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Balanced Vortex Model

— Assumptions:

_ Vertical Coordinate:
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Gradient Balance

Momentum Eq.
Hydrostatic Eq.
Continuity Eq.

Thermodynamic Eq.



Streamfunction for the
Transverse Circulation

— The continuity equation
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Thermal Wind Equation

_ Derived from the gradient balance and
hydrostatic equations:
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— Taking the local time derivative:
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Deriving the Transverse Circulation Equation

Thermodynamic g 0T ,0re)  L0U _ g

equation yields: Iy ot ror 0z ¢Tp

Tangential wind dv  pO(rY)
equation yields: Ot ror

Variable coefficients:
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Sawyer-Eliassen Transverse
Circulation Equation
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— Boundary Conditions:
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— Elliptic if:




ldealized Vortex

_ Consider an idealized vortex such that:




Simplified Transverse Circulation Equation

— Now assume separable solutions:

Qr,) = Q(r) exp (577 ) sin C )

U(r, z) = (r) exp :
o(r,2) = (r) exp (—5

_ The above PDE now reduces to an ODE.




Radial Structure Equation

—  We are particularly interested in the
important role played by radial variations
of the inverse Rossby length.




ldealized Barotropic Vortex

—  Now consider the following barotropic vortex:

(jo— 1) if0<r<r
fori+ fAert—rhy — fr2 ifry Sr <

—  The resulting effective Coriolis parameter is
piecewise constant:

5 (v 5 fo, it 0 < r < ry (eye)
f (r) = { (f + ;) (f 2 5 fl, if i < r < ry (eyewall)

fa, ifre < r < oo (far-field)




Diabatic Heating

— Now assume the heating is confined to the
eyewall region:

0 it 0 <r <7 (eye)
Q(r) = Q1 1Ury <r <ry(eyewall)
0 if 7o < r < oo (far-field)

_ Parameter constraint (fixes the area-
averaged rainfall):

01/e)(r2 —12) = 125K day (50 km)?




Resulting Radial Structure Equations

— Governing equation for each region:

— With our heating profile, solutions are simply the
first-order modified Bessel functions.
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Streamfunction Solution

3'71]1 (ttor)/ I (ptor) 10 <r <nr
{HF(77>)—|—1>F717 VIF(ry,re) ifry <7 <y
z.:-'2[\1 (por) /K1 (pars) iftry <r < oo

F(r,y) = Li(pnx) K (pny) — K (pax) L (pay)

The parameters |;, and ¢, | are determined
by the two jump conditions.

_ Note that this solution is continuous at the
edges of the eyewall.




Vertical Motion Solution

— Note the following derivative formulas for
modified Bessel functions:

dlrKq(pur)]

r (1,.7.,

= —pulo(pr)

_  The vertical motion solution then becomes:
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rdr
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Temperature Iendency

The temperature tendency for a barotropic
vortex is given by:

0T Q@ ToN2d(ri)
ot . qg rdr

With our heating profile, this becomes:
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Plots for Different Vortices
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Hub Cloud of Hurricane Isabel
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Conclusions

. There is less than 10% horizontal variation

in the eye subsidence when the ratio of eye

radius to Rossby length in the eye is less
than 0.6

- The subsidence rate at the edge of the eye
is more than twice as strong as that at the
center of the eye when the ratio of eye
radius to Rossby length in the eye is greater
than 1.8 (i.e, large eyes and/or eyes with
high inertial stability)




Conclusions (continued)

. The existence of a hub cloud at the center

of the eye, cascading pileus in the upper
troposphere on the edge of the eye, a
clear inner moat in the lower troposphere
on the edge of the eye, and a warm-ring
structure are all associated with strong
inertial stability in the eye and a relatively
large eye radius.
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