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Characteristics
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Hurricane Tracking & Google Maps ’ ‘
Hurmicane Rits (2005), Hurricane Gordon (2006) http://stormadvisory.org/map/atlantic/
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Goal:

Reduced equations for
vortex core dynamics, vortex motion

and the role of subscale moist processes

Balanced motions on synoptic time scales

Multiple length & time scale interactions
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Two universal dimensionless parameters™ ...
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*Keller & Ting (1951), http://www.arxiv.org/abs/physics/0606114
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Two universal dimensionless parameters
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Then, e.g., for the middle latitudes
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General multiple scales expansions
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Coordinate scalings

Simplified model obtained
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Anelastic & pseudo-incompressible models
Linear large scale internal gravity waves

Linear small scale internal gravity waves
Mid-latitude Quasi-Geostrophic model
Equatorial Weak Temperature Gradient models
Semi-geostrophic model

Equatorial Kelvin, Yanai & Rossby Waves

etc.
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“Lothar”-Storms and H1-Hurricanes
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Outer Expansion: QG-scaling
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Inner Expansion: Gradient Wind-scaling
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Inner Expansion: Gradient Wind-scaling
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Steps of the analysis:

Eliassen-type

leading axisymmetric balances ==
“balanced vortex models

4

1st order first Fourier modes
matching = centerline motion and tilt
solvability conditions

2nd order axisymmetric balances

- .. —>  core structure evolution
solvability conditions

Scalings and Asymptotic Flow Regime
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Leading order results
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e hydrostatic
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Leading order results contd
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e axisymmetric leading order core structure
e gradient wind balance

e angular momentum conservation along stream surfaces

Structure and Motion of a Moist Vortex




Leading order results contd

0
w d—@z + L dng) =0
U\ a2 D dz

e wy=0 or moistadiabatic background stratification

F*L*dq%)
J(z) = p dz

known moist thermodynamic function
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Leading order results contd

or O
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L*dgt
* W) — dvs vortex-scale latent heating at 0(87/2)
D dz
* S’O unresolved-scale source term at 0(89/2)
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Quasi-steady Eliassen-type balanced moist vortex model
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K, L are non-zero for stronger tilt and asymmetry
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forbidden Streamlines of the secondary circulation
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Streamlines of the secondary circulation in the farfield
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Streamlines of the secondary circulation
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How does the air get back down?
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Vortex core structure

quasi-steady Elliassen-type balanced vortex model

on-scale latent heat release™ merely “unfreezes” vertical motion

higher-order diabatics determine structure

* ... unavailable in the downward branch (?)
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Matching
V| (cos(6) e, — sin(f) ey)

Self-induced farfield core velocity
Self-induced core velocity
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Matching
V| (cos(6) e, — sin(f) ey)

Self-induced farfield core velocity
pushes vortex in addition to
background flow advection

4

Seek far-field behavior of

Waveno. 1 Fourier modes of core flow

Self-induced core velocity

Background flow velocity

Structure and Motion of a Moist Vortex




First order, first Fourier mode asymmetries (k € {1,2})

9 o 2 0
subscalgheating weak vortex tilt vortex motion
L] . known linear operator
1y (1
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Rs, Ry, Ry : known constants in R®
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Matching

0 0 ; 0 (0 . (3 0
Vel = Vel + 8ol 1) + 2 (2xcld 1)) +Vel! 162
stsca@rheati;g ) weak vortex tilt . \vorte%otionj

e tilt 0, X adjusts to eliminate z-dependence

e vortex motion as fct. of

— background flow Vg
— asymmetric subscale heating Sor
— weak vortex tilt 0. X
— self-induced Coriolis effects Qo Vo
— axisymmetric vortex core structure Is 2 0(2)

Structure and Motion of a Moist Vortex
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Required multi-scale ingredients
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How did the air get back down?
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Hypothesis: Downdrafts via organized convection

W = WW ww W“
Saturated a - \
L “ Hl' m\' nnuw'

N\ﬂ)\ ‘lwl\ll\"'“ \“1\1\"‘""

l

Undersaturated air
S = _Cev (QVS — Q'U) dr S 0

Water flux balance

Multi-Scale Interactions



Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime
Structure and Motion of a Moist Vortex
Multi-Scale Interactions

A Deep Convective Column Model

Conclusions



4y T .7 T T T\ 7
6( )—varlatlons

3 ..
________ B( )—varlatlons

"\ N ez
O(h,) “\\/\

N

Strong convective

events

B-level sets —

A Deep Convective Column Model



Ule,z.t:e) =S U0 L 4 et
(x,2,t;€) Zé:s (,e,z,e,ew),

/ / t/
r=—, z=-—,

hsc hsc 7 B hsc/ Uref

z  — pressure scale height
t  — deep convective time scale

x/e — narrow deep convective turrets

et,ex — meso-scale vortex formation

A Deep Convective Column Model



“pressure-less” column model (barotropic background)

wt +v - Vw +ww, = 6 +D,
do
9t+fv-v(9+w6’z:$w +Dy + Sy

1
vi+v-Vuo+wv,+-=Vp =wd x k +D,
0

pV - -v+ (pw), =0
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“pressure-less” column model (barotropic background)

wt +v - Vw +ww, = 6 +D,
do
9t+fv-v(9+w6’z:$w +Dy + Sy

1
vi+v-Vuo+wv,+-=Vp =wd x k +D,
0

pV - -v+ (pw), =0

Accumulated column fluxes drive meso-scale flow (Ro = O(1))
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Meso-scale WTG-flow

1
vi+v-Vo+wv,+ Qpk xv+-=VP =0
0

d©y
W= = S
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Meso-scale WTG-flow

1
vi+v-Vo+wv,+ Qpk xv+-=VP =0
0

d©y
W= = S

Slight “cheat”, since column requires barotropic background

A Deep Convective Column Model
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Reduced equations for
vortex core dynamics, vortex motion

and the role of subscale moist processes

shown:

(generalized) Eliassen-type balanced core structure
vortex motion and tilt

role of higher order diabatic effects

multi-scale column model for incipient stage
(related models may explain large-scale descend)

Open issue: closedness of the secondary circulation

Conclusions



Reduced equations for
vortex core dynamics, vortex motion

and the role of subscale moist processes

not shown:

e core structure evolution equations

e buyoancy-controlled, WTG-type regimes
(dry or farther from moist adiabatic)

e Eliassen-type model for stronger tilt

e regimes with intense near-surface boundary layer

e precession of a dry vortex

Conclusions





