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Hybrid deterministic/stochastic systems

1. Microscopically active interface or boundary layer interacting
with an adjacent ”bulk” fluid phase.

2. Rheology of polymers: micro-macro models.

Fluids equations at the macroscopic level coupled with kinetic or
stochastic equations ruling the evolution of the fluid microstruc-
ture at the meso- or micro- scale, e.g. FENE-type models or
coupled Monte Carlo with fluid dynamics.

3. Stochastic Phase-Field models. Solidification, dendritic growth
in alloys.





Mathematical set-up:
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∂tX = F [X, σ] (PDE/ODE system)

∂tEg(σ) = ELXg(σ) (stochastic model)

X: Fluid/thermodynamic variables defined on top grid

LX: generator of the subgrid stochastic process σ defined on
the lower grid (subgrid). g: observable, σ: local coverage



Some challenges and questions:

• Disparity in scales and models; DNS require ensemble av-
erages for a large system.

• Model reduction: deterministic vs. stochastic closures;
when is stochasticity important?

• In general there is no clear scale separation: need hierar-
chical coarse-graining.

• Error control, stability of the hybrid algorithm; efficient
allocation of computational resources: adaptivity, model
and mesh refinement.

• Stochastic boundary conditions



MODEL SYSTEM

∂tX = f(X, σ̄) (ODE)

∂tEg(σ) = ELXg(σ) (stochastic lattice model)

LX: generator of a spatial stochastic process σt(x).

f = f(x, σ̄): scalar bistable, saddle node, or spatially homogen.
complex Ginzburg-Landau (Hopf bifurcations), etc.

Two-way coupling:

• h = h(X): external field to the microscopic system.

• σ̄ = 1
N

∑
x
σt(x): area fraction (spatial average).

Special case: well-mixed, catalytic reactors (CSTR)

M. Katsoulakis (UMass), A. Majda (Courant), A. Sopasakis
(UMass) Nonlinearity (2006), Contemp. Math. (2007), ...



Stochastic lattice model: Arrhenius adsorption/desorption
dynamics

σ(x) = 0 or 1: site x is resp. empty or occupied.

Transition rate: c(x, σ, X) = c0 exp
[
− βU(x)

]
U(x): Energy barrier a particle has to overcome in jumping from
a lattice site to the gas phase.

- U(x) = U(x, σ, X) =
∑

z 6=x
J(x− z)σ(z)− h(X).

- strong interactions → clustering/phase transitions



ODE for the large scales:

CGL: f( ~X, σ) = (a(σ̄) + iω) ~X − γ| ~X|2 ~X + γ̂ ~X∗

Bistable: f(X, σ) = a(σ̄)X + γX3,

Saddle: f(X, σ) = a(σ̄) + γX2,

Linear: f(X, σ) = aσ̄ + b− cX

Coupling of the two systems: h = h(X), f = f(x, σ̄) .

• h(X) = cX + h0 , or h(X) = c|X|2 + h0

• σ̄: affects the bifurcation diagram of the ODE

Later: Coupling via a stochastic boundary condition: balance
of fluxes



I. Deterministic closures of hybrid systems

• Mean field approximations (one-point statistics)

• Stochastic averaging (time scale separation)

∂tX
ε = f(Xε, σ̄)

∂tEg(σ) =
1

ε
ELXg(σ)

Then, limε→0 Xε = X

∂tXavg = f̄(Xavg) , f̄(x) =

∫
Σ

f(x, σ̄)µx
equil(dσ) ,

µx
equil ivariant (Gibbs) measure ∼ stoch. dynamics

Within framework of Markov processes with two time scales:

In math, Khasminskii, Kurtz, Papanicolaou,... In EE, Phillips
and Kokotovic,... In AOS, Majda, Timofeyev, Vanden-Eijnden,...



Remarks

1. Theorem → ε � 1; how big can we take ε?

2. Evaluation of f̄(x) =
∫
Σ

f(x, σ̄)µx
equil(dσ) ?

• Analytical calculations for special cases; can also be pre-
computed? (not really...)

• On-the-fly comput.approach: W. E and B. Engquist
(HMM); Y. Kevrekidis (Equation Free)

External ODE: f( ~X, σ) = (a(σ̄) + iω) ~X − γ| ~X|2 ~X + γ̂ ~X∗ (CGL)
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However...

3. Finite time interval derivation [0, T] for averaged equa-
tions:

max
t∈[0,T ]

‖Xε(t)−Xavg(t)‖ = CToε(1)

large deviations from the averaged equation at long-time
intervals [Freidlin-Wentzell for SDE].

4. Need ergodicity for the micro process: no phase transitions
in the microscopic model, i.e. only when we have weak
interactions or high temperatures



External ODE: f(X, σ) = a(σ̄)+ γX2, (saddle node bifurcation)

0 1000 2000 3000 4000
−0.2

0

0.2

0.4

0.6

0.8

1

Sp
ace

 X

Time t (τ
c
=1 ).

Initial 

Monte Carlo data
Aver. Principle data

4000 6000 8000 10000 12000
−0.2

0

0.2

0.4

0.6

0.8

1

Sp
ace

 X

( β J
0
 = 0.01, Ext. Pot = 5X−1)

Remaining ...



Phase transitions in hybrid systems: strong particle/particle
interactions

d

dt
X = f(X, σ) = aσ̄ + b− cX

d

dt
Eg(σ) = ELXg(σ) , h = h(X)

Step 1: mean field approximation (one-point statistics):

d

dt
x = au + b− cx ≡ f(x, u)

d

dt
u = (1− u)− u exp[−βJ0u + h(x(t))]

• one stable state (weak interactions); stochasticity is not
important

• bistable, excitable, oscillatory regimes (strong interactions)

Fitzhugh-Nagumo type system
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Figure 2. Direction field for mean field system (15) under different parameter
regimes. Here f(Y, u) and g(Y, u) correspond to the top and bottom equations of
(15) respectively. Cases of excitability for βJ0 = 2 and excitability, bistability and
oscillations for βJ0 = 6 respectively. Compare with pg. 328-329 of [22]

A catalysis system which is essentially equivalent to (15), at least in the ODE case,

was first studied in [15] predicting oscillations both in the coverage and the pressure

but in the absence of fluctuations, detailed interactions and spatial inhomogeneities.

For this system, comparisons between mean field and Monte Carlo simulations [26],

showed that in many parameter regimes there is substantial agreement attributed to
the coupling with the well-mixed gas-phase; drastic discrepancies were also observed,

as well as a variety of dynamic and equilibrium behaviors, depending on the separation

of time scales between individual micro-mechanisms and the time scale of the ODE.

Furthermore we note that system (15) has the same behavior as a typical Fitzhugh

Nagumo ODE system,

d

dt
x = au + b− cx, and

d

dt
u = g(u)− x (16)

where g(u) = u(ω − u)(u − 1) [22] (pg. 329). In fact, system (16), displays a similar

phase portrait with (15) for βJ0 > 4.

The mean field closure (15) provides some first insights on the overall dynamics
of the full hybrid system (1, 2) by suggesting the presence of excitable, bistable and

oscillatory regimes. However the noise in the hybrid system is expected to substantially

modify these deterministic regimes, potentially yielding corresponding behaviors of

strong intermittency, metastability and random oscillations. Therefore incorporating

Step 2: Mean field approx. suggests:

Bistability → random switching.
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Figure 7b. Two stable nodes. Birth-death for q = 10, 20, 50, 100 and 1000. Coupled
system behavior for the phase transition regime: βJ0 = 6. Other parameters used:
ca = cd = 10, a = 10, c = 1, b = 44.5, α = .01 and γ = 0. Initial values (η̄, X) = (.1, 45).
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Figure 7c. Two stable nodes. Birth-death for q = 10, 20, 50, 100 and 1000. Coupled
system behavior for the phase transition regime: βJ0 = 6. Other parameters used:
ca = cd = 10, a = 10, c = 1, b = 44.5, α = .01 and γ = 01. Initial values
(η̄, X) = (.1, 45).

Oscillatory regime → random oscillations
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Figure 6. Oscillatory behavior. Comparisons of birth-death and mean field solutions
for X under the phase transition regime, βJ0 = 6. Parameters used: ca = 1, cd =
1, a = 350, c = 1, b = −200, α = .1 and γ = 0. Initial values (η̄, X) = (.6, 5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

45

46

47

48

49

50

51

52

η     (Parameters: β J0 = 6, ca=10,cd=10)

X

Coupled System Solutions
f
g
q50
q100
q1000

Figure 7a. Two stable nodes. Birth-death for q = 50, 100 and 1000. Coupled
system behavior for the phase transition regime: βJ0 = 6. Other parameters used:
ca = cd = 10, a = 10, c = 1, b = 44.5, α = .01 and γ = 0. Initial values (η̄, X) = (.1, 45).

Excitability → strong intermittency regime

a. Need model reduction through suitable closure.
b. Deterministic vs. stochastic closures; stochasticity can be

important.



Coarse-Graining (and reconstruction) of extended micro-
scopic particle systems

1. Stochastic lattice dynamics/spatial adaptivity in KMC

1 2 3 4 5 6 7 ...q
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adsorption         desorption        diffusion

 1                       2                       3                      4                        5                        6          ...               m

Coarse Lattice LC

2. Coarse-graining of polymers.

Microscopics 7→ CG system 7→ Reconstructed Microscopics



Hierarchical coarse-graining of stochastic processes

Construct a stochastic process for a hierarchy of “mesoscopic”
length or time scales that includes fluctuations properly.

Coarse observable (why this one?)

ηt(k) = Tσt(k) :=
∑
y∈Dk

σt(y)

In general it is non-markovian

Stochastic closures: can we write a new approximating Markov
process for ηt?

[K., Majda, Vlachos, PNAS (2003)]

[K., Plechac, Sopasakis, SIAM Num. Analysis (2006)]
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Error I–Loss of information during coarse-graining

[K., José Trashorras (Paris IX), J. Stat. Phys. (2006)]

• µm,q,β(t): Coarse-grained PDF at time t.
• µN,β(t): Projection of the microscopic PDF at time t on

the coarse observables.
• q: level of coarse-graining, L: # of interacting neighbors

Then,

R
(
µm,q,β(t) |µN,βoF (t)

)
= OT(ε2) , t ∈ [0, T ]

where

R (µ | ν) :=
1

N

∑
σ

log
{

µ(σ)

ν(σ)

}
µ(σ) .�

and the “small” parameter ε is

ε ≡ Cβ
q

L
‖V ′‖∞

Information Theory interpretation The relative entropy describes
the increase in descriptive complexity of a random variable due
to “wrong/incomplete information”.



Mathematical Difficulty: Tσt(k) =
∑

y∈Dk
σt(y) . is not a Markov

process–has ”memory”

Elements of the proof:

1. γt: Markovian reconstruction of the microscopic process σt

from the coarse process ηt with controlled error:

• T(γt)t≥0 and (ηt)t≥0 have the same distribution

• Since σt, γt are Markov, the Radon-Nikodym derivative of
their distributions is:

dDσ
[0,T ]

dDγ
[0,T ]

((ρt)t∈[0,T ]) = exp

{∫ T

0

[λσ(ρs)− λγ(ρs)]ds−
∑
s≤T

log
λσ(ρs−)pσ(ρs−, ρs)

λγ(ρs−)pγ(ρs−, ρs)

}



II. Stochastic coarse-graining in hybrid systems

Deterministic closures fail in long time intervals, or when phase
transitions are present; revisit the earlier examples:

1. Blow-up:
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2. Phase transitions in hybrid systems: strong particle/particle
interactions:

Fitzhugh-Nagumo type system; comparison of

DNS of the hybrid system, q = 1

vs.

Coarse-Grainings q = 50

Space/Time time series analysis:
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Figure 18a. Comparisons for excitable case on signal from X . Timeseries, auto-
correlation and spectrum analysis for the cases of q = 1 and 50. Parameters:
L = 100, N = 1000 and βJ0 = 6.

interactions between scales and fluctuations such as nucleation, intermittent and random

oscillations regimes.

Appendix: Time series analysis tools

In this appendix we provide the details of how exactly the statistical analysis of long

time series signals is performed. We carry out this analysis in time but also in space.

Auto-correlations: We calculate the mean-removed auto-correlation for a signal y(t) as

follows,

gyy(m) =

{ ∑N−|m|−1
n=0

(
y(n + m) − 1

N

∑N−1
i=0 y(i)

)(
y(n) − 1

N

∑N−1
i=0 y(i)

)
for m ≥ 0

gyy(−m) for m < 0
(.1)

where N denotes the size of the signal. We then normalize our correlation function

based on the gyy(0) and report only the positive part.

Cross-correlations: We calculate the cross-correlation for two signals y(t) and z(t) in
exactly similar fashion as above

gyz(m) =

{ ∑N−|m|−1
n=0

(
y(n + m) − 1

N

∑N−1
i=0 y(i)

)(
z(n) − 1

N

∑N−1
i=0 z(i)

)
for m ≥ 0

gyz(−m) for m < 0
(.2)
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Figure 18b. Comparisons for excitable case on signal from η. Timeseries, auto-
correlation and spectrum analysis for the cases of q = 1 and 50. Parameters:
L = 100, N = 1000 and βJ0 = 6.
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Figure 18c. Spatial comparisons for X in the excitable case. Spatial spectrum
analysis for the cases of q = 1, 10 and 50. For this comparison spatial domains are
adjusted to that corresponding to q = 50 (i.e. m = 20, where N = mq). Parameters:
L = 100, N = 1000 and βJ0 = 6.

where N denotes the size of the signal. Similarly we normalize our correlation function

based on the gyz(0) and report only the positive part.

Detrending: Suppose we have a stationary time signal denoted by x(t). We apply a

detrending procedure on this signal which removes the best strait line fit. In the case

of a signal without any linear trends this essentially amounts to simply removing the
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Figure 14a. Comparisons for oscillatory case on signal from X with L = 100.
Timeseries, auto-correlation and spectrum analysis for the cases of q = 1 and q = 50
with βJ0 = 6.
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Figure 14b. Spatial comparisons for X in the oscillatory case with L = 100. Spatial
spectrum analysis for the cases of q = 1, 10 and 50. For this comparison spatial
domains are adjusted to that corresponding to q = 50 (i.e. m = 20, where N = mq)
with βJ0 = 6.
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Figure 14a. Comparisons for oscillatory case on signal from X with L = 100.
Timeseries, auto-correlation and spectrum analysis for the cases of q = 1 and q = 50
with βJ0 = 6.
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Figure 14b. Spatial comparisons for X in the oscillatory case with L = 100. Spatial
spectrum analysis for the cases of q = 1, 10 and 50. For this comparison spatial
domains are adjusted to that corresponding to q = 50 (i.e. m = 20, where N = mq)
with βJ0 = 6.



III. Hybrid couplings through a boundary condition

[K., Sopasakis, Vlachos (Chem Engr., UDel)]

Diffusion in 

a fluid

Surface 

2

Surface 

1

In the interior: Diffusion of microscopic particles in a fluid; no
interactions, fickian diffusion.

On each surface: Microscopic stochastic dynamics.

• adsorption to the surface from the fluid

• desorption from the surface to the fluid



Arrhenius adsorption/desorption dynamics

σ(x) = 0 or 1: site x is resp. empty or occupied.

Adsorption rate: ca(x, σ, ρ) = kaρ(0, t)(1− σ(x))

Desorption rate: cd(x, σ, ρ) = kd(1− ρ(0, t))σ(x) exp
[
− βU(x)

]
,

ρ = ρ(x, t) the particle density in the fluid.

U(x): Activation barrier a particle has to overcome in jumping
from a lattice site to the gas phase.

- U(x) = U(x, σ) =
∑

z 6=x
J(x− z)σ(z).

- strong interactions → clustering/phase transitions



Phase transitions (clustering) and random switching on each
surface:

Example 1a. (ξ = q = 50, M = 100, D = .0001)
Small diffusion has the effect of low noise. The process still jumps to the state near (.1, .1).
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Figure 13: Top row: Stability and steady states. Middle row: S-curves in the c1 = 0 and c0 = 0 planes.
Bottom row: raw signals and averages. Params: ka = .1, kd = 1 and diffusion constant cd = DM2.
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• Microscopic modeling: diffusion ∼ random walk of inde-
pendent particles with exclusion (jump only at empty sites).

• ”Synchronization” of surfaces, depending on their distance
or other parameters? Cross-correlations, joint PDFs, etc.
Microscopic sims are costly.

• Hybrid vs. microscopic modeling?



Hybrid modeling:

ρt = D∆ρ ,
∂ρ

∂x
|bdry = Adsorption rate−Desorption rate .

However: density on the surfaces jumps when phase transitions
are present:

Example 1a. (ξ = q = 50, M = 100, D = .0001)
Small diffusion has the effect of low noise. The process still jumps to the state near (.1, .1).
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Thus: ∂ρ
∂x
|bdry ∼

∑
i
δ(t− ti)



• All modes of the solution are excited (at least at the bound-
aries)

• Numerical hybrid scheme loses mass in time:

5 Hybrid Model

5.1 A typical long time solution

Let us now observe a case where mass will not be conserved and numerical truncation errors accumulate.
We present all the observables in Figure 23 for the case of D = 0.1, Q = 50. Due to the high noise we
observe multiple phase transitions over time.
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Figure 23: A typical example of truncation errors accumulating over time. Top row: Stability and
steady states. Middle row: S-curves in the c1 = 0 and c0 = 0 planes respectively. Bottom row: raw
signals. Init. data: mass = 70. Parameters: 0 < x < 1, 11 spatial nodes, 0 < t < 10, ∆t ≈ .01,
D = 0.1, k
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a = .1, k
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d = 100. Final data: c0 = .25, c1 = .25, ρ = 69.5, total mass=70. Mass rel. error = 8%
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1. Coarse-grained simulation of the diffusion: [K., Vlachos, J.
Chem. Phys. 2003]

1 2 3 4 5 6 7 ...q

Fine Lattice L

adsorption         desorption        diffusion

 1                       2                       3                      4                        5                        6          ...               m

Coarse Lattice LC

CG is exact in the fickian diffusion case.

2. Hierarchical hybrid simulation:

Stochastic 
Boundary

Stochastic 
Boundary

Contimuum PDE

Higher Q−−−−> <−−−− Higher Q
Progressive CGMCProgressive CGMC

   

Figure 4: Implementation of the hybrid system solution in one dimension
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Figure 5: A typical boundary contribution f(c, ρbdry) = kaρbdry(1 − c) − kdc exp(−βJ0c).
Two cases are presented. In the smooth case we let the microscopic quantity c(t) depend
on time as follows: sin(πt). In the second case we allow c(t) to be completely random
(c(t) =random number generator of the machine). Note that the second case applies to our
our simulations in the hybrid system. Parameters used: β = 6, J0 = 1, ka = 1, kd = 200.
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