uhlenbeck process:

dû = −λûdt + σdẆ

v̂ = Gû + σ̂o, with σ̂o ∼ N (0,
ro

2N + 1
)

where λ = γ + iω.

• For this problem, we fix ro = E = σ2/2γ = 5, observations time

∆t = Tcorr = 1/γ with γ = 1, and vary the frequency 10−2 ≤ ω ≤ 102.

• We also filter the solution using ensemble of size N = 1, 10, 50, . . . , 500.

For filter performance, we check the average analysis error (in RMS sense)

and the ensemble error variance (temporal average of ensemble spread).

• We choose G = 1 and we start the filtering process with random initial states

un
0|0, n = 1, . . . , N .
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Testing Ornstein-Uhlenbeck process:

• The unstable forward Euler trust the observations since Kh,∞ = 1.

• The backward-Euler with no information criteria has |Fh,k| = 0 and rh = 0

for large frequency ω. This parameter set indicates a bad filtering since the

system is zero all the time. Here |Fh(1−Kh,∞G)| = 0 is meaningless.

• In the backward-Euler with information criteria, by restoring back the

controllability, we satisfy stability condition (2) and this predicts a good filter.

• The trapezoidal with no information theory. |Fh| = 1 and rh = 0 for large

frequency. In this case, stability condition (2) is not satisfied. Hence the filter

diverges.

• The trapezoidal with information criteria restores the controllability, so even

with |Fh| = 1, by stability condition (2), the filter will perform well.
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Summary of testing Ornstein-Uhlenbeck process:

• From our results, we conclude that when we use the giant time steps, both the

backward-Euler and trapezoidal schemes are the better approximate

schemes when the information criteria are used.

• As the information criteria are used, the best scheme among all the stable

approximate schemes can be predicted by looking at quantity

|Fh(1−Kh,∞g)|, the smaller this quantity implies a more stable scheme.

• We see that, in general, the filter is better when the ensemble size is larger.

However, the filter improvement is not significant in the true filter and in all

time discretized filters. We found that even with a single realization, we can

get a reasonably good filter solution.

• Furthermore, the ensemble error variances decrease as functions of

ensemble size. When the filter solely trusts either the observations or the

dynamics, the ensemble error variance is small.
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Example 2: Testing the scalar wave equation with weak
damping

∂u(x, t)

∂t
= −c

∂

∂x
u(x, t)− du(x, t) + F(x, t), 0 ≤ x ≤ 2π

where c > 0 is the wave speed propagation and

F(x, t) =
∑

k

σke
ikxẆ (t)

is the mean zero spatio-temporal forcing with variance
∑

k σ2
k. In Fourier space,

the truth model is basically the Ornstein-Uhlenbeck processes for each wave

numbers with deterministic term.

λk = γk + iωk = d + ick

Now, the additional complexity is in the model resolutions N .
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Role of model resolutions and energy spectra to the truth
model: In general, the damping and the energy spectra can be written in the

form

γk = γo|k|α and Ek = Eo|k|−β, where 0 ≤ α, β < ∞.

Theorem: There are two regimes of behavior:

1. When β < 1, the asymptotic Kalman gain tends to one uniformly and the filter

should primarily trust the observations for N/2 ≤ |k| ≤ N as N →∞.

2. When β > 1, the asymptotic Kalman gain tends to zero uniformly and the

filter should primarily trust the dynamics for N/2 ≤ |k| ≤ N as N →∞.

In our example, we have α = 0, and two energy spectra: equipartition spectra

β = 0 and fractal energy spectra β = 5/3.
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Offline testing true filter
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Testing scalar wave eqn. with weak damping:

• For the approximate filter, we use upwind scheme for spatial discretization

and forward Euler, backward Euler, and trapezoidal for time differencing.

• We choose energetic spectra Ek = 100 and Ek = 1000k−5/3. The

observations noise variance is chosen to be ro = 1000. Weak damping

γk = d = 0.01, non-dimensionalized advective coefficient c = 1, and

Tobs = ∆t = Tcorr/2 = 1/2d = 50.

• The true state is initiated with

u0 = e−(xj−π)2 cos(xj − π), xj = jh, 0 ≤ j ≤ 2N, (2N + 1)h = 2π

• We compare this Fourier domain filter with ensemble transform Kalman filter

(Bishop, 2001). Where, we show results with ensemble of size K = 100 for

resolution N = 20 and variance inflation coefficient r = 10%.

• In ETKF, we evolve the model by corresponding difference schemes in real

domain and we generate the noise F in Fourier domain.
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Unstable forward Euler scheme
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Stable backward Euler scheme
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Stable trapezoidal scheme
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Filtering in Fourier domain vs real domain for N=20
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Filtering in Fourier domain vs real domain for N=80
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Filtered solution in Fourier domain
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Filtered solution in real domain (ETKF)
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Summary of testing scalar wave equation with weak damping

From the numerical experiments, we found consistency as that of each scalar

Ornstein-Uhlenbeck process and more importantly the offline testing predicts the

outcome apriori. The complete summary is as follows:

• The unstable explicit scheme for large time step trusts fully the observations.

• Both the backward-Euler and trapezoidal schemes are significantly better

approximate filter for large time step when the information criteria are used.

• The higher the model resolutions may improve the true filtering and hence the

approximate filters as well, but not significantly (Theorem is the guideline).

However, the error variance reduction is enormous.

• Practically, both implicit filters in the Fourier space are computationally

inexpensive with such a giant time step and thus one can afford large

ensemble size.

• The scalar Fourier domain filter is not sensitive to the variations of model

resolutions, ensemble size, and independent of tunable parameters.
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• The omission of accounting the correlation between different modes in our

scalar filtering is also found to be insignificant.

• In contrast, an ensemble Kalman filter that mimics the extended Kalman filter

(in our experiment, we use ETKF) suggests that the higher the model

resolution is, the more realization is needed for filter convergence; it also

depends on the variance inflation coefficient.
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Filtering the ”poorman” stochastic model for L-96
model
The L-96 model is a given by:

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F, j = 0, ..., J − 1,

with periodic boundary.

The “poorman” stochastic model is a linearized normalized (Majda and Wang,

2006) model with damping and stochastic forcing. In Fourier space, each mode is

as follows:
dûk(t̃)

dt̃
= ω(k)ûk − d(k)ûk(t̃) + σk

dW̃k(t̃)

dt̃

We parametrize the damping coefficient d(k) and noise strength σk to fit the

stationary variance and correlation time.
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