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Goal: automated segmentationGoal: automated segmentation

• Less work!!
• More objective

• Less difference between observers
• Less difference in repeated measurements

• More reproducible
• Easier to compare with others
• Easier to perform follow ups
• Less patients in trial
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Why knowledge?Why knowledge?
• Robust segmentation only possible using 

knowledge about:
• Anatomical shape + shape variation + 

motion
• Spatial context of organs
• Intensity and data characteristics
• Behavior of your algorithms

• Modality independent:
• Current applications:

• Cardiac MR
• Cardiac CT
• LV Angiography
• Echocardiography
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Active Shape ModelsActive Shape Models

• Describe the shape of an organ in a 
population as
• an average shape
• a small number of characteristic shape 

variations

• DEMO
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AAM Model GenerationAAM Model Generation

Set of examples (N=20)

Appearance eigenvariations

Average Shape      Average patch
+ eigenvariations
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Subsets: Male vs. femaleSubsets: Male vs. female

Male (N=14)                Female (N=6)
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Subsets: Ass. professors vs. othersSubsets: Ass. professors vs. others

Ass. Professor (N=7)                    Non – ass. professor (N=14)
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Active Appearance ModelsActive Appearance Models

• AAM’s can be used for contour tracing 
by:
• initially positioning the model
• fitting the model to the underlying image 

along ‘statistically plausible’ deformations
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AAM MatchingAAM Matching
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Matching AAM’sMatching AAM’s

• To match an AAM to an image requires:
• a criterion function e:

• the RMS error of the ‘difference image’ between the 
model and the underlying image patch

• a minimization procedure (Levenberg Marquardt / simplex)
• derivatives of the criterion function with respect to 

all ‘optimizable’ parameters 
• can be estimated using multiple linear regression
• examples of derivative images
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Variation 1 Variation 3Variation 2

Average
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2D2D
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2D + time modeling2D + time modeling

• Modeling a heartbeat
• Define point correspondence in 2D
• Define “time-correspondence”

• Divide interval between ED-ES-ED in fixed # steps
• Interpolate in time (nearest neighbor)
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Movie: Bosch e.a.Movie: Bosch e.a.
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Echocardiography

• Model initialization on average pose of training set

• Fully automated match for total sequence at once

Hans Bosch (TMI 2002)Hans Bosch (TMI 2002)
Knowledge driven segmentation of cardiovascular images, UCLA IPAM, 7-2-2006

Variation 1 Variation 3Variation 2
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2D + time matching2D + time matching
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2D+time2D+time

van van der Geestder Geest (JCMR 2004)(JCMR 2004)
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MultiMulti--view analysisview analysis

• Why?
• Different views of same organ are correlated
• Different views are complementary

• Goal:
• Exploit coherence and redundancy
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MultiMulti--view AAM: different geometries view AAM: different geometries 
/phases/phases
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MultiMulti--view AAM: Matchingview AAM: Matching

• Minimize intensity error for all views:
• shape and appearance are coupled 
• pose varies independently
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Contour detection: multiContour detection: multi--view AAMview AAM

Mehmet UzumcuMehmet Uzumcu
Elco OostElco Oost
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• Other applications: LV Angio•• Other applications: LV Other applications: LV AngioAngio

Elco Oost Elco Oost (FIMH 2005)(FIMH 2005)
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• Extension to 3D requires
• Point correspondence
• 3D procrustes alignment
• 3D shape modeling
• 3D matching mechanism
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3D point correspondence3D point correspondence
• Problem: no natural ordering in 3D

• Solutions:
• Application specific manual (Mitchell, 

Stegman)
• Through parameterization

• Map to sphere
– SPHARM (Brechbuhler)
– MDL in 3D (Davies)

• M-reps (Pizer group)
– Object coordinate frame

• Through registration 
• Deformable-mesh-to-binary-volume fitting (Kaus)
• Non-rigid binary-binary registration (Frangi)
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Application specific: manualApplication specific: manual
• Interpolate in through plane direction

• Fix orientation

• Radial sampling of each contour

• In cardiac MR case: problem: slice shift!
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Eigen Eigen deformation #1deformation #1 EigenEigen deformation #2deformation #2

EigenEigen deformation #3deformation #3 EigenEigen deformation #4deformation #4

Van Van Assen Assen e.a.e.a.
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Point correspondencePoint correspondence
• 3D Mesh-to-binary registration (Kaus)

• Represent one sample as triangle mesh
• Rigidly align mesh to other samples
• Non-rigid “snake-like” deformation, balancing 

an external with an internal energy

+not restricted to spherical maps
-non “optimal” parameterization
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Point correspondencePoint correspondence
• Non-rigid registration (Frangi, Rueckert)•• NonNon--rigid registration (rigid registration (FrangiFrangi, , RueckertRueckert))
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3D AAM Model Generation: MRI (Mitchell)

Average shape Tetrahedral representation
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3D3D
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4D AAM (4D AAM (StegmannStegmann))

c9285_opt_hires_c.avi
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ASM MatchingASM Matching

• Updates on scanline can be generated by
• Edge detector
• Gray level model
• Classifier

•• Updates on Updates on scanlinescanline can be generated bycan be generated by
•• Edge detectorEdge detector
•• Gray level modelGray level model
•• ClassifierClassifier

Knowledge driven segmentation of cardiovascular images, UCLA IPAM, 7-2-2006

ASM: MatchingASM: Matching

• Vector y = candidate points  

• Vector = current model state
• Align y to current shape in model frame
• Scale y with 
• Update model parameters to match y

• Apply constraints on b
• Per parameter:

• Mahalanobis distance: 

• Repeat until convergence
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ASM: matchingASM: matching

• Active Shape Models
• Point distribution model with matching
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Movies: Tim Movies: Tim CootesCootes
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3D ASM Matching: van 3D ASM Matching: van Assen Assen 
approachapproach

• Solution to voxel anisotropy
• Piecewise 2D matching: update 3D model 

state with 2D image info
• Enables anisotropic data
• Enables multiple orientations in data
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Iterative matching algorithmIterative matching algorithm

Next Next 
iterationiteration

Align model Align model 
to update to update 

points cloud, points cloud, 
change bchange b--

vectorvector

Classify surrounding pixels, Classify surrounding pixels, 
and detect edge positionsand detect edge positions

Intersect    with image planesIntersect    with image planes Propagate    updatesPropagate    updates

3D model mesh3D model mesh

Place in      data setPlace in      data set

Map Map 
results    results    
to meshto mesh
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3D ASM on densely sampled data3D ASM on densely sampled data

Hans van Hans van AssenAssen
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Application to sparse dataApplication to sparse data

Radial LA Multi-view (2SA+2LA) SARadial LARadial LA MultiMulti--view (2SA+2LA) view (2SA+2LA) SASA

Hans van Hans van AssenAssen, MEDIA 2006 , MEDIA 2006 
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3D ASM on sparse data: LA / SA fusion3D ASM on sparse data: LA / SA fusion

Hans van Hans van AssenAssen
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ASM versus AAMASM versus AAM

• 3 key differences:
• ASM only uses texture in small region around 

landmark, AAM complete patch
• ASM searches around current positions, AAM 

only under current position
• ASM minimizes distance to boundary, AAM 

intensity difference
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ASM versus AAM (ASM versus AAM (CootesCootes))

• General
• ASM is faster
• AAM possible with fewer landmarks
• AAM has “interpretable” convergence criterion

• automatic failure detection (Thodberg, Stegmann)

•• GeneralGeneral
•• ASM is fasterASM is faster
•• AAM possible with fewer landmarksAAM possible with fewer landmarks
•• AAM has “interpretable” convergence criterionAAM has “interpretable” convergence criterion

•• automatic failure detection (automatic failure detection (ThodbergThodberg, , StegmannStegmann))
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Statistical model limitationsStatistical model limitations

• How to balance training set?

• How many samples necessary?

• Manual annotation of training samples

• Local refinement necessary

• Dimensionality vs nr training samples
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3D ASM matching: 3D ASM matching: KausKaus approachapproach
• Deformable model based on energy 

• Shape model is integrated in Eint

• Term for PDM for each single surface
• Term for connections between surfaces term
• General shape & connectivity constraint term

• Local intensity model in Eext

• Every scanline has different feature detector 
(3 classes)
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•• Shape model is integrated in Shape model is integrated in EEintint

•• Term for PDM for each single surfaceTerm for PDM for each single surface
•• Term for connections between surfaces termTerm for connections between surfaces term
•• General shape & connectivity constraint termGeneral shape & connectivity constraint term

•• Local intensity model in Local intensity model in EEextext

•• Every Every scanline scanline has different feature detector has different feature detector 
(3 classes)(3 classes)

intEEE ext +=
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Courtesy of Jens von Berg, Philips Research Laboratories, HamburCourtesy of Jens von Berg, Philips Research Laboratories, Hamburgg
Presented at FIMH 2005Presented at FIMH 2005

Multi-surface Cardiac Modelling, 
Segmentation, and Tracking

Jens  von Berg and Cris tian Lorenz
Philips  Res earch Labora tories , Hamburg 
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• Model driven

• Statistical shape models
– Segmentation
– Diagnosis

• 3D thorax template
• Data driven

• Autonomous vehicle
• High level reasoning 
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ComputerComputer--aided diagnosisaided diagnosis

• Construct a model of normal motion

• Classify and localize deviations from 
normal

• Demo

•• Construct a model of normal motionConstruct a model of normal motion

•• Classify and localize deviations from Classify and localize deviations from 
normalnormal

•• DemoDemo
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Computer aided diagnosisComputer aided diagnosis

Avan Suinesiaputra Avan Suinesiaputra (MICCAI 2004)(MICCAI 2004)
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Detection of Abnormal Contractility Detection of Abnormal Contractility 
PatternsPatterns

Avan SuinesiaputraAvan Suinesiaputra
Knowledge driven segmentation of cardiovascular images, UCLA IPAM, 7-2-2006

Case 1:Case 1:

Case 2:Case 2:

Avan SuinesiaputraAvan Suinesiaputra
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RestRest--stress comparisonstress comparison

Avan Suinesiaputra Avan Suinesiaputra (IPMI 2005)(IPMI 2005)
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Deformable thorax templateDeformable thorax template
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= Left lung
= Right lung
= Air 
= Other  

Deformable thorax templateDeformable thorax template
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CMR scan planningCMR scan planning



CMR scan planningCMR scan planning

Scout views 2 Chamber 
view

4 Chamber 
view

Short-axis 
view
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Deformable thorax templateDeformable thorax template
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Manual

Automatic
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Characteristic of Cardiac Respiratory Characteristic of Cardiac Respiratory 
Motion Motion 

• Induced by changes in  lung volumes

• Motion occurs in inferior and anterior 
direction. (truely 3D)

• Heart is adjacent to left lung
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Data fusion between scout & Data fusion between scout & 
perfusion scansperfusion scans
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• Data from 3 infarct patients
• Model fitted to fused feature points from 

scouts / perfusion scan
• Lung volume correlated between manual 

contours and model lung
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contours and model lungcontours and model lung
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Right Ventricle Left Ventricle

A Virtual Exploring Robot for Left Ventricle Contour 
Detection

RV LV

RV LV
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Sensor system (Perception devices)

Range Sensors
Navigation
Contour Detection

Image Sensor (camera)
Recognition
Region Labeling

RV LV
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Endocardium Detection

d

Contour point
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Luca Luca FerrariniFerrarini, Hans , Hans OlofsenOlofsen,, Faiza BehloulFaiza Behloul
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Epicardium delineation
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Luca Luca FerrariniFerrarini
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MA image processingMA image processing

Ernst Ernst Bovenkamp Bovenkamp (PATREC 2004)(PATREC 2004)



Knowledge driven segmentation of cardiovascular images, UCLA IPAM, 7-2-2006

MA image processing: agent relationsMA image processing: agent relations

Ernst Ernst BovenkampBovenkamp
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Example: conflict resolutionExample: conflict resolution

Ernst Ernst BovenkampBovenkamp
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Example: testExample: test--hypothesishypothesis

Ernst Ernst BovenkampBovenkamp
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Example: segmentation resultsExample: segmentation results
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Why Image (data) fusion ?Why Image (data) fusion ?

New features
Complete “view”

Reduces uncertainty

Redundancy

Complementary
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PET / MRI Symbolic data fusionPET / MRI Symbolic data fusion
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Data fusion: perfusion quantificationData fusion: perfusion quantification

M. Jerosch-Herold et al.,  JMRI, 2004
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Data fusion: myocardial viabilityData fusion: myocardial viability
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Delayed enhancementDelayed enhancement Signal intensity
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To summarize ….To summarize ….

• Tackle KGIP from three angles:
• Model driven

• statistical shape and template models for 
segmentation, diagnosis

• Data driven
• High level reasoning

• coordinating multiple segmentation sources
• fusion of complementary information

•• Tackle KGIP from three angles:Tackle KGIP from three angles:
•• Model drivenModel driven

•• statistical shape and template models for statistical shape and template models for 
segmentation, diagnosissegmentation, diagnosis

•• Data drivenData driven
•• High level reasoningHigh level reasoning

•• coordinating multiple segmentation sourcescoordinating multiple segmentation sources
•• fusion of complementary informationfusion of complementary information
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What’s next?What’s next?

• Integrating the three main directions

• Automatic “quality control”

• Computer aided diagnosis

• Data fusion for segmentation and 
analysis

•• Integrating the three main directionsIntegrating the three main directions

•• Automatic “quality control”Automatic “quality control”

•• Computer aided diagnosisComputer aided diagnosis

•• Data fusion for segmentation and Data fusion for segmentation and 
analysisanalysis
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