Adaptive Acquisition in Real-Time Cardiac MRI

Yoram Bresler ECE, BioEng, Coordinated Science Lab

University of Illinois at Urbana-Champaign

Work with Students:

Nitin Aggarwal, Qi Zhao, Saptarshi Bondyapadhyay

Partly funded by NIH HLBI Grant No. R21HL62336-02 and NSF Grant BES 02-01876

Cardiac MRI: Applications and Challenges

- 1. Vascular disease and tissue characterization
 - a. Visualization of coronary arteries
 - b. Coronary plaque characterization
- 2. Functional assessment of the ventricles
- 3. Myocardial dynamics, perfusion, and viability
- 4. Valvular function
- Higher spatial resolution in 3D
- Higher temporal resolution
- Imaging without breathholding
- Real-time
- Spectroscopic, diffusion imaging

Applications:

→ Needs:

Grand Challenge: 4D (5-6D?!) cardiac imaging

Cardiac MRI: Problems & "Solutions"

Problems:

- Insufficient MR data acquisition speed for Nyquist sampling
- Difficult to account for two distinct motion processes :
 - Heartbeat
 Respiration

Approaches:

- Faster data acquisition sequences -> limited speed-ups:
 - Hardware (gradients, field strength)
 - Energy deposition and peripheral nervous stimulation
 - MR physics
- Cardio-respiratory gating >> time-averaged snapshots; long
- Breathholding -> patient cooperation; limited time-window
- Reduced data acquisition methods (Keyhole, Rigr, Dime, etc.)

Overview

Aim:

- Produce a real-time, time-resolved cardiac cine
 - No breath holding
 - No cardio-respiratory gating

Approach:

Model-based, minimum-redundancy

To Model or Not to Model?

- The truth, only the truth, and all the truth.
- But, a finite number of k-t space samples tells nothing at all!
- Dynamic Imaging is an ill-posed inverse problem
- Modeling in dynamic imaging is unavoidable
- Everyone models -- whether they admit it or not

Rules for Safe® Modeling

- Don't overdo
- Be explicit
- Analyze robustness to deviation from modeling assumptions
- Learn model from the imaged subject data

Overview

Aim:

Produce a time-resolved cardiac cine without breathholding or cardio-respiratory gating

Approach:

- A. Use spatio-temporal (2D+t, 3D+t) formulation
- B. Model both respiratory and cardiac motion
- C. Adapt model to imaged subject
- D. Adapt MR data acquisition to model
- E. Tailor reconstruction to A D

MR Imaging (Cartesian) and TSS

Imaging Equation:
$$s(\mathbf{k}(t)) = \int_{FOV} I(\mathbf{r}, t)e^{-i\mathbf{k}(t)\Box\mathbf{r}} d\mathbf{r}$$

MR Data Spatial Fourier Transform

Object





k- space sampling

MR image (static object)

Time-Sequential (TS) Constraint:
Only 1 k-space line can be acquired at a time

MR Imaging: Dynamic Object

Desired image size = 128*128 Max. temporal frequency = 10 Hz

→ Nyquist sampling rate = 2560 lines/s i.e. $T_R \approx 0.4$ ms

- Artifacts are due to temporal undersampling
- Correct mathematical formulation is in the spatio-temporal domain
 - Objects are functions in (r,t) domain
 - Sampling occurs in (k,t) domain
 - Sampling can be analyzed in the dual (r,f) domain

- Conventional Imaging $(T_R=2ms)$
- For unique reconstruction, object I(r,t) must be restricted to a model class, M_q

Dynamic Imaging: Definition

- ightharpoonup Given a class ${\mathcal M}$ of spatio-temporal signals g(y,t) \in ${\mathcal M}$ $\,$ with :
 - Spatial ROI : $\{y \in S\}$ & Temporal ROI : $\{t \in \mathcal{T}\}$

Dual k-t (D-k-t) Support (essential):
$$\mathcal{B} = \sup \left\{ \int_{\mathcal{S}T} g(y,t) e^{-j2\pi(k_y y + ft)} dy dt \right\}$$

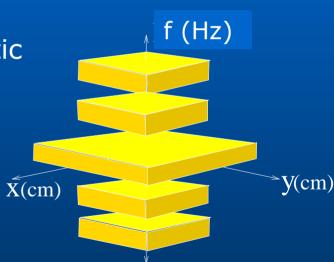
Find a sampling schedule $\Psi = \{k_n, t_n\}$ so that $\{g(y,t), y \in \mathcal{S}, t \in \mathcal{T}\}$ is recoverable from the corresponding samples.

10

Cardiac Image models (Phenomenological)

Characteristics:

- The (highly) dynamic portion of the object (i.e heart) is spatially localized within the field-of-view.
- The cardiac motion is quasi-periodic
- Even with breathhold thorax is not static



Model:

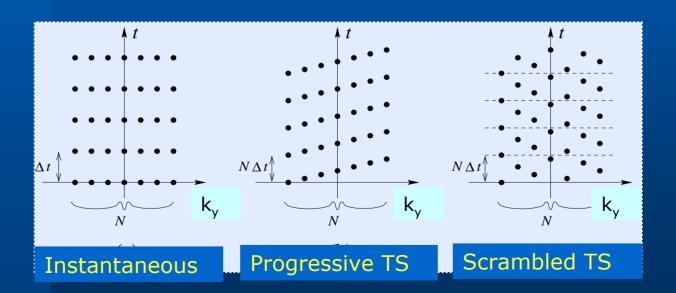
Object to be imaged : $I(\mathbf{r},t)$

Spatio-temporal spectrum : $I(\mathbf{r}, f) = \int I(\mathbf{r}, t)e^{-i2\pi ft}dt$

Dual k-t (D-k-t) support : $\mathcal{B} \sqsubseteq \text{supp}\{I(\mathbf{r}, f)\}$

TSS Problem

Given model class (= D-k-t support) find a time-sequential sampling schedule from which I(r,t) can be reconstructed to prescribed resolution.



TSS Problem

Questions:

- Design of sampling schedule Ψ?
- Conditions on sampling rate ?
- Reconstruction from acquired samples ?

Properties:

- Aliasing in TSS determined not only by density of points (sampling rate) in Ψ , but also by the temporal <u>order</u> in which points are visited [Allebach,1987]
- Order of acquisition need not be determined by the adjacency of k-space sample locations
- Optimization of Ψ is a very difficult combinatorial problem. Need to explore 256! possible orderings for 256 sample locations.
- Solution: Unified TSS theory (Willis & Bresler, IEEE Trans. IT,1997)

Time-Sequential Sampling Theory

TSS Theory (Willis & Bresler, 1992, 1997)

Key Idea: Consider TSS schedules that lie on a <u>lattice</u>

Results:

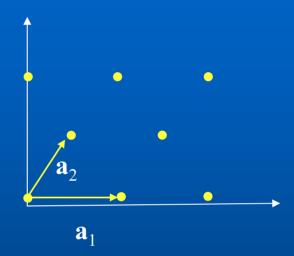
- Sampling pattern design through constrained geometric packing of \mathcal{B} , \mathcal{S} .
- Reconstruction of g(y,t) through linear filtering
- Bounds on achievable TS sampling rates
- In practice, sampling rate reduced by large factor compared to conventional sampling schemes

Lattice Theory

Lattice : A lattice Λ_A is the set :

$$\Lambda_{\mathbf{A}} = \{ \sum_{i=1}^{n} m_i \mathbf{a}_i : m_i \in \mathbb{Z} \}$$

where \mathbf{a}_{i} (in \mathbb{R}^{n}) are linearly independent



Basis Matrix : A basis matrix of Λ_A is $A = [a_1, a_2, ...]$

Fact: Every (rational) lattice has a basis matrix of the form $A = \begin{pmatrix} D & s \\ 0 & T_P \end{pmatrix}$

Polar Lattice: The polar lattice of a lattice Λ_A is a lattice Λ_{A^*} with basis matrix $A^* = A^{-T}$

Multidimensional Sampling Theory

Fact : If signal g is sampled on lattice Λ_A then it's spectrum is replicated in the frequency domain on the polar lattice Λ_{A*}

- → Signal g can be recovered from it's samples iff the replicas do not overlap
- \rightarrow Lattice Λ_{A^*} packs the spectral support \mathcal{B} of g

Notation : $\Lambda_{A} \in \mathcal{R}(\mathcal{B})$

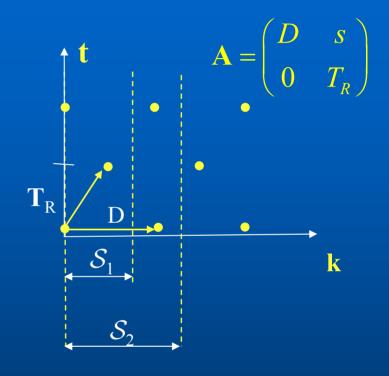
Time-Sequential Sampling on a Lattice

If sample points (k_n, t_n) are chosen to lie on a lattice Λ_A , in general, the time-sequential constraint will not be met.

However there may be only one sample point in $\mathcal S$ at any given sampling time instant, i.e $\Lambda_{\rm A}$ is time-sequential w.r.t $\mathcal S$

Notation : $\Lambda_A \in \mathcal{T}(S)$

Result : $\Lambda_A \in \mathcal{T}(S)$ if lattice spanned by D (i.e. Λ_D), packs S



$$\Lambda_{\mathsf{D}}$$
 + \mathcal{S}_1

Sampling Schedule Design

Find: Lattice sampling schedule $\Lambda_A = \{k_n, t_n\}_n$ such that:

- 1. Any signal in ${\mathcal M}$ can be recovered from the samples
- 2. Schedule is time-sequential and temporally uniform w.r.t \mathcal{S} (with time period T_R),
- 3. T_R is maximized

Solution:
$$\arg\max T_R$$

$$\mathbf{A} = \begin{pmatrix} D & s \\ 0 & T_R \end{pmatrix}; \Lambda_\mathbf{A} \in \mathcal{R}(\mathcal{B}) \cap \mathcal{T}(\mathcal{S}) \cap \mathcal{U}(\mathcal{S})$$

Solution computed by searching for lattices subject to the "dual" packing constraints:

- 1. Λ_{A^*} packs the dual k-t support \mathcal{B}
- 2. (Λ_D, \mathcal{S}) tiles \mathbb{R}

Reconstruction and Results

Reconstruction method:

Filter the samples with filter with frequency response $H(y, f_t) = \chi_B(y, f)$ Performance bounds for TSS:

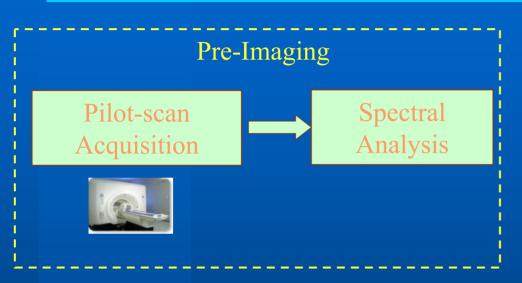
Speed Gain factor =
$$G = \frac{T_{opt}}{T_{prog}} \le \frac{volume(bounding\ box(\mathcal{B}))}{volume(\mathcal{B})}$$

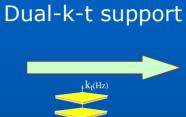
 $T_{R}(\Lambda, \mathcal{S}) \le \frac{1}{d(\Lambda_{out}(\mathcal{B})) \cdot volume(\mathcal{S})} \le \frac{1}{volume(\mathcal{B}) \cdot volume(\mathcal{S})}$

Asymptotically and in practice – for optimum schedule:

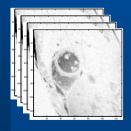
- Bounds achievable
- No penalty for restriction to lattice patterns!
- No penalty for time-sequential constraint!

Adaptive Imaging Scheme





Adaptation of TS Sampling Pattern



cine

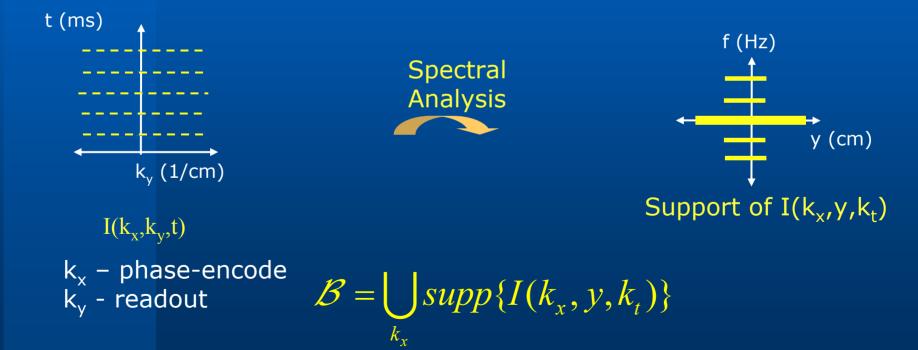
Image Reconstruction

Imaging Acquisition

A. Pre-imaging Acquisition

Aim: estimate the D-k-t support

Method: For each k_x ...



Acquisition of D-k-t support is easy!

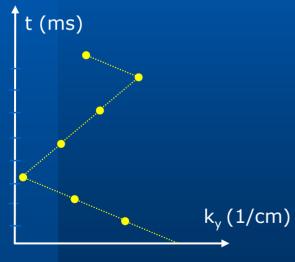
B. Adptation of TS Imaging

Given:

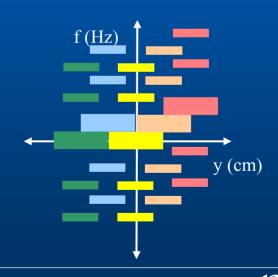
- ullet D-k-t support ${\cal B}$
- Desired spatial resolution (k_{max})

Find:

Minimum rate TS sampling pattern $\Psi = \{k(n), nT_R\}_n$ from which I(r,t) can be reconstructed



Lattice TS Sampling
Pattern



Lattice Packing of ${\cal B}$ Subject to TSS Constraint

MRI Experiment

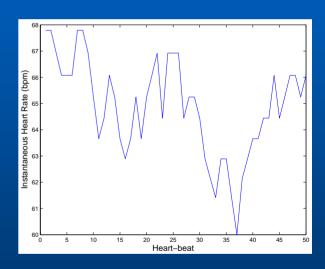
Object: Gel phantom moved by a stepping motor.

Motion:

- Driven by phase of ECG. HRV = 63-68 BPM
- Fundamental frequency scaled to about 0.2Hz

STS Model:

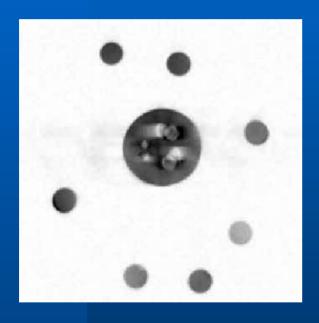
- 10 harmonics, bandwidth 1/20 f₀
- Nyquist sampling period = 1ms



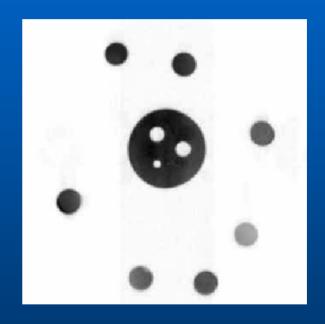
Acquisition: VARIAN/SISCO 4.7T imaging spectrometer

- 146 sec acquisition interval (29 "heart beats")
- TSS Acquisition: Tr= 17.8 ms
- Progressive Acquisition: Tr=8 ms

Experimental Result



Progressive sampling (Tr=8 ms)

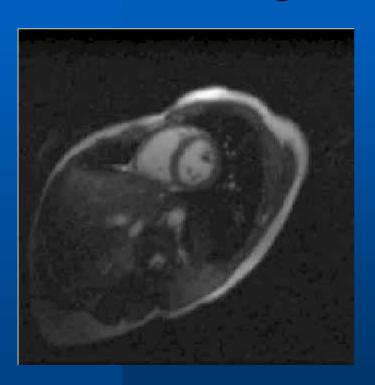


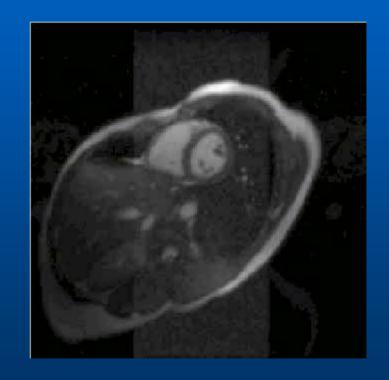
TS Lattice Sampling (Tr=18 ms)

Resolution: 256 x 256 (0.4x0.4 mm)

In Vivo MR Experiment (Preliminary)

Ungated Acquisition



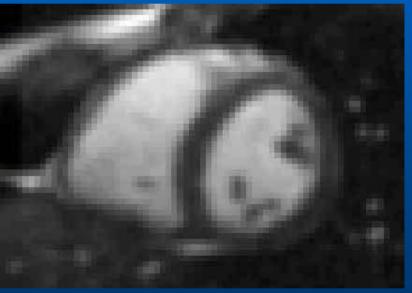


Conventional Imaging $(T_R=3.5ms)$

Time-Sequential Imaging $(T_R^{Nyq} \approx 0.7 \,\text{ms})$

In Vivo MR Experiment (Preliminary)

Ungated Acquisition



Conventional Imaging Time-Sequential Imaging $(T_R=3.5\text{ms})$ $(T_R=3.5\text{ms})$ $(T_R=3.5\text{ms})$

Discussion

- Imaging scheme compatible with:
 - Cartesian (Zhao et al 2001, Bresler 2002, Aggarwal et al 2002), radial k-space sampling (Willis & Bresler, 1995)
 - -3D
- Reconstruction method :
 - Filtering with interpolating LSI filter (ibid)
 - Fitting of a parametric spatio-temporal model (Zhao et al 2002)
- Lattice optimality criterion can be modified to consider:
 - $-\mathsf{T}_{\mathsf{R}}$
 - SNR or CNR,
 - Hardware or physiological constraints

Respiratory Motion

Effect of Respiratory Motion: Analysis

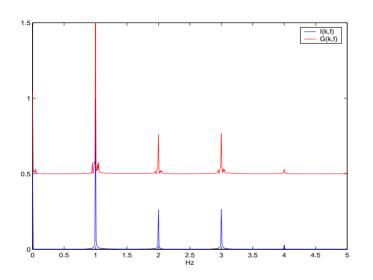
Model as smooth spatial co-ordinate warp:

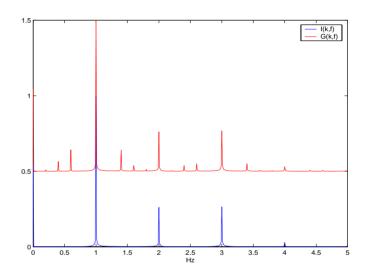
$$G(y,t) = I(\Delta(y,t),t) \approx I(y,t) + \frac{\partial I(y,t)}{\partial y} \Delta(y,t)$$

$$G(y,f) \approx I(y,f) + \frac{\partial I(y,f)}{\partial y} \otimes_f \Delta(y,f)$$

- Δ(·,t) lowpass (respiratory drift in breathhold) :
 - \rightarrow broadening of temporal harmonic bands around nf_0
- Δ(·,t) periodic (free-breathing)
 - \rightarrow creation of new (temporal) spectral bands around nf_0+mf_m

Effect of Respiratory Motion: Confirmation





 $I(k_y^0, f)$ and $G(k_y^0, f)$ for low-pass $\Delta(f)$

$$I(k_y^0, f)$$
 and $G(k_y^0, f)$
for periodic $\Delta(f)$

Effect on TS Imaging

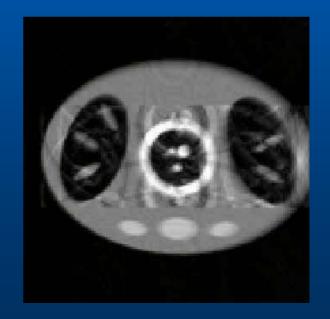
Respiratory motion increases the D-k-t support

→ Required sampling rate increases

-- OR --

→ Respiratory motion artifacts created

Ground Truth



Uncorrected TS Imaging

Affine Respiratory Motion Model

$$G(\mathbf{r},t) = I[P(t)\mathbf{r} + q(t),t]$$

G(r,t) : Actual cardiac time-varying image

I(r,t): Respiration-free cardiac image

Modeled by D-k-t Model

 $\mathsf{P}(t) \in \mathbb{R}^{3 imes 3}$: Time-varying scaling and rotation matrix

 $q(t) \in \mathbb{R}^{3 \times 1}$: Time-varying displacement vector

Properties:

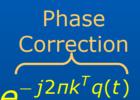
- Dominates respiratory motion of heart walls, arteries and adjoining tissue
- Subsumes translation, expansion and rotation

Affine Corrected Sampling Pattern

• Measurement Equation :
$$G(k,t) = \frac{1}{|P(t)|} e^{j2\pi k^T q(t)} I[P^{-T}(t)k,t]$$

• Reconstruction Equation:

Amplitude Correction
$$I(k,t) = |P(t)| \cdot e^{-j2\pi k^T q(t)}$$





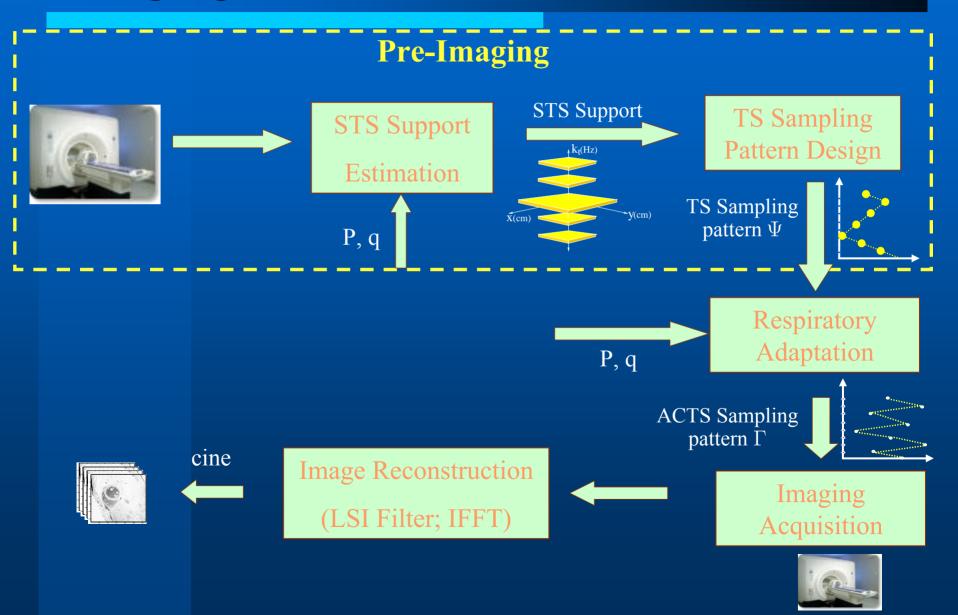
• I(r,t) can be reconstructed from samples at

$$\Psi = \{k^{TS}(n), nT_R\}_n$$

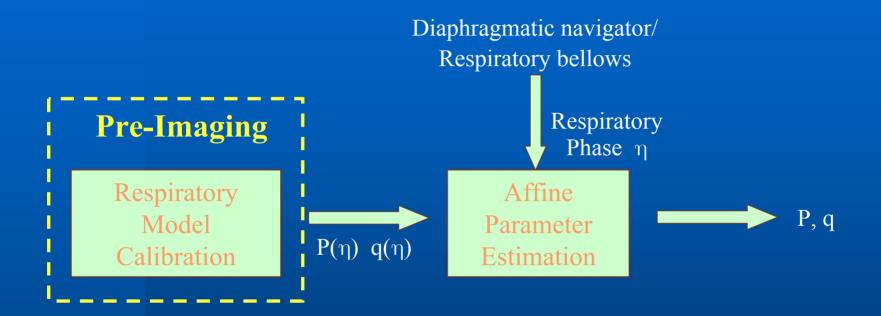
→ I(r,t) can be reconstructed from samples of G(k,t) at

$$\Gamma = \{P^{T}(nT_{R})k^{TS}(n), nT_{R}\}_{n}$$

Imaging Scheme



Estimation of Affine Motion



Respiratory Model Calibration [Manke:2002]:

Estimate the subject-specific relationship between affine motion parameters (P,q) and the respiratory phase η

Simulation: Affine Respiratory Motion

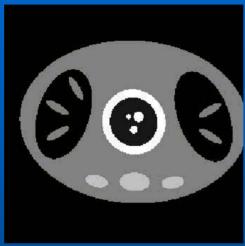
Simulation Parameters:

- Respiratory Motion: Affine[†]
- Respiratory rate = 16 breaths/min
- Cardiac rate = 60 beats/min
- Optimal $T_R = 7.1 \text{ ms}$
- Total acquisition time = 30s

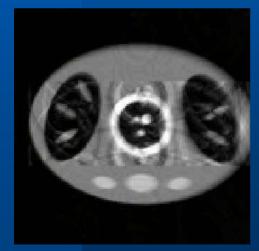
Affine Respiratory Motion

† : Parameters adapted from Manke: 2002

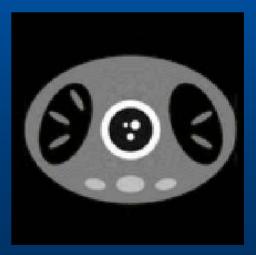
Simulation: Cardiac + Affine Respiratory Motion



Ground Truth



Uncorrected TS Imaging



Affine-Corrected TS Imaging

Modeling Robustness: Non-Affine Respiratory Motion

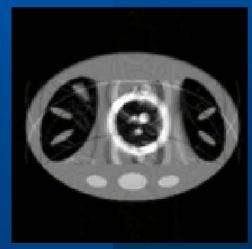
Simulation Parameters:

- Respiratory Motion :
 - Spine is stationary
 - Expansion motion for rib-cage
 - Affine motion for region surrounding the heart
- Respiratory rate = 16 breaths/min
- Cardiac rate = 60 beats/min
- Optimal $T_R = 7.1 \text{ ms}$
- Total acquisition time = 30s

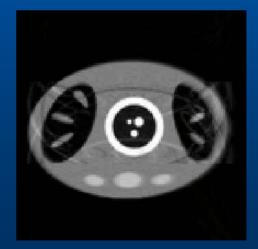
Non-Affine Respiratory Motion

Simulation: Cardiac + Non-Affine Respiratory Motion

Ground Truth



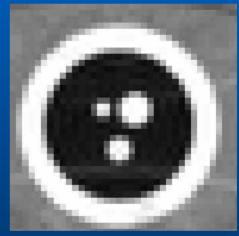
Uncorrected TS Imaging



Affine-Corrected TS Imaging

Simulation: Cardiac + Non-Affine Respiratory Motion

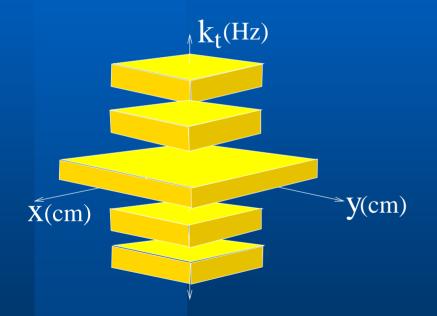
Uncorrected TS Imaging



Affine-Corrected TS Imaging

Heart Rate Variation: Cardiac Aperiodicity

Spatio-Temporal Spectrum Model and Aperiodicity



- -Regions with significant temporal variation spatially localized
- -Cardiac motion is quasi-periodic
- Spectral bands
- -Spectral bands broadened due to aperiodicity of dynamics
- Higher sampling rate required

Time-Warp & HRV

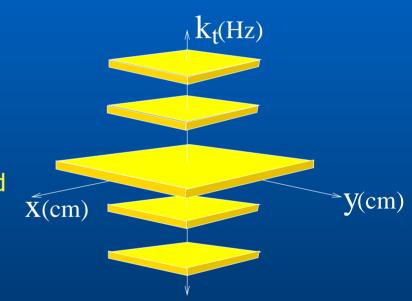
Time-Warp Model:

$$I(x,y,t)=G(x,y,\Phi(t))$$

I(x,y,t): Time-varying cardiac image

G(x,y,t): Idealized time-varying cardiac image with narrow-banded D-k-t support

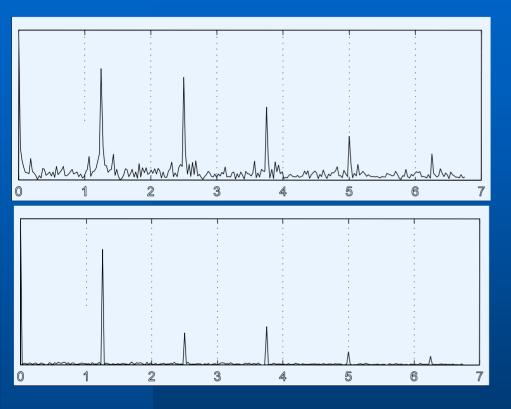
 $\Phi(t)$: Time-warp; assumed monotonic, slowly varying



Explicitly accounting for time-warp narrows D-k-t support

→ Lowers sampling rate required

Time-Warp in Action



- Dewarp spectral analysis
- Adapt sampling to dewarped signal
- Dewarp acquired signal
- Reconstruct from nonuniform samples

ECG

Temporal Spectrum (before de-warping)

Temporal Spectrum (after de-warping)

Dewarping uses dynamic programming

Discussion

- Real-time free-breathing cardiac MR imaging scheme
 without ECG or respiratory gating (Aggarwal et al 2004.)
- Method robust to respiratory motion modeling inaccuracies.
- Adaptive scheme is tolerant of aperiodicity & heart rate variability (Aggarwal et al 2002, Zhao et al 2002.)
- About 5x-20x reduction in sampling rate vs. Nyquist
- Improvements in sampling rate can be traded for increased spatial/temporal resolution, 3D, or SNR/CNR
- Generalizable to higher-dimensions, alternate k-space sampling trajectories
- Complementary to fast acquisition sequences or parallel MR imaging
- Similar techniques for other dynamic imaging applications

Conclusion

- Study sampling theory
- Model the data
- Be adaptive in
 - Modeling
 - Acquisition
 - Reconstruction
- Analyze & predict performance

Thank you for your attention!