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Order vs. Disorder

Cellular (Beltrami-Childress) Flow

2D steady cellular (Hamiltonian) flow:

V (x , y) = (−∂yH, ∂xH), H = sin(x) sin(y)

 

2D time periodic cellular flow:

V (x , y , t) = (cos(y) + θ sin(y) cos(t), cos(x) + θ sin(x) cos(t)),

θ ∈ (0, 1]. As θ increases, more and more disorder appears in flow
trajectories.
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Order vs. Disorder

Mixing at θ = 1: snapshots of Lagrangian particles.

Figure: Courtesy T. McMillen, Cal State Univ. Fullerton.
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3D Flows

Arnold-Beltrami-Childress Flows

Originated in the 1960’s:

x ′ = A sin z + C cos y

y ′ = B sin x + A cos z

z ′ = B cos x + C sin y

right hand side is a steady state of 3D Euler equation, with dynamic
instability (S. Friedlander et al ’93: A = 1,B2 +C 2 > 1 or B,C � 1).

Another form:(
x
y

)′
=

(
0 1
−1 0

)
∇H(x , y) + A

(
sin z
cos z

)
z ′ = H(x , y) := B cos x + C sin y .

Integrable (a cellular flow) if A or B or C = 0.
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3D Flows

Integrable Flow on xy -Plane when A = 0
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Exact ballistic solution: (x , y , z) = (0, π/2, (B + C )t).
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3D Flows

Ballistic Spiral Orbit with (x , y)(t) Trapped in a Cell

• When (x , y)(t) stay within a cell, z ′ does not change sign, implying
helical motion with linear growth in z . If A� 1, the system is a perturbed
Hamiltonian in 3 dimensions.

• Contraction mapping principle yields:

Theorem (McMillen,X,Yu,Zlatos; SIAD 2016)

∃ positive number A0 = A0(B,C ) s.t. ∀A ∈ [0,A0] and z(0) ∈ R, there is
a smooth ABC trajectory (x , y , z)(t) where z is increasing in t, the limit
limt→∞ z(t)/t exists and converges to B + C as A→ 0, and (x , y) is
2π-periodic in z.

• Quasi-periodic orbits (x , y)(z) exist from a modifed KAM theory based
on an action-angle-angle formulation. Higher harmonics, where (x , y) is
2mπ-periodic in z , m ≥ 2, exist by Melnikov method.
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3D Flows

Spiral Orbits: initial pt (0.2, π/2, 0) (circle),
A = 0.01(L), 1(R);B = C = 1; linear growth in z .
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3D Flows

Edge Orbits: moving along cell edges on the projected
xy -plane, (A,B ,C ) = (0.1, 1, 1).

Initial position (x , y)(0) close to cell edge. Ballistic motion in x and/or y .
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3D Flows

Existence of Mod (2π) Periodic Edge Orbits

Theorem (McMillen,X,Yu,Zlatos, SIAD 2016)

If A ∈ (0,A0], A0 = A0(B,C ) is small enough, there exists T > 0 and 4
edge orbits X (t) = (x , y , z)(t) such that

X (t + T ) = X (t)± (2π, 2π, 0)

X (t + T ) = X (t)± (2π,−2π, 0). (1)

Likewise, there exists T > 0 and 4 edge orbits X (t) = (x , y , z)(t), s.t.

X (t + T ) = X (t)± (2π, 0, 0)

X (t + T ) = X (t)± (0, 2π, 0). (2)

• Edge orbits (2) exist when A = B = C = 1 by a non-perturbative
symmetry argument (X,Yu,Zlatos, SIMA 2016).

• Edge orbits do not exist in the integrable case (e.g. A = 0).
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Chaotic 3D Flows

ABC and Kolmogorov Flows

ABC flow has both ordered (ballistic orbits and nearby trajectories, so
called vortex tubes) and disordered trajectories (Arnold ’65; Hénon
’66; Dombre, Frisch, Greene, Hénon, Mehr & Soward ’86; ...).

Vortex tubes in ABC believed to cause maximally enhanced transport.

Kolmogorov flow (Galloway & Proctor ’92, Childress & Gilbert ’95):

x ′ = sin z

y ′ = sin x

z ′ = sin y

much more chaotic (visible on Poincaré section) than ABC.
Disorder dominates order in K flow.

Ballistic orbits in K flow: Tabrizian, X, Yu (in preparation).

Quantitative measure of chaos: effective diffusivity.
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Diffusion in Chaotic Flows

Effective Diffusivity

Lagrangian. Let σ > 0, and X t solve SDE:

dX t = V (t,X t) dt + σ dW t (3)

W t : Wiener process. Along e = (1, 0, · · · , 0), effective diffusivity is:

DE = lim
t↑+∞

E [|(X t − X 0) · e|2]/(2t)

(known in physics as: Einstein formula. In turbulent diffusion:
G.I. Taylor, 1923; simplified models, Majda and Kramer, 1999.)
Eulerian. Let χ be the unique mean zero time periodic solution of:

Lχ := ∂τχ+(V ·∇y )χ+D0 ∆yχ = −V (τ, y), (τ, y) ∈ T×Td , d ≥ 2,

corrector (cell) problem (Bensoussan, J-L. Lions, Papanicolaou, 1978),

DE = D0 +
〈
χ1 v1

〉
= D0 (1 +

〈
|∇χ1 |2

〉
),

D0 := σ2/2, the molecular diffusivity; 〈·〉:= space time periodic
average, V = (v1, · · · , vd), χ = (χ1, · · · , χd).
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Diffusion in Chaotic Flows

Enhanced Diffusivity, Mixing and Residual Diffusivity

2D steady BC flow (Eulerian analysis): DE = O(
√
D0), as D0 ↓ 0.

Childress (’79, boundary layer), Fannjiang and Papanicolaou (’94,
variational analysis), Heinze (’03, corrector analysis).
Lagrangian computation: Pavliotis, Stuart, and Zygalakis,’09.
2D time per. mixing flow (num. evidence of Residual Diffusivity):

DE = O(1), as D0 ↓ 0, θ = 1.

Biferale, Crisanti, Vergassola, Vulpiani (’95)
Lyu-X-Yu (’17, spectral method, Figs. below and subsequent).
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Diffusion in Chaotic Flows

Resonance Phenomenon of Residual Diffusivity in θ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
E 1

1
,N

D
0
 = 10

-2

D
0
 = 10

-3

D
0
 = 10

-4

D
0
 = 10

-5

D
0
 = 10

-6

Lagrangian 4 Chaotic Flows (IPAM-HJWS4) May 21, 2020 15 / 41



Advection Dominated Diffusion

Thin Layers in Snapshots of Corrector at D0 = 10−3
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Advection Dominated Diffusion

Thinner Layers in Snapshots of Corrector at D0 = 10−4
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Structure Preserving Method

Structure Preserving Discretization

The SDE with divergence free advection V :

d X t = V (t,X t) d t + σ dW t

has uniform invariant measure πu on the torus Rd/Zd (d ≥ 2).

Let X i = (x1
i , · · · , xdi ); i = 0, 1. Explicit update from X 0 to X 1 is:

x1∗ = x1
0 + ∆t v1( ∆t

2 , x
2
0 , x

3
0 , · · · , x

d−1
0 , xd0 )

x2∗ = x2
0 + ∆t v2( ∆t

2 , x
1∗, x3

0 , · · · , x
d−1
0 , xd0 )

· · · · · · · · ·
xd∗ = xd0 + ∆t vd( ∆t

2 , x
1∗
0 , x2∗

0 , x3∗
0 , · · · , x (d−1)∗)

X 1 = X ∗ + σW 1

W 1: random vector w. independent entry
√

∆t ξj , ξj unit Gaussian.

The scheme has discrete invariant measure π∆t ≈ πu. Deterministic
part is volume-preserving or symplectic (K. Feng & Z. Shang, 1995).
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Structure Preserving Method

Lagrangian Approximation of Effective Diffusivity

Theorem (Wang,X,Zhang ’19)

Let pn := x1
n be the first component of structure preserving scheme with

time step ∆t. Let V = (v1, · · · , vd)(t,X ) be periodic and separable in
the sense that v i does not depend on x i , ∀i = 1, · · · , d. Then the limit
limn→∞ E [p2

n]/(2 n∆t) exists and approximates the effective diffusivity DE

along e = (1, 0, · · · , 0) with the estimate:∣∣∣ lim
n→∞

E [p2
n]/(2 n∆t)− DE

∣∣∣ ≤ C ∆t, C independent of ∆t.

• In computation, fix ∆t and find end time T = N∆t so that
E [p2

N ]/(2T ) tends to a constant P which may depend on ∆t. The above
theorem ensures that P converges to DE as ∆t ↓ 0 at a first order rate
independent of T .

• Proof casts structure preserving updates as a discrete Markov process,
and relates E [p2

n]/(2 n∆t) to the corrector formula of DE .
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Structure Preserving Method

Lagrangian Approximation of Effective Diffusivity

Let I∆t,τ be the density evolution operator of the discrete Markov
process generated by the scheme from τ to τ + ∆t. Let time period
be 1, and ∆t = 1/N. Then (I∆t,τ )n converges weakly to an invariant
measure π∆t,τ on bounded measurable functions on Td .

Taking expectation of the 1st eqn of the scheme gives:

E [x1
n ] = E [x1

n−1] + ∆t E [v1(tn−1/2, x
2
n−1, · · · )]

= E [x1
0 ] + ∆t

n−1∑
k=0

E [v1(tk+1/2, x
2
k , · · · )]

motivating the function below in calculating E [p2
n]:

v̂1
N(τ, x) := ∆t

∞∑
i=0

E [v1(ti+1/2 + τ,X i )|X 0 = x ].

Convergence of infinite sum follows from that of π∆t,τ .
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Structure Preserving Method

Discrete Cell Problem (DCP)

Let v1 have zero mean over space, then v̂1
N(τ, x) is the unique

bounded space-time mean zero solution of the DCP equation on
χ̂ = χ̂(τ, x):

(I∆t,τ χ̂)(τ, x)− χ̂(τ, x) = −∆t v1(τ +
∆t

2
, x).

Eulerian cell problem gives:

exp{∆t L}χ1 − χ1 = −∆t v1 + O((∆t)2).

I∆t,τ is a 2nd order operator splitting of exp{∆tL}.

Example (d = 2):

I∆t,τ = exp{∆t L4} exp{∆t

2
L1} exp{∆t L3} exp{∆t L2} exp{∆t

2
L1}.

L1 = ∂τ , L2 = v1∂y1 , L3 = v2∂y2 , L4 = D0 ∆y .
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Numerical Results

Enhanced Diffusivity in ABC Flow: DE = O(D−1
0 ).
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• Robustness of ballistic orbits in the presence of weak Gaussian noise.
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Numerical Results

Enhanced Diffusivity in K Flow: DE = O(D−0.13
0 ).
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• Sub-maximal enhancement in K flow: “sym” = structure preserving
method, “em”= Euler’s method, −− reference line to fit y = D−0.13

0 .

• No. of particles = 120,000; end time T = 12000.

• Strong Lagrangian chaos: some “remnant structures” in absence of
“channels” or “vortex tubes” ?
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Numerical Results

DE in time periodic K Flow.

• Time periodic Kolmogorov flow:

(sin(z + θ sin 2πt), sin(x + θ sin 2πt), sin(y + θ sin 2πt)).

• Resonance in θ is prominent at small D0.

• Sub-maximal enhancement: DE = O(D−0.2
0 ), at θ = 0.1.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Stationary ergodic in space: prob. space (Ω,F ,P0), with measure
preserving group action τx , P0(τx(A)) = P0(A), ∀A ∈ F ;
P0(τ -invariant event)=0 or 1.

Let Pt (t ≥ 0) be a strongly continuous Markov semigroup on L2(Ω):
Pt1 = 1, positivity and P0-preserving.

Random flow b = b(t, x , ω) = b(τxω(t)) ∈ (L2(Ω))d is continuous in
(t, x), loc. Lipschitz in x , divergence-free, finite 2nd moment.

Let L be the generator of Pt , the corrector problem is (κ = σ2/2):

Lψ := (L + b · ∇+ κ∆)ψ = −b,

admitting a unique solution in Dom(L) ∩ C 2
b (Ω) (stationary corrector)

under fast time-mixing.

For each realization ω of the flow, consider SDE:

d Xω
t = b(t,Xω

t , ω) dt + σ dW t , Xω
0 = 0.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Homogenization (Fannjiang & Komorowski ’99): let e be a unit
vector, the process ε eTXω

t/ε2 converges weakly to a Brownian motion
as ε ↓ 0 with diffusivity:

eTDEe := κ+ (−Lψ · e,ψ · e)L2(Ω).

Split out σ dW t and adopt a volume-preserving integrator on the
flow b:

Xω
n+1 = Φ

ω(tn)
∆t (Xω

n ),

ω(tn) refers to realization of b at times tn = n∆t.

Due to lack of separability of b in general, Φ
ω(tn)
∆t is implicit.

Example (d = 2):

Xω
n+1 = Xω

n + ∆t b(tn,mean(Xω
n ,X

ω
n+1), ω).
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

In d ≥ 3, decompose b into a sum of d − 1 velocity fields, each of
them equivalent to a two-component problem (Feng & Shang ’95).

Environment processes (view from the particle position):

ηt := τXω
t
ω(t), ηn := τXω

n
ω(tn)

Strongly continuous Markov semigroup on L2(Ω) with generator L:

St f = E[f (ηt ] := M EΩ[f (ηt)], Sn f := E[f (ηn)], M w .r .t.W

representing solution to corrector problem as:

ψ =

∫ ∞
0

St b dt.

Define:
B∆t := Φ

ω(tn)
∆t (Xω

n )− Xω
n
, B̄∆t = E[B∆t ].
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

The function

ψ∆t =
∞∑
n=0

Sn (B∆t − B̄∆),

is the unique zero mean solution in (L2(Ω))d to the discrete corrector
problem:

(S1 − I )ψ∆t = −(B∆t − B̄∆).

Theorem (Lyu,Wang,X,Zhang, ’19)

For time-mixing Markovian volume preserving random flow b, ∃ p ∈ (0, 1),

lim
n→+∞

(2n∆t)−1 E[(Xω
n − nB̄∆t)⊗ (Xω

n − nB̄∆t)] = DE + o((∆t)p).
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Random Fourier representation:

b(t, x) =
1√
M

M∑
m=1

[um cos(km · x) + vm sin(km · x)], x ∈ R3

km’s are independent with directions unif. distributed on unit sphere,
lengths (r) in the interval [0,K ] with density ∝ r1−2α, α ∈ (0.5, 1), to
mimic energy spectrum of physical flows. K ultraviolet cut-off,
M = 100, K = 10, α = 0.75 in simulation.

Time-Mixing Markovian: let ξm(t), ηm(t) be independent 3D random
vectors with components being independent stationary OU process
having covariance function exp{−θ|t1 − t2|}, θ > 0.

Volume Preserving:

um = ξm(t)× km/|km|, vm = ηm(t)× km/|km|.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Reference solution: ∆tref = 0.003125, T = 40, σ = 0.1, θ = 4, with
Nmc = 100, 000 (no. of Monte-Carlo realizations), resulting in
DE

11 = 0.2266. Comparison runs: Nmc = 50, 000.

Compare error (O(∆t)p) in computing DE
11: p of Euler scheme =

0.44, of volume preserving scheme = 0.86.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Larger θ, less temporal correlation, faster decay of variance of DE
11

approximation in time.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Let κ = σ2/2, θ = 1, ∆t = 0.05, observed convergence of DE
11(κ) to

DE
11(0) > 0 as κ approaches 0 (Fannjiang & Komorowski ’99).
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KPP Front Speeds in Chaotic Flows

KPP Variational Formula in Stationary Ergodic Media

ut = κ∆xu + B(t, x) · ∇xu + u(1− u), x ∈ Rd ,

where B is space-time stationary ergodic, mean zero, div-free. To
calculate front speed c∗ along direction e, let w solve linear equation
parameterized by λ > 0:

wt = Lw := κ∆xw + (2κλ e + B) · ∇xw + (1 + κλ2 + λ e · B)w ,

with w(0, x) = 1. Almost surely,

µ(λ) = lim
t→∞

t−1 lnw

exists as principal Lyapunov exponent, convex and superlinear in large λ.

c∗(e) = infλ>0
µ(λ)

λ
.

Space periodic media: Gärtner & Freidlin ’79. Space-time periodic flow:
Nolen, Rudd, X, ’05. Space-time stationary ergodic flow: Nolen, X, ’09.
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KPP Front Speeds in Chaotic Flows

Viscous HJ and Effective Hamiltonian

v := λ e · x + lnw , a plane wave at large time, solves viscous HJ equation:

vt = κ∆ v + κ |∇v |2 + B(t, x) · ∇v + 1,

and µ(λ) is its homogenized (effective) Hamiltonian.

• Stochastic homogenization of viscous HJs (convex & uniformly coercive):
space: P-L Lions, Souganidis, ’05; Kosygina, Rezakhanlou, Varadhan ’06.
space-time: Kosygina, Varadhan, ’08; Schwab, ’09.
KPP problem in space-time random B (Nolen, X, ’09): uniform coercivity
relaxed to a finite 2nd moment condition (allowing unbounded B).

• Prior KPP Computations based on Linearized Corrector (w) Equation:

1) space-time stationary ergodic (d = 2), semi-Lagrangian (Nolen, X, ’08).
2) adaptive FEM (Shen, X, Zhou, ’13): 3D steady periodic flows, ABC
flow & maximal speed enhancement.
3) residual speed in time-periodic mixing cellular flow (d = 2):
edge-averaged FEM w. algebraic multigrid acceleration (Zu, Chen, X, ’15).
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KPP Front Speeds in Chaotic Flows

Lagrangian Approximation in Space-Time Periodic Media

Write L = L + M = Markovian + Potential,

M · := c(t, x) · = (1 + κλ2 + λ e · B) ·

Feymann-Kac formula gives:

µ = lim
t→∞

t−1 ln

(
E exp{

∫ t

0
c(t − s,X t,x

s ) ds}
)
,

d X t,x
s = B(t − s,X t,x

s ) ds + σ dW s , X
t,x
0 = x .

Direct approximation of this formula is challenging, as the main
contribution to E comes from sample paths that visit maximal points
of time-dependent potential c .
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KPP Front Speeds in Chaotic Flows

Lagrangian Approximation in Space-Time Periodic Media

An altenative is to study a “normalized version”, the Feymann-Kac
semi-group:

Φc
t (ν)(φ) :=

E[φ(X t,x
t ) exp{

∫ t
0 c(t − s,X t,x

s ) ds}]
E[exp{

∫ t
0 c(t − s,X t,x

s ) ds}]
:=

Pc
t (ν)(φ)

Pc
t (ν)(1)

,

acting on any initial probability measure ν, converges weakly to an
invariant measure νc as t →∞, for any test function φ. Moreover,

Pc
t (νc) = exp{µ t} νc .

Discretize X t,x
s as X∆t

i , approximate the evolution of probability
measure Φc

t (ν) by a particle system, and use resampling technique to
reduce variance.
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KPP Front Speeds in Chaotic Flows

Lagrangian Approximation in Space-Time Periodic Media

Let

Pc,∆t
n (ν)(φ) := E

[
φ(X∆t

i ) exp

{
∆t

n∑
i=1

c((n − i)∆t,X∆t
i )

}]
As n→∞, the discrete semi-group

Φc,∆t
n (ν)(φ) =

Pc,∆t
n (ν)(φ)

Pc,∆t
n (ν)(1)

→
∫
D
φ d νc,∆t , ∀ smooth φ,

D is the space-time periodic cell, νc,∆t is invariant measure.

Theorem (Lyu, Wang, X, Zhang, ’20)

There exists p ∈ (0, 1) so that:

µ∆t :=
1

∆t
ln[Pc,∆t

1 (νc,∆t)(1)] = µ+ o((∆t)p).
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KPP Front Speeds in Chaotic Flows

Genetic Algorithm

Initialize first generation of N particles ξ0
1 = (ξ0,1

1 , · · · , ξ0,N
1 ) ∈ (Td)N ,

unif. distributed over Td (d ≥ 2). Let g be the generation no. in
approximating νc,∆t . Each generation moves and replicates m-times,
with a life span T (time period), time step ∆t = T/m.

for g = 1 : G − 1
for j = 0 : m − 1
ηjg ← one-step-advection-diffusion update on ξjg
with fitness F ← exp{c(T − j∆t, ξjg ) ∆t}.
Eg ,j := 1

∆t ln (mean population fitness).
Normalize fitness to weight p := F/SUM(F ).
ξj+1
g ← resample ηjg via multinomial distribution with weight p.

end for
ξ0
g+1 ← ξmg , Eg ← mean (Eg ,j) over j .

end for
Output: approximate µ∆t ← mean(Eg ), and ξ0

G .
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KPP Front Speeds in Chaotic Flows

Genetic Algorithm

Feymann-Kac (F-K) semigroup, particle method of its invariant
measure and principal eigenvalue, are well-known in physics, large
deviation, sequential/population/diffusion Monte Carlo.

Ferré & Stoltz, ’19: error estimates of discrete F-K and particle
approximation in spatially periodic media.

3D time periodic Kolmogorov flow with large amplitude A:

B = A (sin(z + sin(2πt)), sin(x + sin(2πt)), sin(y + sin(2πt))).

By scaling property of DE and computed exponent,

DE (A) = ADE (A−1) = O(A1.2).

Scaling analysis of front speed linear growth rate:

LGR := c∗(A)/A ≈
√

DE (A)/A = O(A−0.4),

suggesting sublinear (sub-maximal) growth law: c∗(A) = O(A0.6).
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KPP Front Speeds in Chaotic Flows

Submaximal Growth of c∗(A) (A� 1) in K flow

G = 150, N = 800, 000, κ = 3, ∆t = 2−7 = 0.0078, Euler on X∆t .

Figure: Linear growth rate ( LGR=c∗(A)/A ) vs. A−1.

Computed LGR = O(A−0.35)→ c∗(A) = O(A0.65).
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Conclusion

Conclusions and Future Work

Developed Lagrangian methods and their approximation theory for
computing effective diffusivity and front speed in high dimensional
volume preserving chaotic/stochastic flows.

Explored discrete corrector approximations of continuous PDE
corrector problems via volume-preserving schemes /genetic particle
evolution algorithm.

Enhanced diffusivity in chaotic flows shows a myriad of scalings near
small molecular diffusivity, and poses interesting open problems for
analysis.

Ongoing work: genetic algorithm for KPP fronts in random media.

Future work: 1) generate adaptive initial measure to speed up genetic
computation with deep learning tools, 2) transport in rough flows.
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