Multi-Scale Analyses for Intense Atmospheric Vortices

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin Data & Computation, Potsdam Institut for Climate Impact Research Scientific Computing, Zuse-Institut Berlin

Eileen Mikusky	(PIK)
Gunter Carqué	(FUB)
Antony Owinoh	(FUB / PIK)
Andrew Majda	(Courant Institute)

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

Characteristics

 $L \approx 250 \text{ km}$ $u_{\theta} \approx 40 \text{ m/s}$

Motivation

Hurricane Tracking & Google Maps

Hurricane Rita (2005), Hurricane Gordon (2006)

http://stormadvisory.org/map/atlantic/

Motivation

Goal:

Reduced equations for vortex core dynamics, vortex motion and the role of subscale moist processes

Balanced motions on synoptic time scales

Multiple length & time scale interactions

Motivation

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

Two universal dimensionless parameters* ...

$$\frac{c}{a\Omega} \sim 0.5 = O(1), \quad \frac{a\Omega^2}{g} \sim 6 \cdot 10^{-3} \ll 1$$

... and a more familiar one

$$\left(\frac{c}{a\Omega}\right)^2 \left(\frac{a\Omega^2}{g}\right) = \frac{h_{\rm sc}}{a} \sim 1.5 \cdot 10^{-3} \stackrel{!}{=} \varepsilon^3$$

* Keller & Ting (1951), http://www.arxiv.org/abs/physics/0606114

Modelling Approach

Two universal dimensionless parameters ...

$$\frac{c}{a\Omega} \sim 0.5 = O(1), \quad \frac{a\Omega^2}{g} \sim 6 \cdot 10^{-3} \ll 1$$

... and a more familiar one

$$\left(\frac{c}{a\Omega}\right)^2 \left(\frac{a\Omega^2}{g}\right) = \frac{h_{\rm sc}}{a} \sim 1.5 \cdot 10^{-3} \stackrel{!}{=} \varepsilon^3$$

Then, e.g., for the middle latitudes

$$L_{\text{meso}} = \frac{h_{\text{sc}}}{\varepsilon} \quad L_{\text{syn}} = \frac{h_{\text{sc}}}{\varepsilon^2}, \quad a = \frac{h_{\text{sc}}}{\varepsilon^3},$$

Modelling Approach

General multiple scales expansions

$$\boldsymbol{U}(t,\boldsymbol{x},z;\boldsymbol{\varepsilon}) = \sum_{i} \boldsymbol{\varepsilon}^{i} \boldsymbol{U}^{(i)}(\frac{t}{\boldsymbol{\varepsilon}},\boldsymbol{\varepsilon} t,\boldsymbol{\varepsilon}^{2} t,...,\frac{\boldsymbol{x}}{\boldsymbol{\varepsilon}},\boldsymbol{\varepsilon} \boldsymbol{x},\boldsymbol{\varepsilon}^{2} \boldsymbol{x},...,\frac{z}{\boldsymbol{\varepsilon}},z)$$

Coordinate scalings	Simplified model obtained
$oldsymbol{U}^{(i)}(t,oldsymbol{x},z)$	Anelastic & pseudo-incompressible models
$oldsymbol{U}^{(i)}(t, oldsymbol{arepsilon} x, z)$	Linear large scale internal gravity waves
$oldsymbol{U}^{(i)}(rac{t}{arepsilon},oldsymbol{x},rac{z}{arepsilon})$	Linear small scale internal gravity waves
$oldsymbol{U}^{(i)}(oldsymbol{arepsilon}^2t,oldsymbol{arepsilon}^2oldsymbol{x},z)$	Mid-latitude Quasi-Geostrophic model
$oldsymbol{U}^{(i)}(oldsymbol{arepsilon}^2 t,oldsymbol{arepsilon}^2 oldsymbol{x},z)$	Equatorial Weak Temperature Gradient models
$\boldsymbol{U}^{(i)}(\boldsymbol{\varepsilon}^{2}t, \boldsymbol{\varepsilon}^{-1}\xi(\boldsymbol{\varepsilon}^{2}\boldsymbol{x}), z)$	Semi-geostrophic model
$oldsymbol{U}^{(i)}(oldsymbol{arepsilon}^{rac{5}{2}}t,oldsymbol{arepsilon}^{rac{7}{2}}x,oldsymbol{arepsilon}^{rac{5}{2}}y,z)$	Equatorial Kelvin, Yanai & Rossby Waves
•••	etc.

Modelling Approach

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

"Lothar"-Storms and H1-Hurricanes

Outer Expansion: QG–scaling

Inner Expansion: Gradient Wind-scaling

Inner Expansion: Gradient Wind-scaling

Steps of the analysis:

leading axisymmetric balances

 $\Rightarrow \quad \begin{array}{l} \text{Eliassen-type} \\ \text{"balanced vortex models"} \end{array}$

1st order first Fourier modes matching solvability conditions

 \Rightarrow centerline motion and tilt

2nd order axisymmetric balances solvability conditions

 \Rightarrow core structure evolution

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

Leading order results

$$\frac{1}{r}\frac{\partial(ru_{r,0})}{\partial r} + \frac{1}{\overline{\rho}}\frac{\partial(\overline{\rho}w_0)}{\partial z} = 0$$
$$\frac{\partial\pi}{\partial z} = \Theta$$

• homentropic background:

$$\overline{
ho}(z), \overline{p}(z)$$
 with $\overline{\Theta} \equiv 1$

- anelastic
- hydrostatic

Leading order results cont'd

$$\frac{\partial \pi}{\partial \theta} = \frac{\partial u_{\theta}}{\partial \theta} = 0$$
$$\frac{\partial \pi}{\partial r} - \frac{u_{\theta}^2}{r} - \Omega u_{\theta} = 0$$
$$\left(u_{r,0}\frac{\partial}{\partial r} + w_0\frac{\partial}{\partial z}\right)\left(ru_{\theta} + r^2\Omega_0\right) = 0$$

- axisymmetric leading order core structure
- gradient wind balance
- angular momentum conservation along stream surfaces

Leading order results *cont'd*

$$w_0 \left(\frac{d\Theta_2}{dz} + \frac{L^*}{\overline{p}} \frac{dq_{\rm VS}^{(0)}}{dz} \right) = 0$$

$$u_{r,0} \frac{\partial \Theta^{(3)}}{\partial r} + w_0 \left(\frac{\partial \Theta^{(3)}}{\partial z} + \mathcal{J}(z) \right) = \tilde{S}$$

•
$$w_0 \equiv 0$$
 or moist adiabatic background stratification

•
$$\mathcal{J}(z) = \frac{\Gamma^* L^*}{\overline{p}} \frac{dq_{\mathrm{vs}}^{(1)}}{dz}$$
 known moist thermodynamic function

Leading order results *cont'd*

$$\boldsymbol{w_0} \left(\frac{d\Theta_2}{dz} + \frac{\boldsymbol{L^*} \boldsymbol{dq_{vs}^{(0)}}}{\overline{\boldsymbol{p}}} \boldsymbol{dz} \right) = 0$$

$$u_{r,0}\frac{\partial\Theta^{(3)}}{\partial r} + w_0\left(\frac{\partial\Theta^{(3)}}{\partial z} + \mathcal{J}(z)\right) = \tilde{\boldsymbol{S}}_0$$

•
$$w_0 \frac{L^* dq_{\text{VS}}^{(0)}}{\overline{p} dz}$$
 vortex-scale latent heating at $O(\varepsilon^{7/2})$
• \tilde{S}_0 unresolved-scale source term at $O(\varepsilon^{9/2})$

Quasi-steady Eliassen-type balanced moist vortex model

$$\frac{\partial \pi}{\partial z} = \Theta$$

$$\frac{1}{r} \frac{\partial (r u_{r,0})}{\partial r} + \frac{1}{\overline{\rho}} \frac{\partial (\overline{\rho} w_0)}{\partial z} = L^*$$

$$r^3 \frac{\partial \pi}{\partial r} - M^2 + \frac{\Omega_0^2 r^4}{4} = 0 \qquad \left(M = r u_\theta + \frac{\Omega_0 r^2}{2}\right)$$

$$\left(u_{r,0} \frac{\partial}{\partial r} + w_0 \frac{\partial}{\partial z}\right) M = K^*$$

$$\left(u_{r,0} \frac{\partial}{\partial r} + w_0 \frac{\partial}{\partial z}\right) \Theta^{(3)} + w_0 \mathcal{J}(z) = \tilde{\mathbf{S}}_0^{(\frac{9}{2})}$$

* K, L are non-zero for stronger tilt and asymmetry

forbidden Streamlines of the secondary circulation

Streamlines of the secondary circulation in the farfield

Streamlines of the secondary circulation

How does the air get back down?

Vortex core structure

- quasi-steady Elliassen-type balanced vortex model
- on-scale latent heat release* merely "unfreezes" vertical motion
- higher-order diabatics determine structure
- * ... unavailable in the downward branch (?)

Matching

Self-induced farfield core velocity

Matching

Self-induced farfield core velocity pushes vortex in addition to background flow advection

 \Downarrow

Seek far-field behavior of Waveno. 1 Fourier modes of core flow

Background flow velocity

First order, first Fourier mode asymmetries $(k \in \{1, 2\})$

$$\mathcal{L}[\cdot]$$
 : known linear operator

$$U = \left(u_r^{(\frac{1}{2})}, u_{\theta}^{(\frac{1}{2})}, w^{(\frac{4}{2})}, \pi^{(\frac{7}{2})}, \theta^{(\frac{7}{2})}\right)$$

 R_s, R_x, R_v : known constants in $I\!\!R^5$

Matching

- tilt $\partial_z X_C$ adjusts to eliminate *z*-dependence
- vortex motion as fct. of
 - background flow
 - asymmetric subscale heating
 - weak vortex tilt
 - self-induced Coriolis effects
 - axisymmetric vortex core structure

 $egin{aligned} & m{V_B} \ & m{S_{m{ heta}k}} \ & \partial_z m{X_C} \ & \Omega_0 m{V_C} \ & I_{s,x,v}(z) \end{aligned}$

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

Required multi-scale ingredients

How did the air get back down?

$$\boldsymbol{w}_{0} \left(\frac{d\Theta_{2}}{dz} + \frac{\boldsymbol{L}^{*}}{\boldsymbol{\overline{p}}} \frac{d\boldsymbol{q}_{vs}^{(0)}}{dz} \right) = 0$$
$$u_{r,0} \frac{\partial\Theta}{\partial r} + w_{0} \left(\frac{\partial\Theta}{\partial z} + \mathcal{J}(z) \right) = \tilde{\boldsymbol{S}}_{0}$$
$$w_{0} \frac{L^{*}}{\boldsymbol{\overline{p}}} \frac{d\boldsymbol{q}_{vs}^{(0)}}{dz} \text{ vortex-scale latent heating } O(\boldsymbol{\varepsilon}^{7/2})$$
$$\tilde{\boldsymbol{S}}_{0} \quad \text{unresolved-scale source term } O(\boldsymbol{\varepsilon}^{9/2})$$

Multi-Scale Interactions

Hypothesis: Downdrafts via organized convection

WTG-ajdustment in stable environment

$$w \, \frac{d\Theta}{dz} = S$$

Saturated air

$$S = -w \, \frac{\Gamma L}{p_0} \frac{dq_{vs}}{dz} \ge 0$$

Undersaturated air

$$S = -C_{\rm ev} \left(q_{\rm vs} - q_v \right) q_{\rm r} \le 0$$

Water flux balance

$$(\dot{m} q_{vs})_{\uparrow} = (\dot{m} q_{vs})_{\downarrow}, \qquad \dot{m}_{\downarrow} - \dot{m}_{\uparrow} = \dot{m}_{\downarrow} \left(1 - \frac{q_{vs,\downarrow}}{q_{vs,\uparrow}}\right)$$

Multi-Scale Interactions

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

$$egin{aligned} \mathbf{U}(oldsymbol{x},z,t;oldsymbol{arepsilon}) &= \sum_i oldsymbol{arepsilon}^i \mathbf{U}^{(i)}(t,rac{oldsymbol{x}}{oldsymbol{arepsilon}},z,oldsymbol{arepsilon}t,oldsymbol{arepsilon}},x), & x = rac{oldsymbol{x}'}{h_{
m sc}}, & z = rac{z'}{h_{
m sc}}, & t = rac{t'}{h_{
m sc}/u_{
m ref}} \end{aligned}$$

 $z \rightarrow$ pressure scale height

- $t \longrightarrow$ deep convective time scale
- x/arepsilon ~
 ightarrow narrow deep convective turrets
- $\boldsymbol{\varepsilon}t, \boldsymbol{\varepsilon}\boldsymbol{x} \rightarrow$ meso-scale vortex formation

"pressure-less" column model (barotropic background)

$$w_t + \boldsymbol{v} \cdot \nabla w + w w_z = \underline{\theta} + D_w$$
$$\theta_t + \boldsymbol{v} \cdot \nabla \theta + w \theta_z = \frac{d\Theta}{dz} w + D_\theta + S_\theta$$

$$\boldsymbol{v}_t + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + w \boldsymbol{v}_z + \frac{1}{\overline{\rho}} \nabla p = \underline{w \, \boldsymbol{\Omega} \times \boldsymbol{k}} + D_{\boldsymbol{v}}$$
$$\overline{\rho} \nabla \cdot \boldsymbol{v} + (\overline{\rho} w)_z = 0$$

"pressure-less" column model (barotropic background)

$$w_t + \boldsymbol{v} \cdot \nabla w + w w_z = \underline{\theta} + D_w$$
$$\theta_t + \boldsymbol{v} \cdot \nabla \theta + w \theta_z = \frac{d\Theta}{dz} w + D_\theta + S_\theta$$

$$\boldsymbol{v}_t + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + w \boldsymbol{v}_z + \frac{1}{\overline{\rho}} \nabla p = \underline{w \, \boldsymbol{\Omega} \times \boldsymbol{k}} + D_{\boldsymbol{v}}$$
$$\overline{\rho} \nabla \cdot \boldsymbol{v} + (\overline{\rho} w)_z = 0$$

Accumulated column fluxes drive meso-scale flow ($\operatorname{Ro} = O(1)$)

Meso-scale WTG-flow

$$\boldsymbol{v}_t + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + w \boldsymbol{v}_z + \Omega_0 \boldsymbol{k} \times \boldsymbol{v} + \frac{1}{\overline{\rho}} \nabla P = 0$$
$$w \frac{d\Theta_2}{dz} = \overline{S_{\theta}}$$
$$\overline{\rho} \nabla \cdot \boldsymbol{v} + (\overline{\rho} w)_z = 0$$

Meso-scale WTG-flow

$$\boldsymbol{v}_t + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + w \boldsymbol{v}_z + \Omega_0 \boldsymbol{k} \times \boldsymbol{v} + \frac{1}{\overline{\rho}} \nabla P = 0$$
$$w \frac{d\Theta_2}{dz} = \overline{S_{\theta}}$$
$$\overline{\rho} \nabla \cdot \boldsymbol{v} + (\overline{\rho} w)_z = 0$$

Slight "cheat", since column requires barotropic background

Motivation

Modelling Approach

Scalings and Asymptotic Flow Regime

Structure and Motion of a Moist Vortex

Multi-Scale Interactions

A Deep Convective Column Model

Conclusions

Reduced equations for

vortex core dynamics, vortex motion

and the role of subscale moist processes

shown:

- (generalized) Eliassen-type balanced core structure
- vortex motion and tilt
- role of higher order diabatic effects
- multi-scale column model for incipient stage (related models may explain large-scale descend)
- Open issue: closedness of the secondary circulation

Reduced equations for

vortex core dynamics, vortex motion

and the role of subscale moist processes

not shown:

- core structure evolution equations
- buyoancy-controlled, WTG-type regimes (dry or farther from moist adiabatic)
- Eliassen-type model for stronger tilt
- regimes with intense near-surface boundary layer
- precession of a dry vortex