Fundamental aspects of tropical cyclone dynamics. Part II: Buoyancy, size and the boundary layer

> **Roger K. Smith University of Munich**

Topics:

Buoyancy
 Boundary layer
 Size

Motivation

- > Are the eyewall clouds of a hurricane buoyant?
 - Recall that the eye is the warmest place in the storm → the eyewall clouds are not buoyant relative to the eye!
- > Is a hurricane everywhere warm cored?
 - Measurements are usually made at constant pressure, but the pressure surfaces descend in the core.
 - Is it everywhere warm cored at constant height?
 - How large is the "balanced" temperature perturbation at the surface?

Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices

Roger K. Smith^{a,*}, Michael T. Montgomery^b, Hongyan Zhu^{a,1}

^a Meteorological Institute, University of Munich, Theresienstr. 37, 80333 Munich, Germany
 ^b Department of Atmospheric Science, Colorado State University, USA

Received 18 March 2004; accepted 8 March 2005

Dynamics of Atmospheres and Oceans, 40, (2005) 189-208

Accurate determination of a balanced axisymmetric vortex in a compressible atmosphere

By ROGER K. SMITH, Meteorological Institute, University of Munich, Theresienstr. 37, 80333 Munich, Germany

(Manuscript received 5 December 2004; in final form 14 April 2005)

Tellus, 58A, (2006) 98-103

Buoyancy

Generalized buoyancy in a rapidly-rotating fluid

Not the same as Emanuel's definition (Emanuel, 1994)
 To calculate generalized buoyancy, see e.g. Tellus paper

Alternative derivation

$$\frac{Dw}{Dt} = -\frac{1}{\rho}\frac{\partial p}{\partial z} - g$$
Put $\rho = \rho_o(z) + \rho'$ and $p = p_o(z) + p'$, where $\frac{dp_o}{dz} - g\rho_o$

$$\frac{Dw}{Dt} = -\frac{1}{\rho}\frac{\partial p'}{\partial z} + b$$

Note that b is non-unique: it depends on the definition of $\rho_o(z)$

b is the system buoyancy

Alternative derivation for a rapidly-rotating vortex

$$\frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g$$
Put $\rho = \rho_o(r,z,t) + \rho'$ and $p = p_o(r,z,t) + p'$, where $\frac{dp_o}{dz} - g\rho_o$
 $\rho_o(r,z,t), p_o(r,z,t)$ in thermal wind balance with $v(r,z,t)$.
$$\frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} + b_L$$

Now b_L depends on the definition of $\rho_o(r,z,t)$

b_L **is the local buoyancy**

Thermal wind equation

Exact form of the thermal wind equation

Mathematical solution

$$\frac{\mathrm{d}}{\mathrm{d}r}\ln\rho = -\frac{1}{\mathrm{g}}\left(\frac{2\mathrm{v}}{\mathrm{r}} + \mathrm{f}\right)\frac{\partial\mathrm{v}}{\partial\mathrm{z}}$$

Governs the variation of ρ along characteristics

Inferences

Summary

- A barotropic vortex is cold cored if temperature contrasts are measured at constant height.
- ➤ A baroclinic vortex is warm cored if temperature contrasts are measured at constant height, but only if -∂v/∂z is large enough.

A sample calculation

Vertical velocity at 3.2 km at 66 h (shading). Perturbation θ_v . Azimuthal wavenumber 2 and higher.

From Braun, 2001

Conclusions Part I

- In a rapidly-rotating vortex, buoyancy has a radial as well as a vertical component. The former is small in TCs.
- The vertical component depends on the definition of the reference density: one can distinguish between system buoyancy and local buoyancy.
- > Eye-wall clouds may be locally buoyant (Braun 2001).
- Barotropic vortices are cold cored because T = T(p) and the isobaric surfaces dip down.
- > Baroclinic vortices are cold cored near the surface (if $\partial v/\partial z = 0$) and warm cored aloft if $-\partial v/\partial z$ is large enough.
- > Typical surface dT's are a few degrees C in an intense TC.

Topics:

Boundary layer
 Size

Boundary layers in nonrotating fluids

A simple example: steady two-dimensional boundary layer on a flat plate at normal incidence to an almost parallel stream U(x).

Approximate Euler equation for steady, almost parallel flow above the boundary layer

$$U\frac{dU}{dx} = -\frac{1}{\rho}\frac{\partial p}{\partial x}, \qquad w \approx 0$$

The Navier Stokes' equations in the boundary layer:

The boundary layer equations:

$$\frac{\partial p}{\partial z} \sim O\left(Re^{-1}\right) \ll 1 \qquad Re = \frac{U_s L}{v} \gg 1$$
$$u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = U \frac{dU}{dx} + v \frac{\partial^2 u}{\partial z^2} \qquad \text{parabolic!}$$

Frictionally-induced secondary circulation

Importance of the boundary layer

- The boundary layer of a rapidly-rotating vortex provides a powerful coupling between the primary circulation (the azimuthal component) and the secondary circulation (the radial-vertical, or "in-up-and-out" component).
- Moisture enters a hurricane from the sea surface and its radial distribution is strongly influenced by that of the boundary layer winds.
- The vertical transport of moisture and angular momentum out of the boundary layer is determined by the boundary layer dynamics and thermodynamics.
- The radial distribution of these quantities on leaving the layer exerts a strong constraint on the radial distribution of buoyancy

A surprise

The maximum wind speed in the boundary layer can exceed that above the boundary layer (or can it?).

- An unusual in feature boundary layers in general.
- A special feature of the termination boundary layer of intense vortices.

> Anthes (1972):

• Inward increase of V due to large radial displacements in the boundary layer with partial conservation of AAM opposes the fictional loss of AAM to the surface.

- The maximum winds in a hurricane occur close to the surface.
 - ⇒ strong surface moisture fluxes
 - \Rightarrow drive large ocean wave fields
 - \Rightarrow do maximum damage at landfall.
- ➢ Wind reduction factors used to relate maximum flight level winds observed by reconnaissance aircraft to maximum near surface winds may be appreciably in error (Kepert, 2001).
- In his PI code Kerry Emanuel reduces V_m by 20% "... to reflect the typical relationship between gradient winds and actual surface winds".

A simple axisymmetric hurricane model: back trajectories from v_{max}

Theoretical literature on the hurricane boundary layer

- **Rosenthal 1962. Quasi-linear theory** (v_{gr}(r) prescribed)
- Smith 1968, Leslie and Smith 1970, Bode and Smith 1975. Momentum integral method (v_{gr}(r) prescribed)
- Shapiro 1983, Slab model (v_{gr}(x,y) prescribed)
- Eliassen 1971, Eliassen and Lystad 1977, Montgomery et al. 2001, Jones and Thorncroft (unpublished). Unsteady, focus on vortex spindown (coupled theories: v_{gr}(r,t) determined)
- Emanuel 1986, 1995, Bister and Emanuel 1998, Emanuel 2005. Application to PI theory (coupled theories : v_{gr}(r,t) determined)
- Kepert 2001, Kepert and Wang 2001, Steady, analytic and numerical, non-axisymmetric (v_{gr}(x,y) prescribed)
- Smith 2003, Smith and Vogl 2007. Steady, axisymmetric slab formulation (v_{gr}(r) prescribed)
- > Vogl and Smith (in preparation) Steady, axisymmetric slab formulation, $(v_{gr}(r)$ determined where $w_{\delta} > 0$.)

Emanuel's 1986 steady hurricane model

Slab boundary layer model

Boundary-layer equations

$$u_{b}\frac{du_{b}}{dr} = u_{b}\frac{w_{\delta_{-}}}{\delta} - \frac{(v_{gr}^{2} - v_{b}^{2})}{r} - f(v_{gr} - v_{b}) - \frac{C_{D}}{\delta}(u_{b}^{2} + v_{b}^{2})^{\frac{1}{2}}u_{b} - \frac{\overline{(u'w')}_{\delta}}{\delta}, \quad (1)$$

$$u_{b}\frac{dv_{b}}{dr} = \frac{w_{\delta_{-}}}{\delta}(v_{b} - v_{gr}) - (\frac{v_{b}}{r} + f)u_{b} - \frac{C_{D}}{\delta}(u_{b}^{2} + v_{b}^{2})^{\frac{1}{2}}v_{b} - \frac{\overline{(v'w')}_{\delta}}{\delta}. \quad (2)$$

$$u_{b}\frac{d\chi_{b}}{dr} = \frac{w_{\delta_{-}}}{\delta}(\chi_{b} - \chi_{\delta_{+}}) + \frac{C_{\chi}}{\delta}(u_{b}^{2} + v_{b}^{2})^{\frac{1}{2}}(\chi_{s} - \chi_{b}) - \frac{\overline{(\chi'w')}_{\delta}}{\delta} - \dot{\chi}_{b}, \quad (3)$$

$$\frac{du_{b}}{du_{b}} = u_{b} - w_{\delta}$$

$$\frac{du_b}{dr} = -\frac{u_b}{r} - \frac{w_\delta}{\delta}.$$
(4)

$$w_{\delta} = \frac{\delta}{1+\alpha} \left[\frac{1}{u_b} \left(\frac{(v_{gr}^2 - v_b^2)}{r} + f(v_{gr} - v_b) + \frac{C_D}{\delta} (u_b^2 + v_b^2)^{\frac{1}{2}} u_b \right) - \frac{u_b}{r} \right], \quad (5)$$

Starting conditions at large radius

Ekman-like dynamics

$$f(v_{gr} - v_b) = u_b \frac{w_{\delta_-}}{\delta} - \frac{(u'w')_{\delta}}{\delta} - \frac{C_D}{\delta} (u_b^2 + v_b^2)^{1/2} u_b, \tag{6}$$

$$fu_b = \frac{w_{\delta_-}}{\delta} (v_b - v_{gr}) - \frac{\overline{(v'w')}_{\delta}}{\delta} - \frac{C_D}{\delta} (u_b^2 + v_b^2)^{1/2} v_b.$$
(7)

Radiative-convective equilibrium

$$C_D(u_b^2 + v_b^2)^2(q_s - q_b) = w_{sc}(q_b - q_{\delta_+}), \tag{8}$$

 $T_{\delta+} - T_b = \left[-\dot{R}/c_p - C_D(u_b^2 + v_b^2)^{1/2}(T_s - T_{as}) - C_D(u_b^2 + v_b^2)^{3/2}\right]/w_{sc}, \qquad (9)$

Interpretation

- Converging rings of air in the boundary layer spin faster, even though some angular momentum is lost to the surface.
- ★ Supergradient wind speeds require large radial displacements with minimal frictional loss → high radial wind speeds.
- The only effect that can lead to an inward radial acceleration is the net pressure gradient. This increases with the degree to which the BL-flow is subgradient, i.e. as the effective frictional stress increases.
- ✤ A shallow boundary layer depth favours larger radial wind speeds, but smaller tangential wind speeds at outer radii.
- ★ At inner radii, large radial wind speeds favour a steep increase in v_b → tendency to supergradient winds.

Interpretation

Interpretation

- * The BL-solution breaks down if $u_b = 0$. This happens if v_b exceeds v_{gr} beyond a certain limit (i.e. if δ is small enough).
- **Some questions:**
 - How large is w_{sc}? Not much data!
 - How important is the downward mixing compared with the surface flux of a particular quantity?

Implications and Limitations

***** Ubiquitous tendency to produce supergradient winds.

- ★ → if during the vortex intensification, the radial distribution of v_{gr} is determined by radial convergence above this layer associated with deep moist convection, the BL would tend to produce stronger tangential winds inside r_{max} . These stronger tangential winds would be advected vertically out of the boundary layer, leading to a spin up of the core region.
- Idea supported by the simple tropical-cyclone model examined by Emanuel (1997), in which the inner-core spin up appears to be orchestrated by the boundary layer, and also by the calculations of Wolfgang Ulrich.

Kepert and Wang 2001

FIG. 2. Radial cross section through storm I. The solid light lines are contours of v, the dashed contours of M_a , the solid heavy line marks the top of the layer in which vertical diffusion plays a marked role in the dynamics, the vectors are of (u, w) with only every second model level shown.

Implications and Limitations

- * The calculations suggest that the boundary layer is a fundamental aspect of the spin-up of the inner-core of a tropical cyclone.
- Sut, is it appropriate to prescribe the radial pressure gradient, above the boundary layer in regions where the flow is out of the boundary layer?
- * Most previous boundary models have taken this approach (e.g. Smith 1968, Leslie and Smith 1970, Bode and Smith 1975, Shapiro 1983, Kepert 2001, Kepert and Wang 2001, Smith 2003).
- These calculations provide useful insights, but there is a limit to how far they can be taken.

Possible extensions for future work

> We could take $v_{gr} = v_b$ where $w_{\delta} > 0$.

- \rightarrow the pressure gradient would be determined by the assumption of gradient wind balance for $z > \delta$.
- In general, this pressure gradient would not be in hydrostatic balance with the thermal field aloft.
- \rightarrow the outer part of the vortex produces an inward jet at the radius where $w_{\delta} = 0$.
- > We could use the Emanuel constraint at $z = \delta$ when $w_{\delta} > 0$.
 - Now v_{gr} (and $\theta_{e}) would be determined consistently as part of the solution.$
 - Assumption is that axisymmetric dynamics apply!

Take
$$v_{gr} = v_b$$
 where $w_d > 0$

Topics:

Buoyancy
 Boundary layer
 Size

Motivation

- Observations (e.g. Merrill, 1984) suggest that there is little relationship between the intensity of a tropical cyclone (measured by v_{max}) and its size (measured by r_{gale-force winds}).
- We know of no theories to account for the range of sizes of tropical cyclones that are observed.
- Question: How does the background rotation strength (characterized either by the Coriolis parameter or the width of the initial vortex) influence the intensity and size of a tropical cyclone?

Work in progress!

Growth in size – Sang Nguyen – Ensemble calculations

The End Thank you!

20

-155

SUPER TYPHOON WINNIE GMS-5 VIS 11 AUG 97 23:33UTC UW-CIMSS

140

-150