Deterministic MFGs with control on the acceleration

Paola Mannucci

Dipartimento di Matematica "Tullio Levi-Civita" Università di Padova

IPAM, UCLA, May 4, 2020

Joint works with

Y. Achdou, C. Marchi, N. Tchou

- Introduction to the problem
- Some non-coercive cases
- Control on the acceleration: the case without constraints
- Work in progress:
 - Control on the acceleration: the case with state-constraint and control-constraint
 - Control on the acceleration: the case with only state-constraint
- Perspectives

u is the value function of a typical agent following deterministic dynamics;

m is the density distribution of the agents (a density of a probability measure).

$$\begin{cases} (HJ) & -\partial_t u + H(x, Du) = F[m(t)](x), & \mathbb{R}^n \times (0, T) \\ (C) & \partial_t m - \operatorname{div}(m D_p H(x, Du)) = 0, & \mathbb{R}^n \times (0, T) \\ & m(x, 0) = m_0(x), & u(x, T) = G[m(T)](x), & \mathbb{R}^n \end{cases}$$

• F and G encode the interactions between the agent and the whole population.

- $m_0(x)$ has compact support.
- *H* is coercive w.r.t $p(H(x, p) = \frac{1}{2}|p|^2)$.

- The player has a forbidden direction at some points: degenerate dynamics in \mathbb{R}^2 ;
- The player has a forbidden direction at every point: degenerate dynamics of "Heisenberg type" in R³;
- The dynamics of the player is controlled by the acceleration;

Dynamics with a forbidden direction in \mathbb{R}^2 , (M., Marchi, Mariconda, Tchou, JDE, 2020)

$$x = (x_1, x_2) \in \mathbb{R}^2, \ p = (p_1, p_2).$$

- *h* bounded, h(0)=0, $h(x_1) \neq 0$, if $x_1 \neq 0$:
- Dynamics of the player $\begin{cases} x'_1(s) = \alpha_1(s), \\ x'_2(s) = h(x_1(s)) \alpha_2(s) \end{cases}$
- Cost $\int_t^T \frac{1}{2} |\alpha^2| + F[m(s)](x(s))ds + G[m(T)](x(T));$
- Hamiltonian $H(x, p) = \frac{1}{2}(p_1^2 + h^2(x_1)p_2^2)$ is not coercive;

Forbidden direction:

$$(MFG) \begin{cases} -\partial_t u + \frac{1}{2} (\partial_{x_1}^2 u + h^2(x_1) \partial_{x_2}^2 u) = F[m(t)](x), \\ \partial_t m - \left(\partial_{x_1} (m \partial_{x_1} u) + h^2(x_1) \partial_{x_2} (m \partial_{x_2} u) \right) = 0, \\ m(x, 0) = m_0(x), \ u(x, T) = G[m(T)](x). \end{cases}$$

Dynamics of "Heisenberg type" (M., Marchi, Tchou, in preparation)

$$x = (x_1, x_2, x_3) \in \mathbb{R}^3$$
, $p = (p_1, p_2, p_3)$

• Dynamics
$$\begin{cases} x_1'(s) = \alpha_1(s), \\ x_2'(s) = \alpha_2(s), \\ x_3'(s) = -x_2(s) \alpha_1(s) + x_1(s) \alpha_2(s) \end{cases}$$

 χ_{2}

- Cost: $\int_t^T \frac{1}{2} |\alpha^2| + F[m(s)](x(s))ds + G[m(T)](x(T))$
- Hamiltonian: $H(x, p) = \frac{1}{2}((p_1 x_2p_3)^2 + (p_2 + x_1p_3)^2)$ is not coercive;

Difference with the previous case:

$$\begin{cases} x_{1}^{i} = d_{1} \\ x_{2}^{i} = h(x_{1}) d_{2} \end{cases} B(x) = \begin{pmatrix} 4 & 0 \\ 0 & h(x_{1}) \end{pmatrix} \begin{pmatrix} det BB = h^{2}(x_{1}) \neq 0 \\ g_{1}, g_{2}, x_{1} \end{pmatrix} \\ \begin{cases} x_{1}^{i} = d_{1} \\ x_{2}^{i} = d_{2} \\ x_{3}^{i} = -x_{2}d_{1} + x_{1}d_{2} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 4 \\ -x_{2}, x_{1} \end{pmatrix} \begin{pmatrix} det CC = O \\ \forall X \end{pmatrix} \\ \end{cases}$$

Control on the acceleration (Achdou, M., Marchi, Tchou, NoDEA, 2020)

State variable $y = (x, v) \in \mathbb{R}^{2n}$, x is the position, v is the velocity.

Dynamics of the generic player is controlled by the acceleration (double integrator).

The player aims to choose the control α so to minimize the cost

$$J_t(x, v, \alpha) = \int_t^T \frac{1}{2} |\alpha(s)|^2 + \frac{1}{2} |v(s)|^2 + F[m(s)](x(s), v(s)) ds + G[m(T)](x(T), v(T))$$

m(t) is the distribution of the whole population at time t, $\frac{1}{2}|v|^2$ stands for kinetic energy.

The Hamiltonian $H(x, v, p_x, p_v) = -v \cdot p_x + \frac{|p_v|^2}{2} - \frac{|v|^2}{2}$

- is not coercive with respect to $p = (p_x, p_y)$;
- is unbounded w.r.t. v.

The MFG system

$$u = u(x, v, t), m = m(x, v, t), (x, v, t) \in \mathbb{R}^{2N} \times (0, T).$$

MFG system

$$\begin{array}{ll} (HJ) & -\partial_t u - v \cdot D_x u + \frac{1}{2} |D_v u|^2 - \frac{1}{2} |v|^2 = F[m(t)](x,v) \\ (C) & \partial_t m - v \cdot D_x m - \operatorname{div}_v(m D_v u) = 0 \\ & m(x,v,0) = m_0(x,v), u(x,v,T) = G[m(T)](x,v) \end{array}$$

Assumptions

- $F[\cdot]$ and $G[\cdot]$ are regularizing nonlocal coupling with: $\|F[m](\cdot, \cdot)\|_{C^2}$, and $\|G[m](\cdot, \cdot)\|_{C^2} \leq C$, $\forall m \in \mathcal{P}_1$
- the initial m_0 has a compactly supported density in $C^{\delta}(\mathbb{R}^{2N})$.

(4 同) (4 回) (4 \Pi) (4 \Pi)

Definition

The pair (u, m) is a solution if:

- 1) $u \in W^{1,\infty}_{\text{loc}}(\mathbb{R}^{2N} \times [0, T]).$
- 2) $m \in C([0, T]; \mathcal{P}_1(\mathbb{R}^{2N})); \forall t \in [0, T], m(t) \text{ is AC w.r.t. Lebesgue measure and } m \text{ is bounded.}$
- 3) (HJ)-equation is satisfied by u in the viscosity sense.
- 4) (C)-equation is satisfied by m in the sense of distributions.

Main Theorem

- system MFG has a solution (u, m);
- $m(x, v, s) = \Phi(x, v, 0, s) \# m_0$, i.e. is the push-forward of m_0 through the characteristic flow $\Phi(x, v, 0, s)$ associated to $\begin{cases} x'(s) = v(s), & x(0) = x, \\ v'(s) = -D_v u(x(s), v(s), s), & v(0) = v. \end{cases}$

- Classical coercive cases:
 - P.L. Lions' lectures at Collége de France 2012 Cardaliaguet "Notes on Mean Field Games",
 - Cardaliaguet-Hadikhanloo, ESAIM-COCV 2017
 - Gomes-Pimentel-Voskanyan "Regularity Theory for Mean-Field Game systems" 2016
 - Gomes-Voskanyan, SiamJCO 2016
- Lagrangian approach:
 - Benamou-Carlier-Santambrogio, Springer 2016
 - Cannarsa-Capuani, PDE models for multi-agent phenomena, Springer INdAM (2018)
 - Cannarsa-Mendico: similar direction; different techniques. (2019).

$$\begin{cases} (HJ) & -\partial_t u + \frac{1}{2} |Du|^2 = F[m](x) & \mathbb{R}^N \times (0, T) \\ (C) & \partial_t m - \operatorname{div}(m D u) = 0 & \mathbb{R}^N \times (0, T) \\ & m(x, 0) = m_0(x), u(x, T) = G[m(T)](x) & \mathbb{R}^N. \end{cases}$$

Here $H(x, p) = \frac{1}{2}|p|^2$.

- The MFG system has a solution (u, m);
- m(x,s) = Φ(x,0,s)#m₀(x), i.e. is the push-forward of m₀ through the characteristic flow Φ(x,0,s) associated to the dynamics

$$\begin{cases} x'(s) = -D_x u(x(s), s) \\ x(0) = x. \end{cases}$$

Let us go back to our problem

$$\begin{cases} (HJ) & -\partial_t u - v \cdot D_x u + \frac{|D_v u|^2}{2} - \frac{|v|^2}{2} = F[m(t)] \\ (C) & \partial_t m + v \cdot D_x m - \operatorname{div}_v(D_v um) = 0 \\ & m(x, v, 0) = m_0(x, v), u(x, v, T) = G[m(T)](x, v). \end{cases}$$

Theorem

- MFG system has a solution (u, m),
- 2 $m(x,s) = \Phi(x,0,s) \# m_0(x)$, i.e. is the push-forward of m_0 through the flow

$$\begin{cases} x'(s) = v(s), & x(0) = x \\ v'(s) = -D_v u(x(s), v(s), s), & v(0) = v. \end{cases}$$

• We fix $\overline{m} \in C([0, T], \mathcal{P}_1)$, we find properties of u unique solution of

$$(HJ): \begin{cases} -\partial_t u - v \cdot D_x u + \frac{1}{2} |D_v u|^2 - \frac{1}{2} |v|^2 = F[\overline{m}](x, v), \\ u(x, v, T) = G[\overline{m}](x, v). \end{cases}$$

We find an unique m such that

$$(\mathsf{C}): \begin{cases} \partial_t m + v \cdot D_x m - \operatorname{div}_v(m D_v u) = 0\\ m(x, v, 0) = m_0(x, v). \end{cases}$$

Fixed point: $\overline{m} \to \mathcal{T}(\overline{m}) = m$.

- Degenerate Hamiltonian due to the dynamics of the generic player → we cannot prove a contraction property of the flow associated to the dynamics;
- Unbounded Hamiltonian: some estimates of the value function hold only locally w.r.t v (|u(x, v, t)| ≤ C(1 + |v|²));
- Unbounded drift $(-v, D_v u)$ in the continuity equation $(\partial_t m \operatorname{div}(m(-v, D_v u)) = 0).$

STEP1: The optimal control problem associated to HJ

 $f(x, v, t) = F[\overline{m}(t)](x, v)$, $g = G[\overline{m}(T)]$, f and g bounded and regular.

$$(HJ): \begin{cases} -\partial_t u - v \cdot D_x u + \frac{1}{2} |D_v u|^2 - \frac{1}{2} |v|^2 = f(x, v, t), \\ u(x, v, T) = g(x, v). \end{cases}$$

The value function

$$u(x,v,t) := \inf_{\alpha} \int_{t}^{T} \frac{1}{2} |\alpha|^{2} + \frac{1}{2} |v|^{2} + f(x(s),v(s),s) \, ds + g(x(T),v(T))$$

x(s), v(s) verify the dynamics $\begin{cases} x'(s) = v(s), & x(t) = x \\ v'(s) = \alpha(s), & v(t) = v \end{cases}$; $\alpha \in L^2$,

is the unique viscosity solution to (HJ) such that $|u(x, v, t)| \leq C(1 + |v|^2)$.

Almost as in the coercive case:

- no bifurcation of optimal trajectories after the starting time (This is an open problem for others non-coercive cases.)
- u(x, v, t) is Lipschitz continuous in x, locally Lipschitz in (v, t)
- u(x, v, t) is semiconcave w.r.t. (x, v).
- Optimal synthesis: $Du(\cdot, \cdot, t)$ exists in (x, v) iff there exists an unique solution of

$$\begin{cases} x'(s) = v(s) \\ v'(s) = -D_v u(x(s), v(s), s), \\ x(t) = x, v(t) = v \end{cases}$$

which moreover is the optimal trajectory for u(x, v, t). The system has a unique solution for a.e. starting point (x, v). The optimal control law is $\alpha(s) = -D_v u(x(s), v(s), s)$.

(C)
$$\begin{cases} \partial_t m + v \cdot D_x m - \operatorname{div}_v(m D_v u) = 0\\ m(x, v, 0) = m_0(x, v) \end{cases}$$

 $\frac{\mathbb{R}^{2N}}{\mathbb{R}^{2N}}, \times (0, T)$

where u solves (HJ) with \overline{m} prescribed.

Theorem

 $\forall \ \overline{m} \in C([0, T]; \mathcal{P}_1), \exists ! \text{ solution } m \text{ to } (C) \text{ in } C^{\frac{1}{2}}([0, T]; \mathcal{P}_1) \cap L^{\infty}([0, T]; \mathcal{P}_2).$ Moreover, m is the push forward of m_0 by the flow

$$\begin{cases} x'(s) = v(s), & x(0) = x, \\ v'(s) = -D_v u(x(s), v(s), s), & v(0) = v. \end{cases}$$
(1)

Vanishing viscosity method to the whole MFG system (σ viscosity)

 $(u^{\sigma}, m^{\sigma}) \rightarrow (u, m)$, and *m* satisfies the continuity equation with drift $D_v u$ of the STEP 1.

Tools: the representation formula from stochastic optimal control problem and uniform estimates for (u^{σ}, m^{σ}) (especially on the semiconcavity of u^{σ} , on the regularity of m^{σ}).

Uniqueness and the representation of m

Let *m* be any solution to the continuity equation. $(e_t(\gamma) = \gamma(t)$ is the evaluation map). Then, by

- superposition principle (Ambrosio, Gigli, Savarè)
- disintegration theorem
- the drift is $(v, -D_v u)$ (and it has a linear growth at infinity)
- optimal synthesis

$$\begin{split} \int_{\mathbb{R}^{2N}} \psi \, dm_t &= \int_{\Gamma} \psi(e_t(\gamma)) d\eta(\gamma) \\ &= \int_{\mathbb{R}^{2N}} \left(\int_{e_0^{-1}(x,v)} \psi(e_t(\gamma)) d\eta_{(x,v)}(\gamma) \right) \, dm_0(x,v) \\ &= \int_{\mathbb{R}^{2N}} \psi(\gamma(t)) dm_0(x,v) \quad \forall \psi \in C_0^0(\mathbb{R}^{2N}) \end{split}$$
where $\gamma(\cdot) = (x(\cdot), v(\cdot))$ solves
$$\begin{cases} x'(s) = v(s), & x(0) = x, \\ v'(s) = -D_v u(x(s), v(s), s), & v(0) = v. \end{cases}$$

x is the position, v is the velocity of the agent.

Assume

- **(**) the position of the agent is constrained in [-1, 1]
- **2** the control α is bounded: $\alpha \in [-1, 1]$.

$$\begin{cases} x'(s) = v(s) \quad s \in (t, T) \\ v'(s) = \alpha(s) \quad s \in (t, T) \\ x(t) = x, \quad v(t) = v. \end{cases}$$

Study of the (HJ) equation

The value function is

$$\begin{split} u(x,v,t) &:= \inf \left\{ J_t(x(\cdot),v(\cdot),\alpha(\cdot)) : \ \|x(\cdot)\|_{\infty} \le 1, \|\alpha(\cdot)\|_{\infty} \le 1 \right\}, \\ \text{where } x(\cdot),v(\cdot) \text{ satisfy} \quad \begin{cases} x'(s) = v(s) \quad s \in (t,T) \\ v'(s) = \alpha(s) \quad s \in (t,T) \\ x(t) = x, \ v(t) = v. \end{cases} \end{split}$$

The viability set is

$$\Omega_t := \{ (x, v) : u(x, v, t) < +\infty \}.$$

Difficulties:

- viability set Ω_t depending on t;
- uniqueness of optimal trajectories;
- Regularity of the value function:

The function u(x, v, t) is Hölder continuous with exponent 1/2:

$$u(x,v,t) - u(y,w,s)| \le C(|x-y|^2 + |v-w|^2 + |t-s|^2)^{1/4}.$$

Viability set Ω_t

Mild solution

 $(e_t(\gamma) = \gamma(t)).$

Definition: Cannarsa-Capuani, 2018

A probability measure η on the set of admissible trajectories is a MFG equilibrium for m_0 if

- $e_0 \# \eta = m_0$
- supp $\eta \subset \cup_{(x,v)}$ {opt. trajectories for u(x,v,0) with $m(t) = e_t \# \eta$ }.

Theorem

Assume supp $m_0 \subset \Omega_0$ (Ω_0 is the viability set at t = 0). Then

• There exists a MFG equilibrium η .

2 There exists a mild solution to the MFG, namely (u, m) where

•
$$m(t) = e_t \# \eta$$

• *u* is the value function associated to *m*.

Proof following [Cannarsa-Capuani].

Proposition (closed graph property)

The map

 $\mathsf{F}:(x,v)\mapsto\{(x(\cdot),v(\cdot)):\,(x(\cdot),v(\cdot))\text{ optimal for }u(x,v,0)\}$

has closed graph.

< 3 > 3

Key ingredient for the closed graph property: approximation of admissible trajectories

Fix (x, v). Let (x_i, v_i) be any sequence $(x_i, v_i) \rightarrow (x, v)$. Let $(x(\cdot), v(\cdot))$ be any admissible path for (x, v). Then, $\exists (x_i(\cdot), v_i(\cdot))$ admissible for (x_i, v_i) , such that

$$(x_i(s), v_i(s)) \rightarrow (x(s), v(s))$$
 uniformly in $[t, T]$;
 $v'_i(s) \rightarrow v'(s)$ in $L^2([t, T])$.

State constraint: 1-d case

Assume that the position of the agent is constrained in [-1, 1].

Value function
$$u(x, v, t) := \inf \{J_t(x(\cdot), v(\cdot), \alpha(\cdot)) : \|x(\cdot)\|_{\infty} \le 1$$

where $x(\cdot), v(\cdot)$ satisfy
$$\begin{cases} x'(s) = v(s) \quad s \in (t, T) \\ v'(s) = \alpha(s) \quad s \in (t, T) \\ x(t) = x, \quad v(t) = v. \end{cases}$$

Closed graph property \rightarrow Existence of a mild solution

1) General MFG with control on the acceleration and state constraints.

2) More general type of degenerate Hamiltonian also with unbounded coefficients.

Thank You!

Paola Mannucci MFGs with control on the acceleration

æ

글 🖌 🔺 글 🕨