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Homogenization theory of Hamilton-Jacobi equation

Assume H(p, x) ∈ C (Rn × Rn) is uniformly coercive in the p variable and
periodic in the x variable.
For each ε > 0, let uε ∈ C (Rn × [0,∞)) be the viscosity solution to the
following Hamilton-Jacobi equation{

uεt + H
(
Duε, xε

)
= 0 in Rn × (0,∞),

uε(x , 0) = g(x) on Rn.
(1)

It was known (Lions-Papanicolaou-Varadhan, 1987), that uε, as ε→ 0,
converges locally uniformly to u, the solution of the effective equation,{

ut + H(Du) = 0 in Rn × (0,∞),

u(x , 0) = g(x) on Rn.
(2)

H : Rn → R is called “effective Hamiltonian” or “α function”, a nonlinear
averaging of the original H.
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Cell problem: for any p ∈ Rn, there exists a UNIQUE number H(p) such
that

H(p + Dv , x) = H(p) in Tn.

has periodic viscosity solutions v (“corrector”).

uε(x , t) ≈ u(x , t) + εv(
x

ε
,Du).

• A major open problem: understand detailed properties the
effective Hamiltonian H and how it depends on the original H(p, x).

Let us focus on the mechanical Hamiltonian

H(p, x) =
1

2
|p|2 + V (x).

The ultimate question (realization problem):

“Characterize when a convex functions F : Rn → R can be the effective
Hamiltonian associated with a potential function V (smooth or

continuous)”.

Yifeng Yu (UCI Math) Properties of Effective Hamiltonian 3 / 18



Cell problem: for any p ∈ Rn, there exists a UNIQUE number H(p) such
that

H(p + Dv , x) = H(p) in Tn.

has periodic viscosity solutions v (“corrector”).

uε(x , t) ≈ u(x , t) + εv(
x

ε
,Du).

• A major open problem: understand detailed properties the
effective Hamiltonian H and how it depends on the original H(p, x).

Let us focus on the mechanical Hamiltonian

H(p, x) =
1

2
|p|2 + V (x).

The ultimate question (realization problem):

“Characterize when a convex functions F : Rn → R can be the effective
Hamiltonian associated with a potential function V (smooth or

continuous)”.

Yifeng Yu (UCI Math) Properties of Effective Hamiltonian 3 / 18



Cell problem: for any p ∈ Rn, there exists a UNIQUE number H(p) such
that

H(p + Dv , x) = H(p) in Tn.

has periodic viscosity solutions v (“corrector”).

uε(x , t) ≈ u(x , t) + εv(
x

ε
,Du).

• A major open problem: understand detailed properties the
effective Hamiltonian H and how it depends on the original H(p, x).

Let us focus on the mechanical Hamiltonian

H(p, x) =
1

2
|p|2 + V (x).

The ultimate question (realization problem):

“Characterize when a convex functions F : Rn → R can be the effective
Hamiltonian associated with a potential function V (smooth or

continuous)”.

Yifeng Yu (UCI Math) Properties of Effective Hamiltonian 3 / 18



Macroscopic Perspective: An Inverse Problem

Consider H(p, x) = 1
2 |p|

2 + V (x) and the corresponding H

1

2
|p + Dw |2 + V (x) = H(p) in Rn.

Q: Suppose that V1 and V2 are two smooth periodic functions. If
the associated effective Hamiltonians are the same, i.e.,

H1(p) = H2(p) for all p ∈ Rn,

what can we say about the relation between V1 and V2?

A basic invariant tranformation:

V2(x) = V1

(x
λ

+ c
)
⇒ H1(p) = H2(p).

This is the ONLY known H invariant transformation for non-separable V
when n ≥ 2.
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A Rigidity Question

1

2
|p + Dw |2 + V (x) = H(p) in Rn.

Q: For n ≥ 2, for “typical ” V, if

H1(p) ≡ H2(p),

can we derive that
V2(x) = V1

(x
λ

+ c
)

?

• Homogeneous Case: True if H1 = H2 = 1
2 |p|

2,

Theorem (Luo, Tran, Y., 2015, Homogeneous Case)

H ≡ 1

2
|p|2 ⇒ V ≡ 0.
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Non-homogeneou Cases

Theorem (Tran, Y. 2017, Nonhomogeneous Case)

If n = 2 and each of V1,V2 contains exactly 3 mutually non-parallel
Fourier modes, then

H1 ≡ H2 ⇐⇒ V1(x) = V2

(x
c

+ x0

)
.

for some c ∈ R \ {0} and x0 ∈ R2.

For example,
V (x , y) = cos x + cos y + cos(x + y).

3 mutually non-parallel Fourier modes: ±e1, ±e2, ±(e1 + e2).

Main Method: “Asymptotic Expansion” ⇒ Some combinatorial issues+
Delicate/tedious analysis in plane geometry/linear algebra
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Asymptotic Expansion

Let p = λQ and
1

2
|λQ + Dv |2 + V (x) = H(λQ).

Let λ = 1√
ε
. Then

1

2
|Q + Dvε|2 + εV (x) = εH

(
Q√
ε

)
= Hε(Q).

• If Q satisfies a Diophantine condition: there exists α, C > 0 such that

|Q · K | ≥ C

|K |α
for all K ∈ Zn\{0}.

we can get Taylor expansions:

(Approximate corrector) vε = εv1 + ε2v2 + ....εmvm + O(εm+1).

and

Hε(Q) =
1

2
|Q|2 + εa1 + ε2a2 + ...εmam + O(εm).
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Comparing singular parts in Coefficients

• The first coefficient a1 =
∫
Tn V dx .

• If a2(V1) = a2(V2), then for any Q satisfying the Diophantine condition∑
06=k∈Zn

|λk1|2|k|2

|Q · k|2
=

∑
06=k∈Zn

|λk2|2|k |2

|Q · k |2
.

Here λki are Fourier coefficients of Vi .

• Formulas for ak become more and more complicated when k gets large
and are very hard to find a reasonable way to extract useful information.

• Our result is based on comparing a1, a2, a3 and a4 together with

min
R1

H = max
R2

V .
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Microscopic Perspective: Find more Properties of H

Two directions:

(1) Identify analytic properties of H as much as we can from mainly
mathematical point of view; This part is also related to the optimal
convergence rate of |uε − u| as ε→ 0 (Mitake, Tran and Y., 2019)

(2) Determine the dependence of H on physical parameters in the
original H(p, x) motivated by applications in practical science, e.g joint
project with Jack Xin on G-equation where the effective Hamiltonian is a
model of the turbulent flame speed. Below is a basic case.

|p + DG |+ AW (x) · (p + DG ) = H(p,A).

This talk will focus on (1) and smooth potential functions V .

1

2
|p + Dv |2 + V (x) = H(p).
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Rough Properties of H

Below are some well-known properties of H in all dimeinsions: H is
convex, even and grows quadratically:

1

2
|p|2 + minV ≤ H(p) ≤ 1

2
|p|2 + maxV .

? For quite general V , the minimum level set F0 is a n-dimension convex
set.
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Some detailed Properties

(1) By weak KAM approach, Evans and Gomes (2001) proved that H is
strictly convex along non-tangential (to level set) direction above the
minimum level.

(2) For n = 2 and c > minH, the level set {H = c} is C 1 (Dias Carneiro,
1991) and, more interestingly, contains line segments for non-constant V
(Bangert 1994)
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Sketch of Bangert’s Proof

By Aubry-Mather theory in 2d, for n = 2, if the level set {H = c} is
striclty convex, then every geodesics associated with the periodic metric

g =
√

2(c − V )(dx2
1 + dx2

2 )

is a minimizing geodesics. Then Hopf’s a classical result in 1947
implies the metric g is flat, equivalently, V is constant.
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A Generic Property of H in 2d: an “Assembly” of 1d
Functions

Theorem (In preparation)

For generic V , there exists a dense open set O ⊂ R2 which is the union of
countably many open subsets O = ∪∞k=1Ok such that H|Ok

is a 1d
function, i.e., for each k ∈ N, there exists qk ∈ R2 and fk : R→ R such
that

H(p) = fk(qk · p) for p ∈ Ok .
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Geometry Properties of the Flat Part

Assume that V has finiely many non-degenerate maximum points.
Existence of flat part follows easily from the inf-max formula

H(p) = inf
φ∈C1(Tn)

max
x∈Rn

(
1

2
|p + Dφ|2 + V (x)

)
.

Goal: Understand detailed geometric property of ∂F0.
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Geometry Properties of the Flat Part: Devil’s Stair

F0 = {H = minH}.

Theorem (In Preparation, Optimal)

Line segments are dense along ∂F0. More precisely, there exists at most
two rational normal vectors which are not associated with a line segment.
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Foliation and Exceptional Rational Normal Vectors

Consider V (x1, x2) = − x2
1
2 − 4x2

2 .

Question: Does there exist a C 1 solution v to

1

2
|Dv |2 + V (x) = 0

such that its characteristics ξ̇ = Dv(ξ) foliate R2 horizontally or vertically?
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Construction of Vertical Foliation

1

2
|Dv |2 − x2

1

2
− 4x2

2 = 0.

v(x1, x2) = x2

√
x2

1 + x2
2 .
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Horizontal Foliation is Impossible

A characteristics must be a minimizing curve of the action

L = inf

(∫
1

2
|γ̇|2 − V (γ) ds

)
.

When two points P and Q are very close to the x1 axis, delicate analysis
shows that the orbit passing through the origin has smaller action.
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