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Outline

@ Ordered and Chaotic Volume Preserving Flows.

Enhanced Diffusivity, Mixing and Residual Diffusivity.

Structure Preserving Methods and Discrete Corrector Problems

©

Lagrangian Computation of Effective Diffusivity in 3D Chaotic
and Stochastic Flows.

o Kolmogorov-Petrovsky-Piskunov (KPP) Front Speed and HJ.

e Feymann-Kac Representation and Genetic Particle
Approximation.

o KPP Front Speed in Time Periodic 3D Kolmogorov Flow.

o Conclusions and Future Work.
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Order vs. Disorder

Cellular (Beltrami-Childress) Flow

o 2D steady cellular (Hamiltonian) flow:

V(x,y) =(—0,H,0«H), H = sin(x)sin(y)

@@
@®

@ 2D time periodic cellular flow:

V(x,y,t) = (cos(y) + 0 sin(y) cos(t), cos(x) + 0sin(x) cos(t)),

6 € (0,1]. As 0 increases, more and more disorder appears in flow
trajectories.
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Mixing at # = 1: snapshots of Lagrangian particles.

e T

Figure: Courtesy T. McMillen, Cal State Univ. Fullerton.
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Arnold-Beltrami-Childress Flows

@ Originated in the 1960's:

/

= Asinz+ Ccosy

" = Bsinx+ Acosz

/

Z = Bcosx+ Csiny

right hand side is a steady state of 3D Euler equation, with dynamic
instability (S. Friedlander et al '93: A=1,B?>+C?>>1or B,C < 1).

@ Another form:

() = (& o) vmenea(S)

zZ = H(x,y) :=Bcosx+ Csiny.

Integrable (a cellular flow) if A or B or C = 0.
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3D Flows

Integrable Flow on xy-Plane when A =0

Exact ballistic solution: (x, y,z) = (0,7/2,(B + C)t).
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Ballistic Spiral Orbit with (x, y)(t) Trapped in a Cell

e When (x, y)(t) stay within a cell, z’ does not change sign, implying
helical motion with linear growth in z. If A < 1, the system is a perturbed
Hamiltonian in 3 dimensions.

e Contraction mapping principle yields:

Theorem (McMillen,X,Yu,Zlatos; SIAD 2016)

3 positive number Ag = Ao(B, C) s.t. YA € [0, Ao] and z(0) € R, there is
a smooth ABC trajectory (x,y, z)(t) where z is increasing in t, the limit
lim:_o0 2(t)/t exists and converges to B+ C as A— 0, and (x,y) is
2m-periodic in z.

e Quasi-periodic orbits (x, y)(z) exist from a modifed KAM theory based
on an action-angle-angle formulation. Higher harmonics, where (x, y) is
2mm-periodic in z, m > 2, exist by Melnikov method.
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3D Flows

Spiral Orbits: initial pt (0.2,7/2,0) (circle),
A=0.01(L),1(R); B = C =1, linear growth in z.

Atrajectory of abe flow (A=0.01,B=1,C=1), inital pt (circle), end pt (star)

13 -04
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3D Flows

Edge Orbits: moving along cell edges on the projected
xy-plane, (A, B, C) =(0.1,1,1).

Initial position (x,y)(0) close to cell edge. Ballistic motion in x and/or y.

50~
40
30 =

20
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3D Flows

Existence of Mod (27) Periodic Edge Orbits

Theorem (McMiIIen,X,Yu,ZIatos, SIAD 2016)

If A€ (0,Ao], Ao = Ao(B, C) is small enough, there exists T > 0 and 4
edge orbits X(t) = (x, y, z)(t) such that

X(t+T) = X(t)£ (2w, 2m,0)
X(t+T) X(t) £ (27, —2m,0). (1)
Likewise, there exists T > 0 and 4 edge orbits X(t) = (x,y, z)(t), s.t.
X(t+T) = X(t)+(27,0,0)
X(t+T) X(t) £ (0,2m,0). (2)

e Edge orbits (2) exist when A= B = C =1 by a non-perturbative
symmetry argument (X,Yu,Zlatos, SIMA 2016).

e Edge orbits do not exist in the integrable case (e.g. A=0).
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ABC and Kolmogorov Flows

o ABC flow has both ordered (ballistic orbits and nearby trajectories, so
called vortex tubes) and disordered trajectories (Arnold '65; Hénon
'66; Dombre, Frisch, Greene, Hénon, Mehr & Soward '86; ...).

@ Vortex tubes in ABC believed to cause maximally enhanced transport.

o Kolmogorov flow (Galloway & Proctor '92, Childress & Gilbert '95):

X = sinz
/ .

Yy = sinx

Z = siny

much more chaotic (visible on Poincaré section) than ABC.
Disorder dominates order in K flow.

e Ballistic orbits in K flow: Tabrizian, X, Yu (in preparation).
o Quantitative measure of chaos: effective diffusivity.
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Effective Diffusivity

o Lagrangian. Let o > 0, and X solve SDE:
dX:=V(t,X:)dt+od W, (3)
W : Wiener process. Along e = (1,0,---,0), effective diffusivity is:

DE = lim E[|(X: — Xo)- e*]/(2¢)

(known in physics as: Einstein formula. In turbulent diffusion:
G.l. Taylor, 1923; simplified models, Majda and Kramer, 1999.)
o Eulerian. Let x be the unique mean zero time periodic solution of:

Lx = 0;x+(V - V) x+Do Ayx = =V (1,y), (1,y) € TxT9, d >2,
corrector (cell) problem (Bensoussan, J-L. Lions, Papanicolaou, 1978),
DE =Dy + (vt = Do (14 (VX' ),

Dy := 02 /2, the molecular diffusivity; (-):= space time periodic
average, V = (v!,--- ,v9), x = (x%, -, x9).
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Enhanced Diffusivity, Mixing and Residual Diffusivity

o 2D steady BC flow (Eulerian analysis): DE = O(v/Dg), as Dg | 0.

Childress ('79, boundary layer), Fannjiang and Papanicolaou ('94,

variational analysis), Heinze ('03, corrector analysis).
Lagrangian computation: Pavliotis, Stuart, and Zygalakis,'09.

@ 2D time per. mixing flow (num. evidence of Residual Diffusivity):

DE =0(1), asDyl0, 6=1.

Biferale, Crisanti, Vergassola, Vulpiani ('95)
Lyu-X-Yu ('17, spectral method, Figs. below and subsequent).

E
Ew N
[
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Diffusion in Chaotic Flows

Resonance Phenomenon of Residual Diffusivity in 6
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Structure Preserving Method

Structure Preserving Discretization

@ The SDE with divergence free advection V:
dXt: V(t,Xt)dt—i- od Wt

has uniform invariant measure 7, on the torus R?/Z9 (d > 2).

o Let X; = (x}, -+ ,x%); i =0,1. Explicit update from Xg to X7 is:
( 2 d—1
xt _XO+AtV(2’XO>X(:))’7"' X0 7Xg)
X2 _XO + Atv (At Xl*,Xg,‘-' 7X(()1_1)X(()j)
xd* _XO + Atv (At Xol*’xg*7xg*,.“ ’X(dfl)*)
Xi=X"+o0W;

W : random vector w. independent entry vV At¢;, & unit Gaussian.
@ The scheme has discrete invariant measure wa; ~ m,. Deterministic
part is volume-preserving or symplectic (K. Feng & Z. Shang, 1995).
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Lagrangian Approximation of Effective Diffusivity

Theorem (Wang,X,Zhang '19)

Let p, := x. be the first component of structure preserving scheme with
time step At. Let V = (v,---,v9)(t, X) be periodic and separable in
the sense that v’ does not depend on x', ¥i =1,--- ,d. Then the limit
lim, 00 E[p2]/(2 n At) exists and approximates the effective diffusivity DF
along e = (1,0,---,0) with the estimate:

ILm E[p?]/(2nAt) — DE| < CAt, C independent of At.

e In computation, fix At and find end time T = NAt so that

E[p3]/(2 T) tends to a constant P which may depend on At. The above
theorem ensures that P converges to DF as At | 0 at a first order rate
independent of T.

e Proof casts structure preserving updates as a discrete Markov process,
and relates E[p2]/(2 n At) to the corrector formula of DE.
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Lagrangian Approximation of Effective Diffusivity

@ Let In:, be the density evolution operator of the discrete Markov
process generated by the scheme from 7 to 7 4+ At. Let time period
be 1, and At =1/N. Then (Ia¢)" converges weakly to an invariant
measure ma¢ - on bounded measurable functions on Te.

o Taking expectation of the 1st eqn of the scheme gives:
Elxy] = Elxp_4]+At E[Vl(tn—1/27xr%—1a 2oo ]

n—1

= EPgl+ At Y E[vi(teiaja X, -]
k=0

motivating the function below in calculating E[p2]:
o0
On(T, %) = At Y E[vH(tiypo + 7, Xi)| Xo = X].
i=0
Convergence of infinite sum follows from that of ma¢ .
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_ Sicture Preserving Method |
Discrete Cell Problem (DCP)

o Let v! have zero mean over space, then U4(7, x) is the unique
bounded space-time mean zero solution of the DCP equation on

X = X(7,x):
(e D)(r3) = (. x) = ~Atv (s + ).
o Eulerian cell problem gives:
exp{At L}Ix! —x! = —At vl 4+ O((At)?).
® Ipt 7 is a 2nd order operator splitting of exp{AtL}.
o Example (d = 2):
Int,r = exp{At L4} exp{%Ll} exp{At L3} exp{At Ly} exp{%Ll}.

Ly =0, Ly = vy, L3 =Vv2d,,, Ls = Do A,.
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Enhanced Diffusivity in ABC Flow: DF = O(D,*).

10°
1046 4
108 £ < o

102 < = E
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e Maximal enhancement (A= B = C = 1): [ structure preserving
method, x Euler's method, —— reference line y = D%)' No. of particles =
120,000; At = 0.001; end time T = 12000.

e Robustness of ballistic orbits in the presence of weak Gaussian noise.
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Enhanced Diffusivity in K Flow: DE = O(D, %").

10 ¢ o sym, A t=0.1 -3
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e Sub-maximal enhancement in K flow: “sym"” = structure preserving
method, “em”= Euler's method, —— reference line to fit y = DJO'B.

e No. of particles = 120,000; end time T = 12000.

e Strong Lagrangian chaos: some “remnant structures” in absence of

“channels” or “vortex tubes” ?
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Numerical Results

DE in time periodic K Flow.

o ) 1 -5 log(dg)

e Time periodic Kolmogorov flow:
(sin(z + @sin27t), sin(x + Osin 27t), sin(y + Osin 27t)).

e Resonance in 6 is prominent at small Dy.

e Sub-maximal enhancement: DF = O(D;%?), at 6 = 0.1.
May 21, 2020
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Time-Mixing Markovian Volume Preserving Flows

Stationary ergodic in space: prob. space (2, F, Py), with measure
preserving group action 7x, Po(7x(A)) = Po(A), VA € F;
Po(7-invariant event)=0 or 1.

Let Pt (t > 0) be a strongly continuous Markov semigroup on L?(Q):
Pt1 =1, positivity and Py-preserving.

Random flow b = b(t, x,w) = b(Txw(t)) € (L?())9 is continuous in
(t,x), loc. Lipschitz in x, divergence-free, finite 2nd moment.

Let L be the generator of Pf, the corrector problem is (k = 02/2):
L= (L+b-V + KAy = b,

admitting a unique solution in Dom(L) N C2(Q) (stationary corrector)
under fast time-mixing.

For each realization w of the flow, consider SDE:

d X% = b(t, X%, w)dt +ocdW,, X§=0.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

@ Homogenization (Fannjiang & Komorowski '99): let e be a unit
vector, the process € e Xt/ » converges weakly to a Brownian motion
as € | 0 with diffusivity:

e’ Dfe =K+ (—Ly-e,9- e)12(q)-

o Split out 0 dW; and adopt a volume-preserving integrator on the
flow b:
tn
He1 =GR (X)),

w(ty) refers to realization of b at times t, = nAt.

@ Due to lack of separability of b in general, d)A(t") is implicit.

o Example (d = 2):
X5 1= X5+ At b(t,, mean( X5, X5, 1), w).
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

@ In d > 3, decompose b into a sum of d — 1 velocity fields, each of
them equivalent to a two-component problem (Feng & Shang '95).

@ Environment processes (view from the particle position):
Nt = Txw W(t), Nn = Txe w(tn)

@ Strongly continuous Markov semigroup on L?(Q2) with generator L:

Si f =E[f(ne] :== M Eq[f(ne)], Snf :=E[f(na)], M w.r.t. W

representing solution to corrector problem as:

’l,b:/ Stbdt.
0

o Define: _
Ba: = "’Z(tt”)(xﬁ) - X,‘;Jy Ba: = E[Ba¢]-
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

@ The function -
¢At — Z Sn (BAt - BA),
n=0

is the unique zero mean solution in (L2(R))9 to the discrete corrector
problem: ~
(S1 = 1) bar = —(Bat — Ba).

Theorem (Lyu,Wang,X,Zhang, '19)

For time-mixing Markovian volume preserving random flow b, 3p € (0,1),

lim (2nAt)PE[(XY — nBa;) ® (XY — nBar)] = DE + o((At)P).

n——+00
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

@ Random Fourier representation:

L
VM

k's are independent with directions unif. distributed on unit sphere,
lengths (r) in the interval [0, K] with density o< r*=2%, o € (0.5,1), to
mimic energy spectrum of physical flows. K ultraviolet cut-off,

M =100, K =10, o = 0.75 in simulation.

M
b(t,x) = Z [t cos(Km - X) + Vi sin(km - x)], x € R3

m=1

o Time-Mixing Markovian: let £,,(t), n,,(t) be independent 3D random
vectors with components being independent stationary OU process
having covariance function exp{—0|t; — t2|}, 6 > 0.

@ Volume Preserving:

Um =& (t) X kim/|km|, Vi = 115(t) X km/|Km|.
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

o Reference solution: At,.r = 0.003125, T =40, o0 = 0.1, 6 = 4, with
Nme = 100,000 (no. of Monte-Carlo realizations), resulting in
DE = 0.2266. Comparison runs: N = 50, 000.

o Compare error (O(At)P) in computing DE: p of Euler scheme =
0.44, of volume preserving scheme = 0.86.

Error
T

* Euler scheme
— — Fitted line
= Wolume preserving scheme
Fitted line
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Larger 0, less temporal correlation, faster decay of variance of Df
approximation in time.

Variance
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Effective Diffusivity in Space-Time Random Flows

Time-Mixing Markovian Volume Preserving Flows

Let k = 02/2, 0 =1, At = 0.05, observed convergence of Dfl(/i) to

D (0) > 0 as » approaches 0 (Fannjiang & Komorowski '99).
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KPP Variational Formula in Stationary Ergodic Media

Uy = k Au+ B(t,x) - Viu+ u(l — u), x € RY,

where B is space-time stationary ergodic, mean zero, div-free. To
calculate front speed c* along direction e, let w solve linear equation
parameterized by A > 0:

we =Lw :=rAw+ (26X e+ B) - Vw+ (1+kxX + e B)w,
with w(0, x) = 1. Almost surely,
— Jim -1
u(A) = tIer;O tInw
exists as principal Lyapunov exponent, convex and superlinear in large \.

()
A
Space periodic media: Gartner & Freidlin '79. Space-time periodic flow:
Nolen, Rudd, X, '05. Space-time stationary ergodic flow: Nolen, X, '09.
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KPP Front Speeds in Chaotic Flows

Viscous HJ and Effective Hamiltonian

v:=)Xe-x+Inw, a plane wave at large time, solves viscous HJ equation:
vi =k Av+kK|Vv]2+ B(t,x)- Vv +1,
and u()) is its homogenized (effective) Hamiltonian.

e Stochastic homogenization of viscous HJs (convex & uniformly coercive):
space: P-L Lions, Souganidis, '05; Kosygina, Rezakhanlou, Varadhan '06.
space-time: Kosygina, Varadhan, '08; Schwab, '09.

KPP problem in space-time random B (Nolen, X, '09): uniform coercivity
relaxed to a finite 2nd moment condition (allowing unbounded B).

e Prior KPP Computations based on Linearized Corrector (w) Equation:

1) space-time stationary ergodic (d = 2), semi-Lagrangian (Nolen, X, '08).
2) adaptive FEM (Shen, X, Zhou, '13): 3D steady periodic flows, ABC
flow & maximal speed enhancement.

3) residual speed in time-periodic mixing cellular flow (d = 2):
edge-averaged FEM w. algebraic multigrid acceleration (Zu, Chen, X, '15).
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KPP Front Speeds in Chaotic Flows

Lagrangian Approximation in Space-Time Periodic Media

@ Write £L = L + M = Markovian + Potential,

M-:=c(t,x)-=(1+r)+Ae-B)-

Feymann-Kac formula gives:
t
p= lim ttin <Eexp{/ c(t —s, X ds}) ,
t—o0 0

dXP* = B(t—s,X)ds + 0 dWs, Xi* = x.

o Direct approximation of this formula is challenging, as the main
contribution to IE comes from sample paths that visit maximal points
of time-dependent potential c.
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KPP Front Speeds in Chaotic Flows

Lagrangian Approximation in Space-Time Periodic Media

@ An altenative is to study a “normalized version”, the Feymann-Kac
semi-group:

_ E[p(Xt™) exp{fy c(t — s, XE¥)ds}] _ PE(v)(9)

7 (v)(¢) : Elexp{ [ c(t—s,Xt)ds}] ~ PE(¥)(1)’

acting on any initial probability measure v, converges weakly to an
invariant measure v, as t — oo, for any test function ¢. Moreover,

Pi(ve) = exp{ut}re.

o Discretize X5* as X%, approximate the evolution of probability
measure ®£(v) by a particle system, and use resampling technique to
reduce variance.
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KPP Front Speeds in Chaotic Flows

Lagrangian Approximation in Space-Time Periodic Media

o Let

PEA(w)(9) = E

H(XAE) exp {At > c((n—i)At, x?f)}]

i=1
@ As n — oo, the discrete semi-group
Pc At

PC At(

D is the space-time periodic ceII, Ve A 1S invariant measure.

PELL (L) () = / S e, ¥ O

Theorem (Lyu, Wang, X, Zhang, '20)

There exists p € (0,1) so that:

paci= oz IPE (vead (D] = o+ o((AL))
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Genetic Algorithm

o Initialize first generation of N particles &9 = ( ?’1, e, ?’N) e (T9)V,
unif. distributed over TY (d > 2). Let g be the generation no. in
approximating v a¢. Each generation moves and replicates m-times,
with a life span T (time period), time step At = T /m.
forg=1:G—-1
forj=0:m-1
1M — one-step-advection-diffusion update on £Jé
with fitness F < exp{c(T — jAt, &) At}

Egj = 2;In (mean population fitness).
Normalize fitness to weight p := F/SUM(F).
.SJ;FI + resample 77 via multinomial distribution with weight p.
end for
Egﬂ &7, Eg < mean (Eg ) over j.
end for
o Output: approximate pia; < mean(Eg), and £%.
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Genetic Algorithm

Feymann-Kac (F-K) semigroup, particle method of its invariant
measure and principal eigenvalue, are well-known in physics, large
deviation, sequential /population/diffusion Monte Carlo.

Ferré & Stoltz, '19: error estimates of discrete F-K and particle
approximation in spatially periodic media.

3D time periodic Kolmogorov flow with large amplitude A:
B = A(sin(z + sin(27t)), sin(x + sin(27t)), sin(y + sin(27t))).
By scaling property of DF and computed exponent,
DE(A) = ADE(A™Y) = O(A2).
Scaling analysis of front speed linear growth rate:
LGR := c*(A)/A~ / DE(A)/A = O(A™%%),

suggesting sublinear (sub-maximal) growth law: c*(A) = O(A%9).
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KPP Front Speeds in Chaotic Flows

Submaximal Growth of c*(A) (A> 1) in K flow

o G =150, N = 800,000, x =3, At =27 = 0.0078, Euler on XAt

10’
fitted curve

Figure: Linear growth rate ( LGR=c*(A)/A ) vs. A7L.

o Computed LGR = O(A=93%) — c*(A) = O(A%%).
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Conclusion

Conclusions and Future Work

@ Developed Lagrangian methods and their approximation theory for
computing effective diffusivity and front speed in high dimensional
volume preserving chaotic/stochastic flows.

@ Explored discrete corrector approximations of continuous PDE
corrector problems via volume-preserving schemes /genetic particle
evolution algorithm.

@ Enhanced diffusivity in chaotic flows shows a myriad of scalings near
small molecular diffusivity, and poses interesting open problems for
analysis.

@ Ongoing work: genetic algorithm for KPP fronts in random media.

o Future work: 1) generate adaptive initial measure to speed up genetic
computation with deep learning tools, 2) transport in rough flows.
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