Global well-posedness of master equations for deterministic displacement convex potential mean field games

Alpár R. Mészáros

(based on a joint work with W. Gangbo)

Workshop III: Mean Field Games and applications, IPAM, May 2020
Content of the talk

→ Mean field games.

→ Formal derivation of master equations.

→ Potential mean filed games linked to optimal control problems in infinite dimensions.

→ Vectorial vs. scalar master equations.

→ Displacement convexity, regularity estimates and well-posedness of master equations.
On Mean Field Games

Optimal control problem of a typical agent: they predict the evolution of the whole population's density, ρ: $[0, T_0]\to P_2(\mathbb{R}^d)$ and for $(t, x)\in [0, T_0]\times \mathbb{R}^d$ solve

$$\tilde{u}(t, x) := \inf_{Q_t=\rho} \left\{ \int_0^t L(Q_s, \dot{Q}_s) + f(Q_s, \rho_s) \, ds + u_0(Q_0, \rho_0) \right\}, \tag{1}$$

Data:

- $L: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ Lagrangian function;
- $T_0 > 0$: time horizon;
- $f, u_0: \mathbb{R}^d \times P_2(\mathbb{R}^d) \to \mathbb{R}$ running- and the initial costs of the agents;
- $\mu \in P_2(\mathbb{R}^d)$: distribution of the agents at time T_0.

Notations:

- $P_2(\mathbb{R}^d) := \{ \mu \text{ Borel probability measure on } \mathbb{R}^d: \int_{\mathbb{R}^d} |x|^2 \, d\mu(x) < +\infty \}$;
- $\mathcal{B} := \{ \mu \in P_2(\mathbb{R}^d): \int_{\mathbb{R}^d} |x|^2 \, d\mu(x) \leq r^2 \}$.

3 / 31
On Mean Field Games

→ Optimal control problem of a typical agent: they predict the evolution of the whole population’s density, $\rho : [0, T_0] \to \mathcal{P}_2(\mathbb{R}^d)$ and for $(t, x) \in [0, T_0] \times \mathbb{R}^d$ solve

$$\tilde{u}(t, x) := \inf_{Q; Q_t = x} \left\{ \int_0^t L(Q_s, \dot{Q}_s) + f(Q_s, \rho_s) \, ds + u_0(Q_0, \rho_0) \right\},$$ \hspace{1cm} (1)
On Mean Field Games

Optimal control problem of a typical agent: they predict the evolution of the whole population’s density, $\rho : [0, T_0] \to \mathcal{P}_2(\mathbb{R}^d)$ and for $(t, x) \in [0, T_0] \times \mathbb{R}^d$ solve

$$\tilde{u}(t, x) := \inf_{\mathcal{Q} : Q_t = x} \left\{ \int_0^t L(Q_s, \dot{Q}_s) + f(Q_s, \rho_s) \, ds + u_0(Q_0, \rho_0) \right\}, \quad (1)$$

Data: $L : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ Lagrangian function; $T_0 > 0$: time horizon; $f, u_0 : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ running- and the initial costs of the agents; $\mu \in \mathcal{P}_2(\mathbb{R}^d)$: distribution of the agents at time T_0.

Notations:
- $\mathcal{P}_2(\mathbb{R}^d) := \{ \mu \text{ Borel probability measure on } \mathbb{R}^d : \int_{\mathbb{R}^d} |x|^2 \, d\mu(x) < +\infty \}$;
- $\mathcal{B}_r := \{ \mu \in \mathcal{P}_2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |x|^2 \, d\mu(x) \leq r^2 \}$.
The value function formally solves a **Hamilton-Jacobi-Bellman equation**.

The density of the population is transported by the velocity field given by the optimal control $\alpha^* := D_p H(\cdot, D\tilde{u})$ in the above problem.

One arrives to the coupled system

\[
\begin{aligned}
\partial_t \tilde{u} + H(x, D\tilde{u}) &= f(x, \rho) \quad \text{in} \ (0, T_0) \times \mathbb{R}^d \\
\partial_t \rho + \nabla \cdot (\rho D_p H(x, D\tilde{u})) &= 0 \quad \text{in} \ (0, T_0) \times \mathbb{R}^d \\
\tilde{u}(0, x) &= u_0(x, \rho_0), \quad \rho(T_0, \cdot) = \mu \quad \text{in} \ \mathbb{R}^d.
\end{aligned}
\]
The MFG system

→ The value function formally solves a Hamilton-Jacobi-Bellman equation.

→ The density of the population is transported by the velocity field given by the optimal control \(\alpha^* := D_pH(\cdot, D\tilde{u}) \) in the above problem.

→ One arrives to the coupled system

\[
\begin{align*}
\partial_t \tilde{u} + H(x, D\tilde{u}) &= f(x, \rho) \quad \text{in } (0, T_0) \times \mathbb{R}^d \\
\partial_t \rho + \nabla \cdot (\rho D_p H(x, D\tilde{u})) &= 0 \quad \text{in } (0, T_0) \times \mathbb{R}^d \\
\tilde{u}(0, x) &= u_0(x, \rho_0), \quad \rho(T_0, \cdot) = \mu \quad \text{in } \mathbb{R}^d.
\end{align*}
\]

(MFG)

→ The Hamiltonian \(H : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \) is defined as \(H(x, \cdot) = L^*(x, \cdot) \).

→ A solution \((\tilde{u}, \rho)\) of the above system characterizes equilibrium situations.
The master equation associated to (MFG)

Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on $[0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$. It contains all information from (MFG), hence it fully characterizes Nash equilibria.

Let $T > 0$ be given. Define $u: [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ as $u(t, x, \rho) := \tilde{u}(t, x)$, $\forall (t, x, \rho) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$, where (\tilde{u}, ρ) is the solution of (MFG) with time horizon T and final agent distribution ρ.

We must have $u(t, x, \rho_t) = \tilde{u}(t, x)$, $\forall (t, x) \in [0, T] \times \mathbb{R}^d$.

Question: which equation does u satisfy?

Answer:

$$\partial_t u(t, x, \rho_t) = \partial_t \tilde{u}(t, x) = f(x, \rho_t) - H(x, D\tilde{u}) = f(x, \rho_t) - H(x, Dx u).$$

Need to identify $\partial_t u(t, x, \rho_t)$! We use the theory of optimal transport.
The master equation associated to (MFG)

Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on $[0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$.

It contains all information from (MFG), hence it fully characterizes Nash equilibria.
The master equation associated to (MFG)

→ Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on $[0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$.

→ It contains all information from (MFG), hence it fully characterizes Nash equilibria.

Its derivation

→ Let $T > 0$ be given. Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ as

$$u(T_0, x, \mu) := \tilde{u}(T_0, x), \ \forall (T_0, x, \mu) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d),$$

where (\tilde{u}, ρ) is the solution of (MFG) with time horizon T_0 and final agent distribution μ.
The master equation associated to (MFG)

→ Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on $[0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$.

→ It contains all information from (MFG), hence it fully characterizes Nash equilibria.

Its derivation

→ Let $T > 0$ be given. Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ as

$$u(T_0, x, \mu) := \tilde{u}(T_0, x), \quad \forall (T_0, x, \mu) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d),$$

where (\tilde{u}, ρ) is the solution of (MFG) with time horizon T_0 and final agent distribution μ.

→ We must have $u(t, x, \rho_t) = \tilde{u}(t, x), \quad \forall (t, x) \in [0, T_0] \times \mathbb{R}^d$.

→ Need to identify $\partial_t (u(t, x, \rho_t))$. We use the theory of optimal transport.
The master equation associated to (MFG)

→ Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on $[0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$.

→ It contains all information from (MFG), hence it fully characterizes Nash equilibria.

Its derivation

→ Let $T > 0$ be given. Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ as

$$u(T_0, x, \mu) := \tilde{u}(T_0, x), \forall (T_0, x, \mu) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d),$$

where (\tilde{u}, ρ) is the solution of (MFG) with time horizon T_0 and final agent distribution μ.

→ We must have $u(t, x, \rho_t) = \tilde{u}(t, x), \forall (t, x) \in [0, T_0] \times \mathbb{R}^d$.

→ Question: which equation does u satisfy?
The master equation associated to (MFG)

→ Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on $[0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$.

→ It contains all information from (MFG), hence it fully characterizes Nash equilibria.

Its derivation

→ Let $T > 0$ be given. Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ as

$$u(T_0, x, \mu) := \tilde{u}(T_0, x), \ \forall (T_0, x, \mu) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d),$$

where (\tilde{u}, ρ) is the solution of (MFG) with time horizon T_0 and final agent distribution μ.

→ We must have $u(t, x, \rho_t) = \tilde{u}(t, x), \ \forall (t, x) \in [0, T_0] \times \mathbb{R}^d$.

→ Question: which equation does u satisfy? Answer:

$$\partial_t(u(t, x, \rho_t)) = \partial_t\tilde{u}(t, x) = f(x, \rho_t) - H(x, D\tilde{u}) = f(x, \rho_t) - H(x, D_xu).$$
The master equation associated to (MFG)

→ Introduced by Lions in his lectures, this an nonlocal Hamilton-Jacobi equation set on \([0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)\).

→ It contains all information from (MFG), hence it fully characterizes Nash equilibria.

Its derivation

→ Let \(T > 0\) be given. Define \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}\) as

\[
 u(T_0, x, \mu) := \tilde{u}(T_0, x), \quad \forall (T_0, x, \mu) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d),
\]

where \((\tilde{u}, \rho)\) is the solution of (MFG) with time horizon \(T_0\) and final agent distribution \(\mu\).

→ We must have \(u(t, x, \rho_t) = \tilde{u}(t, x), \quad \forall (t, x) \in [0, T_0] \times \mathbb{R}^d\).

→ Question: which equation does \(u\) satisfy? Answer:

\[
 \partial_t(u(t, x, \rho_t)) = \partial_t\tilde{u}(t, x) = f(x, \rho_t) - H(x, D\tilde{u}) = f(x, \rho_t) - H(x, D_x u).
\]

→ Need to identify \(\partial_t(u(t, x, \rho_t))\)! We use the theory of optimal transport.
For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ we define the 2-Wasserstein distance W_2 as

$$W_2^2(\mu, \nu) := \inf \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \, d\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \right\}$$

$$= \inf \left\{ \int_{\Omega} |X(\omega) - Y(\omega)|^2 \, d\omega : X, Y \in H, X_\# \mathcal{L}^d \llcorner \Omega = \mu, Y_\# \mathcal{L}^d \llcorner \Omega = \nu \right\}.$$

Notations:

$\Pi(\mu, \nu) := \{ \gamma \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d), (\pi^x)_\# \gamma = \mu, (\pi^y)_\# \gamma = \nu \}$,

$\pi^x, \pi^y : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ are the canonical projections.

$\Pi_o(\mu, \nu) \subseteq \Pi(\mu, \nu)$: set of optimal plans.

For $T : \mathcal{X} \to \mathcal{Y}$ Borel function $T_\# \rho_0 = \rho_1$ means that $\rho_1(A) = \rho_0(T^{-1}(A))$ for any $A \subseteq \mathcal{Y}$ Borel set.

$\Omega := [0, 1]^d$, $H := L^2(\Omega; \mathbb{R}^d)$.

Revolutionary result from [Otto, CPDE, 2001] and [Ambrosio-Gigli-Savaré, Birkhäuser, Springer, 2005]: $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ has a differential geometric structure.

$\mathrm{Tan} \mu \mathcal{P}_2(\mathbb{R}^d) = \nabla C^\infty_c(\mathbb{R}^d) L^2 \mu$ and $\mathrm{T} \mathcal{P}_2(\mathbb{R}^d) = \bigcup_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \{ \mu \} \times \mathrm{Tan} \mu \mathcal{P}_2(\mathbb{R}^d)$.

\[\text{Brenier, CPAM, 1991}\]: if $\mu \in \mathcal{P}^{\text{ac}}_2(\mathbb{R}^d)$, then $\gamma_{\text{opt}} = (\text{id}, T)_\# \mu$, where $T = \nabla \Psi$, with $\Psi : \mathbb{R}^d \to \mathbb{R}$ convex.
For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ we define the 2-Wasserstein distance W_2 as

$$W_2^2(\mu, \nu) := \inf \left\{ \int \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \, \mathrm{d}\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \right\}$$

$$= \inf \left\{ \int_\Omega |X(\omega) - Y(\omega)|^2 \, \mathrm{d}\omega : X, Y \in \mathbb{H}, X_\# \mathcal{L}^d \subseteq \Omega = \mu, Y_\# \mathcal{L}^d \subseteq \Omega = \nu \right\}.$$

Notations:

- $\Pi(\mu, \nu) := \{ \gamma \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d), (\pi^x)_\# \gamma = \mu, (\pi^y)_\# \gamma = \nu \}$, $\pi^x, \pi^y : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ are the canonical projections.
- $\Pi_o(\mu, \nu) \subseteq \Pi(\mu, \nu)$: set of optimal plans.
- For $T : \mathcal{X} \rightarrow \mathcal{Y}$ Borel function $T_\# \rho_0 = \rho_1$ means that $\rho_1(A) = \rho_0(T^{-1}(A))$ for any $A \subseteq \mathcal{Y}$ Borel set.
- $\Omega := [0, 1)^d$, $\mathbb{H} := L^2(\Omega; \mathbb{R}^d)$.
- [Brenier, CPAM, 1991]: if $\mu \in \mathcal{P}^{\text{ac}}_2(\mathbb{R}^d)$, then $\gamma_{\text{opt}} = (\text{id}, T)_\# \mu$, where $T = \nabla \Psi$, with $\Psi : \mathbb{R}^d \rightarrow \mathbb{R}$ convex.
For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ we define the 2-Wasserstein distance W_2 as

$$W_2^2(\mu, \nu) := \inf \left\{ \int \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \, d\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \right\}$$

$$= \inf \left\{ \int_{\Omega} |X(\omega) - Y(\omega)|^2 \, d\omega : X, Y \in \mathbb{H}, X \# \mathcal{L}^d \upharpoonright \Omega = \mu, Y \# \mathcal{L}^d \upharpoonright \Omega = \nu \right\}.$$

Notations:

- $\Pi(\mu, \nu) := \{ \gamma \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d), (\pi^x)\# \gamma = \mu, (\pi^y)\# \gamma = \nu \}$, where $\pi^x, \pi^y : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ are the canonical projections.
- $\Pi_o(\mu, \nu) \subseteq \Pi(\mu, \nu)$: set of optimal plans.
- For $T : \mathcal{X} \to \mathcal{Y}$ Borel function $T\# \rho_0 = \rho_1$ means that $\rho_1(A) = \rho_0(T^{-1}(A))$ for any $A \subseteq \mathcal{Y}$ Borel set.
- $\Omega := [0, 1)^d$, $\mathbb{H} := L^2(\Omega; \mathbb{R}^d)$.
- [Brenier, CPAM, 1991]: if $\mu \in \mathcal{P}_2^{ac}(\mathbb{R}^d)$, then $\gamma_{opt} = (\text{id}, T)\# \mu$, where $T = \nabla \Psi$, with $\Psi : \mathbb{R}^d \to \mathbb{R}$ convex.
- Revolutionary result from [Otto, CPDE, 2001] and [Ambrosio-Gigli-Savaré, Birkhäuser, Springer, 2005]): $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ has a differential geometric structure.
OT toolbox

→ For \(\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d) \) we define the 2-Wasserstein distance \(W_2 \) as

\[
W_2^2(\mu, \nu) := \inf \left\{ \int\int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \, d\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \right\}
\]

\[
= \inf \left\{ \int_{\Omega} |X(\omega) - Y(\omega)|^2 \, d\omega : X, Y \in \mathbb{H}, X_#\mathcal{L}^d \subset \Omega = \mu, Y_#\mathcal{L}^d \subset \Omega = \nu \right\}.
\]

Notations:

→ \(\Pi(\mu, \nu) := \{ \gamma \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d), (\pi^x)_#\gamma = \mu, (\pi^y)_#\gamma = \nu \} \),

\(\pi^x, \pi^y : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \) are the canonical projections.

→ \(\Pi_o(\mu, \nu) \subseteq \Pi(\mu, \nu) \): set of optimal plans.

→ For \(T : \mathcal{X} \to \mathcal{Y} \) Borel function \(T_#\rho_0 = \rho_1 \) means that \(\rho_1(A) = \rho_0(T^{-1}(A)) \) for any \(A \subseteq \mathcal{Y} \) Borel set.

→ \(\Omega := [0, 1]^d, \mathbb{H} := L^2(\Omega; \mathbb{R}^d) \).

→ [Brenier, CPAM, 1991]: if \(\mu \in \mathcal{P}_2^{ac}(\mathbb{R}^d) \), then \(\gamma_{\text{opt}} = (\text{id}, T)_#\mu \), where \(T = \nabla \Psi \), with \(\Psi : \mathbb{R}^d \to \mathbb{R} \) convex.

→ Revolutionary result from [Otto, CPDE, 2001] and [Ambrosio-Gigli-Savaré, Birkhäuser, Springer, 2005]): \((\mathcal{P}_2(\mathbb{R}^d), W_2) \) has a differential geometric structure.

→ \(\text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d) = \nabla C_\infty(\mathbb{R}^d)_#\mu \) and \(\mathcal{T}\mathcal{P}_2(\mathbb{R}^d) = \bigcup_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \{ \mu \} \times \text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d) \).
Wasserstein gradients

Definition (Ambrosio-Gigli-Savaré, 2005; Gangbo-Tudorascu, JMPE, 2019)

Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. We say that $\xi \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d)$ belongs to the subdifferential of \mathcal{U} at μ, and we denote $\xi \in \partial^- \mathcal{U}(\mu)$, if for all $\nu \in \mathcal{P}_2(\mathbb{R}^d)$

$$\mathcal{U}(\nu) \geq \mathcal{U}(\mu) + \int_{\mathbb{R}^d \times \mathbb{R}^d} \xi(x) \cdot (y - x) \, d\gamma(x, y) + o(W_2(\mu, \nu)), \quad \forall \gamma \in \Pi_o(\mu, \nu).$$

The superdifferential of \mathcal{U} at μ is defined in a similar way and we have in particular that $\partial^+ \mathcal{U}(\mu) = -\partial^- \mathcal{U}(\mu)$.

We say that \mathcal{U} is differentiable at μ, if $\partial^- \mathcal{U}(\mu) \cap \partial^+ \mathcal{U}(\mu) \neq \emptyset$. In this case there exists a unique element $\xi \in \partial^- \mathcal{U}(\mu) \cap \partial^+ \mathcal{U}(\mu) \cap \text{Tan} \mu \mathcal{P}_2(\mathbb{R}^d)$ that we denote by $\nabla w \mathcal{U}(\mu)$.

Chain rule:

If $(\sigma_t)_{t \in (0,1)}$ is a geodesic curve (i.e. $\partial_t \sigma_t + \nabla \cdot (v \sigma_t) = 0$ with $\int_0^1 \int_{\mathbb{R}^d} |v|_2^2 \, d\sigma_t \, dt < +\infty$ and with $\|v_t\|_{\sigma_t}$ minimal for a.e. t) along which \mathcal{U} is differentiable, then

$$\frac{d}{dt} \mathcal{U}(\sigma_t) = \int_{\mathbb{R}^d} \nabla w \mathcal{U}(\sigma_t)(x) \cdot v_t(x) \, d\sigma_t(x),$$

$L^1 - a.e.$.
Wasserstein gradients

Definition (Ambrosio-Gigli-Savaré, 2005; Gangbo-Tudorascu, JMPE, 2019)

Let $U : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. We say that $\xi \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d)$ belongs to the subdifferential of U at μ, and we denote $\xi \in \partial^- U(\mu)$, if for all $\nu \in \mathcal{P}_2(\mathbb{R}^d)$

$$U(\nu) \geq U(\mu) + \int_{\mathbb{R}^d \times \mathbb{R}^d} \xi(x) \cdot (y - x) \, d\gamma(x, y) + o(W_2(\mu, \nu)), \ \forall \gamma \in \Pi_0(\mu, \nu).$$

\rightarrow The superdifferential of U at μ is defined in a similar way and we have in particular that $\partial^+ U(\mu) = -\partial^- (-U)(\mu)$.
Wasserstein gradients

Definition (Ambrosio-Gigli-Savaré, 2005; Gangbo-Tudorascu, JMPE, 2019)

Let \(U : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) and let \(\mu \in \mathcal{P}_2(\mathbb{R}^d) \). We say that \(\xi \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d) \) belongs to the subdifferential of \(U \) at \(\mu \), and we denote \(\xi \in \partial^- U(\mu) \), if for all \(\nu \in \mathcal{P}_2(\mathbb{R}^d) \)

\[
U(\nu) \geq U(\mu) + \int \int_{\mathbb{R}^d \times \mathbb{R}^d} \xi(x) \cdot (y - x) \, d\gamma(x, y) + o(W_2(\mu, \nu)), \quad \forall \gamma \in \Pi_o(\mu, \nu).
\]

→ The superdifferential of \(U \) at \(\mu \) is defined in a similar way and we have in particular that \(\partial^+ U(\mu) = -\partial^- (-U)(\mu) \).

→ We say that \(U \) is differentiable at \(\mu \), if \(\partial^- U(\mu) \cap \partial^+ U(\mu) \neq \emptyset \). In this case there exists a unique element \(\xi \in \partial^- U(\mu) \cap \partial^+ U(\mu) \cap \text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d) \) that we denote by \(\nabla_w U(\mu) \).
Wasserstein gradients

Definition (Ambrosio-Gigli-Savaré, 2005; Gangbo-Tudorascu, JMPE, 2019)

Let $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. We say that $\xi \in L^2_{\mu}(\mathbb{R}^d; \mathbb{R}^d)$ belongs to the subdifferential of \mathcal{U} at μ, and we denote $\xi \in \partial^-\mathcal{U}(\mu)$, if for all $\nu \in \mathcal{P}_2(\mathbb{R}^d)$

$$\mathcal{U}(\nu) \geq \mathcal{U}(\mu) + \int\int_{\mathbb{R}^d \times \mathbb{R}^d} \xi(x) \cdot (y - x) \, d\gamma(x, y) + o(W_2(\mu, \nu)), \quad \forall \gamma \in \Pi_o(\mu, \nu).$$

→ The superdifferential of \mathcal{U} at μ is defined in a similar way and we have in particular that $\partial^+\mathcal{U}(\mu) = -\partial^-(\mathcal{U})(\mu)$.

→ We say that \mathcal{U} is differentiable at μ, if $\partial^-\mathcal{U}(\mu) \cap \partial^+\mathcal{U}(\mu) \neq \emptyset$. In this case there exists a unique element $\xi \in \partial^-\mathcal{U}(\mu) \cap \partial^+\mathcal{U}(\mu) \cap \text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d)$ that we denote by $\nabla_w\mathcal{U}(\mu)$.

Chain rule:
→ If $(\sigma_t)_{t \in (0,1)}$ is a geodesic curve (i.e. $\partial_t \sigma + \nabla \cdot (v\sigma) = 0$ with $\int_0^1 \int_{\mathbb{R}^d} |v|^2 \, d\sigma_t \, dt < +\infty$ and with $\|v_t\|_{\sigma_t}$ minimal for a.e. t) along which \mathcal{U} is differentiable, then

$$\frac{d}{dt} \mathcal{U}(\sigma_t) = \int_{\mathbb{R}^d} \nabla_w\mathcal{U}(\sigma_t)(x) \cdot v_t(x) \, d\sigma_t(x), \quad \mathcal{L}^1 - \text{a.e. } t \in (0,1).$$
Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ be defined as

$$\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y),$$

where for $i = 0, 1$, $\varphi_i \in C^1(\mathbb{R}^d)$, has at most quadratic growth at infinity, with a gradient which has at most linear growth at infinity. Then \mathcal{U} is differentiable at any $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Let φ be even. We have

$$\nabla_w \mathcal{U}(\mu)(x) = D\varphi_0(x) + (D\varphi_1 * \mu)(x).$$
Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be defined as

$$
\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y),
$$

where for $i = 0, 1$, $\varphi_i \in C^1(\mathbb{R}^d)$, has at most quadratic growth at infinity, with a gradient which has at most linear growth at infinity. Then \mathcal{U} is differentiable at any $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Let φ be even. We have

$$
\nabla_w \mathcal{U}(\mu)(x) = D\varphi_0(x) + (D\varphi_1 * \mu)(x).
$$

$\nabla_w \mathcal{U}(\mu)(\cdot)$ is defined only on $\text{spt}(\mu)$! So, if we would like to speak about its value at generic $x \in \mathbb{R}^d$, we need to perform an extension first (if we can)!
Examples

Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be defined as

$$
\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y),
$$

where for $i = 0, 1$, $\varphi_i \in C^1(\mathbb{R}^d)$, has at most quadratic growth at infinity, with a gradient which has at most linear growth at infinity. Then \mathcal{U} is differentiable at any $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Let φ be even. We have

$$
\nabla_w \mathcal{U}(\mu)(x) = D\varphi_0(x) + (D\varphi_1 * \mu)(x).
$$

$\nabla_w \mathcal{U}(\mu)(\cdot)$ is defined only on $\text{spt}(\mu)$! So, if we would like to speak about its value at generic $x \in \mathbb{R}^d$, we need to perform an extension first (if we can)!

In the previous example, if $\varphi_1 \equiv 0$, and if φ_0 is differentiable on a bounded open set $B \subset \mathbb{R}^d$ and elsewhere not, $\nabla_w \mathcal{U}(\mu)(x) = D\varphi_0(x)$, provided $\text{spt}(\mu) \subseteq B$. Clearly, this object makes sense only for $x \in B$. If $\text{spt}(\mu) \setminus B \neq \emptyset$, \mathcal{U} is not differentiable at μ.

Back to the deterministic master equation

Now we can formally derive

$$\partial_t (u(t, x, \rho_t)) = \partial_t u(t, x, \rho_t) + \int_{\mathbb{R}^d} \nabla_w u(t, x, \rho_t)(z) \cdot D_p H(z, D_x u(t, z, \rho_t)) \, d\rho_t(z)$$

The master equation reads as

$$\begin{cases}
\partial_t u(t, x, \mu) + \int_{\mathbb{R}^d} \nabla_w u(t, x, \mu)(z) \cdot D_p H(z, D_x u(t, z, \mu)) \, d\mu(z) + H(x, D_x u(t, x, \mu)) = f(x, \mu), \\
u(0, x, \mu) = u_0(x, \mu), \quad \text{in } \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d).
\end{cases}$$

(Master)
Back to the deterministic master equation

→ Now we can formally derive

\[\partial_t(u(t, x, \rho_t)) = \partial_t u(t, x, \rho_t) + \int_{\mathbb{R}^d} \nabla_w u(t, x, \rho_t)(z) \cdot D_p H(z, D_x u(t, z, \rho_t)) \, d\rho_t(z) \]

→ The master equation reads as

\[
\begin{cases}
\partial_t u(t, x, \mu) + \int_{\mathbb{R}^d} \nabla_w u(t, x, \mu)(z) \cdot D_p H(z, D_x u(t, z, \mu)) \, d\mu(z) + H(x, D_x u(t, x, \mu)) = f(x, \mu), \\
\text{in } (0, T) \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d), \\
u(0, x, \mu) = u_0(x, \mu), \text{ in } \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d).
\end{cases}
\]

(Master)

→ An important application of master equations: serve as a tool to show the convergence of Nash equilibria of N–player differential game to solutions of MFGs, as \(N \to +\infty \). (cf. [Cardaliaguet-Delarue-Lasry-Lions, 2019]).
Back to the deterministic master equation

Now we can formally derive
\[\partial_t(u(t, x, \rho_t)) = \partial_t u(t, x, \rho_t) + \int_{\mathbb{R}^d} \nabla_w u(t, x, \rho_t)(z) \cdot D_p H(z, D_x u(t, z, \rho_t)) \, d\rho_t(z) \]

The master equation reads as
\[
\begin{cases}
\partial_t u(t, x, \mu) + \int_{\mathbb{R}^d} \nabla_w u(t, x, \mu)(z) \cdot D_p H(z, D_x u(t, z, \mu)) \, d\mu(z) + H(x, D_x u(t, x, \mu)) = f(x, \mu), \\
u(0, x, \mu) = u_0(x, \mu), \quad \text{in } \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d).
\end{cases}
\]

An important application of master equations: serve as a tool to show the convergence of Nash equilibria of \(N \)-player differential game to solutions of MFGs, as \(N \to +\infty \). (cf. [Cardaliaguet-Delarue-Lasry-Lions, 2019]).

Our objective:

Describe a class of data \(u_0, f, H \) for which one can find a classical solution \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) to (Master) for arbitrary large \(T > 0 \) (independent of the data)!
Literature on the problem

Deterministic case:
→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment);
 \(f, g \) smooth \(H(x, p) = \frac{1}{2}|p|^2 \) \(\rightarrow \) short time existence \((T \text{ depends on the data, and cannot be arbitrary large})\).
Literature on the problem

Deterministic case:

→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); f, g smooth $H(x, p) = \frac{1}{2}|p|^2 \rightarrow$ short time existence (T depends on the data, and cannot be arbitrary large).

→ [Mayorga, JDE, 2019]: generalizes the previous results for smooth H (even non-convex!) and not necessarily potential games; still short time existence.
Deterministic case:

→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); f, g smooth $H(x, p) = \frac{1}{2} |p|^2 \rightarrow$ short time existence (T depends on the data, and cannot be arbitrary large).

→ [Mayorga, JDE, 2019]: generalizes the previous results for smooth H (even non-convex!) and not necessarily potential games; still short time existence.

→ [Bensoussan-Yam, ESAIM:COCV, 2019]: Hilbert space techniques via optimal control (to be described); $H(x, p) = \frac{1}{2} |p|^2$ short time existence.
Literature on the problem

Deterministic case:
→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); f, g smooth $H(x, p) = \frac{1}{2}|p|^2 \rightarrow$ short time existence (T depends on the data, and cannot be arbitrary large).
→ [Mayorga, JDE, 2019]: generalizes the previous results for smooth H (even non-convex!) and not necessarily potential games; still short time existence.
→ [Bensoussan-Yam, ESAIM:COCV, 2019]: Hilbert space techniques via optimal control (to be described); $H(x, p) = \frac{1}{2}|p|^2$ short time existence.

In presence of individual and/or common noise:
→ [Cardaliaguet-Delarue-Lasry-Lions, Prin. Univ. Press, 2019]: PDE techniques; monotonicity assumption on f, g morally quadratic H; global well-posedness
→ [Bensoussan-Graber-Yam, arXiv, 2019]: (only individual noise), Hilbert space techniques via optimal control; $H(x, p) = \frac{1}{2}|p|^2$; short time existence;
→ [Chassagneux-Crisan-Delarue, Mem. AMS, 2020]: (only individual noise), probabilistic techniques; monotonicity assumption on f, g; global well-posedness.
→ [Mou-Zhang, arXiv, 2019]: monotonicity assumption on f, g; two notions of weak solutions; global well-posedness in that sense.
Literature on the problem

Deterministic case:
→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); f, g smooth $H(x, p) = \frac{1}{2} |p|^2 \rightarrow$ short time existence (T depends on the data, and cannot be arbitrary large).
→ [Mayorga, JDE, 2019]: generalizes the previous results for smooth H (even non-convex!) and not necessarily potential games; still short time existence.
→ [Bensoussan-Yam, ESAIM:COCV, 2019]: Hilbert space techniques via optimal control (to be described); $H(x, p) = \frac{1}{2} |p|^2$ short time existence.

In presence of individual and/or common noise:
→ [Cardaliaguet-Delarue-Lasry-Lions, Prin. Univ. Press, 2019]: PDE techniques; monotonicity assumption on f, g morally quadratic H; global well-posedness
→ [Carmona-Delarue, textbook, Vol II, 2018]: probabilistic techniques; monotonicity assumption on f, g; global well-posedness.
Literature on the problem

Deterministic case:
- [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); \(f, g \) smooth \(H(x, p) = \frac{1}{2} |p|^2 \) \(\rightarrow \) short time existence (\(T \) depends on the data, and cannot be arbitrary large).
- [Mayorga, JDE, 2019]: generalizes the previous results for smooth \(H \) (even non-convex!) and not necessarily potential games; still short time existence.
- [Bensoussan-Yam, ESAIM:COCV, 2019]: Hilbert space techniques via optimal control (to be described); \(H(x, p) = \frac{1}{2} |p|^2 \) short time existence.

In presence of individual and/or common noise:
- [Cardaliaguet-Delarue-Lasry-Lions, Prin. Univ. Press, 2019]: PDE techniques; monotonicity assumption on \(f, g \) morally quadratic \(H \); global well-posedness
- [Carmona-Delarue, textbook, Vol II, 2018]: probabilistic techniques; monotonicity assumption on \(f, g \); global well-posedness.
- [Bensoussan-Graber-Yam, arXiv, 2019]: (only individual noise), Hilbert space techniques via optimal control; \(H(x, p) = \frac{1}{2} |p|^2 \); short time existence;
- [Chassagneux-Crisan-Delarue, Mem. AMS, 2020]: (only individual noise), probabilistic techniques; monotonicity assumption on \(f, g \); global well-posedness in that sense.
- [Mou-Zhang, arXiv, 2019]: monotonicity assumption on \(f, g \); two notions of weak solutions; global well-posedness in that sense.
Literature on the problem

Deterministic case:
→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); f, g smooth $H(x, p) = \frac{1}{2}|p|^2 \rightarrow$ short time existence (T depends on the data, and cannot be arbitrary large).
→ [Mayorga, JDE, 2019]: generalizes the previous results for smooth H (even non-convex!) and not necessarily potential games; still short time existence.
→ [Bensoussan-Yam, ESAIM:COCV, 2019]: Hilbert space techniques via optimal control (to be described); $H(x, p) = \frac{1}{2}|p|^2$ short time existence.

In presence of individual and/or common noise:
→ [Cardaliaguet-Delarue-Lasry-Lions, Prin. Univ. Press, 2019]: PDE techniques; monotonicity assumption on f, g morally quadratic H; global well-posedness
→ [Carmona-Delarue, textbook, Vol II, 2018]: probabilistic techniques; monotonicity assumption on f, g; global well-posednes.
→ [Bensoussan-Graber-Yam, arXiv, 2019]: (only individual noise), Hilbert space techniques via optimal control; $H(x, p) = \frac{1}{2}|p|^2$; short time existence;
→ [Chassagneux-Crisan-Delarue, Mem. AMS, 2020]: (only individual noise), probabilistic techniques; monotonicity assumption on f, g; global well-posednes.
Literature on the problem

Deterministic case:

→ [Gangbo-Swiech, JDE, 2015]: potential games (to be described in a moment); f, g smooth $H(x, p) = \frac{1}{2}|p|^2 \rightarrow$ short time existence (T depends on the data, and cannot be arbitrary large).

→ [Mayorga, JDE, 2019]: generalizes the previous results for smooth H (even non-convex!) and not necessarily potential games; still short time existence.

→ [Bensoussan-Yam, ESAIM:COCV, 2019]: Hilbert space techniques via optimal control (to be described); $H(x, p) = \frac{1}{2}|p|^2$ short time existence.

In presence of individual and/or common noise:

→ [Cardaliaguet-Delarue-Lasry-Lions, Prin. Univ. Press, 2019]: PDE techniques; monotonicity assumption on f, g morally quadratic H; global well-posedness

→ [Carmona-Delarue, textbook, Vol II, 2018]: probabilistic techniques; monotonicity assumption on f, g; global well-posedness.

→ [Bensoussan-Graber-Yam, arXiv, 2019]: (only individual noise), Hilbert space techniques via optimal control; $H(x, p) = \frac{1}{2}|p|^2$; short time existence;

→ [Chassagneux-Crisan-Delarue, Mem. AMS, 2020]; (only individual noise), probabilistic techniques; monotonicity assumption on f, g; global well-posedness.

→ [Mou-Zhang, arXiv, 2019]: monotonicity assumption on f, g; two notions of weak solutions; global well-posedness in that sense.
Well-posedness of (Master) in the potential case

→ The lack of non-degenerate diffusion in (MFG) makes impossible to use PDE techniques to show the well-posedness of deterministic master equations.
Well-posedness of (Master) in the potential case

→ The lack of non-degenerate diffusion in (MFG) makes impossible to use PDE techniques to show the well-posedness of deterministic master equations.

→ A possible alternative way: use directly the method of characteristics linked to the infinite dimensional optimal control problems to get the necessary regularity estimates (at least in the potential game setting).
The lack of non-degenerate diffusion in (MFG) makes impossible to use PDE techniques to show the well-posedness of deterministic master equations.

A possible alternative way: use directly the method of characteristics linked to the infinite dimensional optimal control problems to get the necessary regularity estimates (at least in the potential game setting).

Potential game setting

Suppose that \(\exists F, U_0 : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) of class \(C^1 \) such that

\[
D_x f(x, \mu) = \nabla_w F(\mu)(x) \quad \text{and} \quad D_x u_0(x, \mu) = \nabla_w U_0(\mu)(x), \quad \forall (x, \mu) \in \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d).
\]
Well-posedness of (Master) in the potential case

→ The lack of non-degenerate diffusion in (MFG) makes impossible to use PDE techniques to show the well-posedness of deterministic master equations.

→ A possible alternative way: use directly the method of characteristics linked to the infinite dimensional optimal control problems to get the necessary regularity estimates (at least in the potential game setting).

Potential game setting

→ Suppose that $\exists F, U_0 : \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ of class C^1 such that

$$D_x f(x, \mu) = \nabla_w F(\mu)(x) \text{ and } D_x u_0(x, \mu) = \nabla_w U_0(\mu)(x), \forall (x, \mu) \in \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d).$$

→ Define $\mathcal{H}, \mathcal{L} : \bigcup_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \{\mu\} \times L^2_{\mu}(\mathbb{R}^d; \mathbb{R}^d)$ as

$$\mathcal{H}(\mu, \xi) := \int_{\mathbb{R}^d} H(x, \xi(x)) \, d\mu(x) \text{ and } \mathcal{L}(\mu, \zeta) = \int_{\mathbb{R}^d} L(x, \zeta(x)) \, d\mu(x).$$
The optimal control problem

\[\mathcal{U}(t, \mu) := \inf \left\{ \mathcal{U}_0(\sigma_0) + \int_0^t \mathcal{L}(\sigma_s, v_s) + \mathcal{F}(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \, \sigma_t = \mu \right\} \] (HL-\(P_2\))

→ Solve the optimal control problem

GOAL: show that \(\mathcal{U} \) is a classical solution to the corresponding HJB equation, and there exists \(u : [0, T] \times \mathbb{R}^d \times P_2(\mathbb{R}^d) \to \mathbb{R} \) regular enough such that

\[\nabla w \mathcal{U}(t, \mu)(x) = D_x u(t, x, \mu) \] (formally)

Then \(u \) is a candidate for the solution to (Master).

→ The equation satisfied formally by \(\mathcal{U} \) reads as

\[\begin{align*}
\partial_t \mathcal{U}(t, \mu) + H(\mu, \nabla w \mathcal{U}(t, \mu)) &= F(\mu), \\
\mathcal{U}(0, \mu) &= \mathcal{U}_0(\mu), \\
\text{in } (0, T) \times P_2(\mathbb{R}^d), \\
\text{in } P_2(\mathbb{R}^d).
\end{align*} \] (HJB-\(P_2\))

→ It is not hard to show that \(\mathcal{U} \), as the value function is locally Lipschitz and locally displacement semi-concave (see [Gangbo-Swiech, 2015], [Gangbo-Nguyen-Tudorascu, 2008]).

→ Question: how do we get further regularity? Since we are aiming for \(u \) to be differentiable w.r.t. \(\mu \), it is necessary to have \(\mathcal{U} \) twice differentiable w.r.t. \(\mu \).
The optimal control problem

→ Solve the optimal control problem

\[\mathcal{U}(t, \mu) := \inf \left\{ \mathcal{U}_0(\sigma_0) + \int_0^t \mathcal{L}(\sigma_s, v_s) + \mathcal{F}(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \sigma_t = \mu \right\} \] \hspace{1cm} (\text{HL-} \mathcal{P}_2)

→ \textbf{GOAL:} show that \(\mathcal{U} \) is a \textbf{classical solution} to the corresponding HJB equation,
The optimal control problem

→ Solve the optimal control problem

\[U(t, \mu) := \inf \left\{ U_0(\sigma_0) + \int_0^t L(\sigma_s, v_s) + F(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \sigma_t = \mu \right\} \] \hspace{1cm} \text{(HL-\(\mathcal{P}_2\))}

→ GOAL: show that \(U\) is a classical solution to the corresponding HJB equation, and there exists \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}\) regular enough
The optimal control problem

→ Solve the optimal control problem

\[U(t, \mu) := \inf \left\{ U_0(\sigma_0) + \int_0^t \mathcal{L}(\sigma_s, v_s) + \mathcal{F}(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \sigma_t = \mu \right\} \quad \text{(HL-P}_2) \]

→ GOAL: show that \(U \) is a classical solution to the corresponding HJB equation, and there exists \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) regular enough such that \(\nabla_w U(t, \mu)(x) = D_x u(t, x, \mu) \) (formally “\(\delta_\mu U(t, \mu)(x) = u(t, x, \mu) \)”).
The optimal control problem

→ Solve the optimal control problem

\[U(t, \mu) := \inf \left\{ U_0(\sigma_0) + \int_0^t \mathcal{L}(\sigma_s, v_s) + \mathcal{F}(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \, \sigma_t = \mu \right\} \] \hspace{1cm} \text{(HL-\(\mathcal{P}_2\))}

→ \textbf{GOAL:} show that \(U\) is a classical solution to the corresponding HJB equation, and there exists \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}\) regular enough such that

\[\nabla_w U(t, \mu)(x) = D_x u(t, x, \mu) \] \hspace{1cm} \text{(formally “}\delta_\mu U(t, \mu)(x) = u(t, x, \mu)”\text{”). Then \(u\) is a candidate for the solution to \text{(Master).} \]
The optimal control problem

→ Solve the optimal control problem
\[U(t, \mu) := \inf \left\{ U_0(\sigma_0) + \int_0^t L(\sigma_s, v_s) + F(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \, \sigma_t = \mu \right\} \] (HL-\(P_2\))

→ GOAL: show that \(U \) is a classical solution to the corresponding HJB equation, and there exists \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R} \) regular enough such that \(\nabla_w U(t, \mu)(x) = D_x u(t, x, \mu) \) (formally “\(\delta_\mu U(t, \mu)(x) = u(t, x, \mu) \)”). Then \(u \) is a candidate for the solution to (Master).

→ The equation satisfied formally by \(U \) reads as
\[
\begin{cases}
\partial_t U(t, \mu) + H(\mu, \nabla_w U(t, \mu)) = F(\mu), & \text{in } (0, T) \times \mathcal{P}_2(\mathbb{R}^d), \\
U(0, \mu) = U_0(\mu), & \text{in } \mathcal{P}_2(\mathbb{R}^d).
\end{cases}
\] (HJB-\(P_2\))
The optimal control problem

→ Solve the optimal control problem

$$U(t, \mu) := \inf \left \{ U_0(\sigma_0) + \int_0^t \mathcal{L}(\sigma_s, v_s) + \mathcal{F}(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \sigma_t = \mu \right \} \quad \text{(HL-} \mathcal{P}_2)$$

→ **GOAL**: show that U is a classical solution to the corresponding HJB equation, and there exists $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ regular enough such that

$$\nabla_w U(t, \mu)(x) = D_x u(t, x, \mu)$$

(formally “$\delta_{\mu} U(t, \mu)(x) = u(t, x, \mu)$”). Then u is a candidate for the solution to (Master).

→ The equation satisfied formally by U reads as

$$\begin{cases}
 \partial_t U(t, \mu) + \mathcal{H}(\mu, \nabla_w U(t, \mu)) = \mathcal{F}(\mu), & \text{in } (0, T) \times \mathcal{P}_2(\mathbb{R}^d), \\
 U(0, \mu) = U_0(\mu), & \text{in } \mathcal{P}_2(\mathbb{R}^d).
\end{cases} \quad \text{(HJB-} \mathcal{P}_2)$$

→ It is not hard to show that U, as the value function is locally Lipschitz and locally displacement semi-concave (see [Gangbo-Swiech, 2015], [Gangbo-Nguyen-Tudorascu, 2008]).
The optimal control problem

→ Solve the optimal control problem

\[U(t, \mu) := \inf \left\{ U_0(\sigma_0) + \int_0^t \mathcal{L}(\sigma_s, v_s) + \mathcal{F}(\sigma_s) \, ds : \partial_s \sigma + \nabla \cdot (v \sigma) = 0, \, \sigma_t = \mu \right\} \quad (\text{HL-} \mathcal{P}_2) \]

→ **GOAL:** show that \(U \) is a classical solution to the corresponding HJB equation, and there exists \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) regular enough such that

\[\nabla_w U(t, \mu)(x) = D_x u(t, x, \mu) \] (formally “\(\delta_\mu U(t, \mu)(x) = u(t, x, \mu) \)”). Then \(u \) is a candidate for the solution to (Master).

→ The equation satisfied formally by \(U \) reads as

\[\begin{cases}
\partial_t U(t, \mu) + \mathcal{H}(\mu, \nabla_w U(t, \mu)) = \mathcal{F}(\mu), & \text{in } (0, T) \times \mathcal{P}_2(\mathbb{R}^d), \\
U(0, \mu) = U_0(\mu), & \text{in } \mathcal{P}_2(\mathbb{R}^d).
\end{cases} \quad (\text{HJB-} \mathcal{P}_2) \]

→ It is not hard to show that \(U \), as the value function is locally Lipschitz and locally displacement semi-concave (see [Gangbo-Swiech, 2015], [Gangbo-Nguyen-Tudorascu, 2008]).

→ **Question:** how do we get further regularity? Since we are aiming for \(u \) to be differentiable w.r.t. \(\mu \), it is necessary to have \(U \) twice differentiable w.r.t. \(\mu \).
Candidate for the solution to (Master):

→ Suppose that \((\sigma_s)_{s \in [0, t]}\) with \(\sigma_t = \mu\) is the unique minimizer in (HL-\(\mathcal{P}_2\)).

→ Define \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)\) as

\[
 u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \, \gamma_t = x \right\}.
\]
Master equations from (HL-\mathcal{P}_2) – the scalar case

Candidate for the solution to (Master):

→ Suppose that $(\sigma_s)_{s \in [0,t]}$ with $\sigma_t = \mu$ is the unique minimizer in (HL-\mathcal{P}_2).

→ Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ as

$$u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \, \gamma_t = x \right\}.$$

→ Notice that $u(t, \cdot, \mu)$ is defined for all $x \in \mathbb{R}^d$ (not only for $x \in \text{spt}(\mu)$).
Master equations from (HL-\mathcal{P}_2) – the scalar case

Candidate for the solution to (Master):

→ Suppose that $(\sigma_s)_{s \in [0,t]}$ with $\sigma_t = \mu$ is the unique minimizer in (HL-\mathcal{P}_2).

→ Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ as

$$u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \gamma_t = x \right\}. $$

→ Notice that $u(t, \cdot, \mu)$ is defined for all $x \in \mathbb{R}^d$ (not only for $x \in \text{spt}(\mu)$).

→ The regularity of $u(\cdot, \cdot, \mu)$ can be studied by classical methods.
Master equations from (HL-\mathcal{P}_2) – the scalar case

Candidate for the solution to (Master):

→ Suppose that $(\sigma_s)_{s \in [0, t]}$ with $\sigma_t = \mu$ is the unique minimizer in (HL-\mathcal{P}_2).

→ Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ as

\[
u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \gamma_t = x \right\}.
\]

→ Notice that $u(t, \cdot, \mu)$ is defined for all $x \in \mathbb{R}^d$ (not only for $x \in \text{spt}(\mu)$).

→ The regularity of $u(\cdot, \cdot, \mu)$ can be studied by classical methods.

→ Suppose that $u(s, \cdot, \sigma_s)$ is differentiable. Then $\dot{\gamma}_s = D_pH(\gamma_s, D_xu(s, \gamma_s, \sigma_s))$.
Master equations from (HL-\mathcal{P}_2) – the scalar case

Candidate for the solution to (Master):

→ Suppose that $(\sigma_s)_{s \in [0, t]}$ with $\sigma_t = \mu$ is the unique minimizer in (HL-\mathcal{P}_2).

→ Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ as

$$u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \gamma_t = x \right\}.$$

→ Notice that $u(t, \cdot, \mu)$ is defined for all $x \in \mathbb{R}^d$ (not only for $x \in \text{spt}(\mu)$).

→ The regularity of $u(\cdot, \cdot, \mu)$ can be studied by classical methods.

→ Suppose that $u(s, \cdot, \sigma_s)$ is differentiable. Then $\dot{\gamma}_s = D_pH(\gamma_s, D_xu(s, \gamma_s, \sigma_s))$.

→ Suppose that $U(s, \cdot)$ is differentiable. Then $\partial_s \sigma_s + \nabla \cdot (\sigma_s D_pH(\cdot, \nabla_w U(s, \sigma_s)(\cdot))) = 0$.

→ Suppose that $\mathcal{U}(s, \cdot)$ is differentiable. Then $\partial_s \sigma_s + \nabla \cdot (\sigma_s D_pH(\cdot, \nabla_w \mathcal{U}(s, \sigma_s)(\cdot))) = 0$.

→ Thus, if $x \in \text{spt}(\mu)$, the strict convexity of $H(y, \cdot)$ yields $D_xu(s, \gamma_s, \sigma_s) = \nabla_w U(s, \sigma_s)(\gamma_s)$.

→ So, one formally has $D_xu(s, \cdot, \mu) = \nabla_w U(s, \mu)(\cdot)$ on $\text{spt}(\mu)$.

→ Therefore, $D_xu(s, \cdot, \mu)$ would produce a natural extension for $\nabla_w U(s, \mu)(\cdot)$ to the whole \mathbb{R}^d!
Master equations from (HL-\mathcal{P}_2) – the scalar case

Candidate for the solution to (Master):

→ Suppose that \((\sigma_s)_{s\in[0,t]}\) with \(\sigma_t = \mu\) is the unique minimizer in (HL-\mathcal{P}_2).

→ Define \(u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)\) as

\[
\begin{align*}
u(t, x, \mu) &:= \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \gamma_t = x \right\}.
\end{align*}
\]

→ Notice that \(u(t, \cdot, \mu)\) is defined for all \(x \in \mathbb{R}^d\) (not only for \(x \in \text{spt}(\mu)\)).

→ The regularity of \(u(\cdot, \cdot, \mu)\) can be studied by classical methods.

→ Suppose that \(u(s, \cdot, \sigma_s)\) is differentiable. Then \(\dot{\gamma}_s = D_pH(\gamma_s, D_xu(s, \gamma_s, \sigma_s))\).

→ Suppose that \(\mathcal{U}(s, \cdot)\) is differentiable. Then \(\partial_s \sigma_s + \nabla \cdot (\sigma_s D_pH(\cdot, \nabla_w \mathcal{U}(s, \sigma_s)(\cdot))) = 0\).

→ Thus, if \(x \in \text{spt}(\mu)\), the strict convexity of \(H(y, \cdot)\) yields

\[
D_xu(s, \gamma_s, \sigma_s) = \nabla_w \mathcal{U}(s, \sigma_s)(\gamma_s).
\]
Master equations from (HL-\mathcal{P}_2) – the scalar case

Candidate for the solution to (Master):

→ Suppose that $(\sigma_s)_{s \in [0, t]}$ with $\sigma_t = \mu$ is the unique minimizer in (HL-\mathcal{P}_2).

→ Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ as

$$u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \gamma_t = x \right\}.$$

→ Notice that $u(t, \cdot, \mu)$ is defined for all $x \in \mathbb{R}^d$ (not only for $x \in \text{spt}(\mu)$).

→ The regularity of $u(\cdot, \cdot, \mu)$ can be studied by classical methods.

→ Suppose that $u(s, \cdot, \sigma_s)$ is differentiable. Then $\dot{\gamma}_s = D_pH(\gamma_s, D_xu(s, \gamma_s, \sigma_s))$.

→ Suppose that $\mathcal{U}(s, \cdot)$ is differentiable. Then $\partial_s \sigma_s + \nabla \cdot (\sigma_s D_pH(\cdot, \nabla \mathcal{U}(s, \sigma_s)(\cdot))) = 0$.

→ Thus, if $x \in \text{spt}(\mu)$, the strict convexity of $H(y, \cdot)$ yields

$$D_xu(s, \gamma_s, \sigma_s) = \nabla \mathcal{U}(s, \sigma_s)(\gamma_s).$$

→ So, one formally has $D_xu(s, \cdot, \mu) = \nabla \mathcal{U}(s, \mu)(\cdot)$ on $\text{spt}(\mu)$.
Candidate for the solution to (Master):

→ Suppose that $(\sigma_s)_{s \in [0, t]}$ with $\sigma_t = \mu$ is the unique minimizer in (HL-\mathcal{P}_2).

→ Define $u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ as

\[
\begin{aligned}
 u(t, x, \mu) := \inf \left\{ u_0(\gamma_0, \sigma_0) + \int_0^t L(\gamma_s, \dot{\gamma}_s) + f(\gamma_s, \sigma_s) \, ds : \gamma \in W^{1,2}([0, t]; \mathbb{R}^d), \, \gamma_t = x \right\}.
\end{aligned}
\]

→ Notice that $u(t, \cdot, \mu)$ is defined for all $x \in \mathbb{R}^d$ (not only for $x \in \text{spt}(\mu)$).

→ The regularity of $u(\cdot, \cdot, \mu)$ can be studied by classical methods.

→ Suppose that $u(s, \cdot, \sigma_s)$ is differentiable. Then $\dot{\gamma}_s = D_pH(\gamma_s, D_xu(s, \gamma_s, \sigma_s))$.

→ Suppose that $U(s, \cdot)$ is differentiable. Then $\partial_s \sigma_s + \nabla \cdot (\sigma_s D_pH(\cdot, \nabla wU(s, \sigma_s)(\cdot))) = 0$.

→ Thus, if $x \in \text{spt}(\mu)$, the strict convexity of $H(y, \cdot)$ yields

\[
D_xu(s, \gamma_s, \sigma_s) = \nabla wU(s, \sigma_s)(\gamma_s).
\]

→ So, one formally has $D_xu(s, \cdot, \mu) = \nabla wU(s, \mu)(\cdot)$ on $\text{spt}(\mu)$.

→ Therefore, $D_xu(s, \cdot, \mu)$ would produce a natural extension for $\nabla wU(s, \mu)(\cdot)$ to the whole \mathbb{R}^d!
Master equations from (HL-\(\mathcal{P}_2\)) – the vectorial case

→ Take \(\nabla_w\) of (HJB-\(\mathcal{P}_2\)) to get

\[
\partial_s \nabla_w U(s, \mu)(x) + D_x H(x, \nabla_w U(s, \mu)(x)) + D_x \nabla_w U(s, \mu)(x) D_p H(x, \nabla_w U(s, \mu)(x)) \\
+ \int_{\mathbb{R}^d} D^2_{ww} U(s, \mu)(x, y) D_p H(y, \nabla_w U(s, \mu)(y)) \, d\mu(y) = \nabla_w F(\mu)(x).
\]
Master equations from (HL-\mathcal{P}_2) – the vectorial case

\rightarrow Take ∇_w of (HJB-\mathcal{P}_2) to get

$$
\partial_s \nabla_w U(s, \mu)(x) + D_x H(x, \nabla_w U(s, \mu)(x)) + D_x \nabla_w U(s, \mu)(x)D_p H(x, \nabla_w U(s, \mu)(x)) \\
+ \int_{\mathbb{R}^d} D^2_{ww} U(s, \mu)(x, y)D_p H(y, \nabla_w U(s, \mu)(y)) \, d\mu(y) = \nabla_w F(\mu)(x).
$$

\rightarrow By setting $\mathcal{V}(s, x, \mu) := \nabla_w U(s, \mu)(x)$, this would correspond to the so-called ‘vectorial master equation’.

GOAL: obtain the necessary regularity on both U and u which let us justify the previous heuristic arguments!
Master equations from (HL-\mathcal{P}_2) – the vectorial case

→ Take ∇_w of (HJB-\mathcal{P}_2) to get

$$
\partial_s \nabla_w \mathcal{U}(s, \mu)(x) + D_x H(x, \nabla_w \mathcal{U}(s, \mu)(x)) + D_x \nabla_w \mathcal{U}(s, \mu)(x)D_p H(x, \nabla_w \mathcal{U}(s, \mu)(x))
$$

$$
+ \int_{\mathbb{R}^d} D_{ww} \mathcal{U}(s, \mu)(x, y)D_p H(y, \nabla_w \mathcal{U}(s, \mu)(y)) \, d\mu(y) = \nabla_w \mathcal{F} (\mu)(x).
$$

→ By setting $\mathcal{V}(s, x, \mu) := \nabla_w \mathcal{U}(s, \mu)(x)$, this would correspond to the so-called ‘vectorial master equation’.

→ Notice that $\mathcal{V}(s, \cdot, \mu)$ is only defined on spt(\mu).
Master equations from (HL-\mathcal{P}_2) – the vectorial case

→ Take ∇_w of (HJB-\mathcal{P}_2) to get

$$\partial_s \nabla_w U(s, \mu)(x) + D_x H(x, \nabla_w U(s, \mu)(x)) + D_x \nabla_w U(s, \mu)(x) D_p H(x, \nabla_w U(s, \mu)(x))$$

$$+ \int_{\mathbb{R}^d} D_{ww}^2 U(s, \mu)(x, y) D_p H(y, \nabla_w U(s, \mu)(y)) \, d\mu(y) = \nabla_w F(\mu)(x).$$

→ By setting $\mathcal{V}(s, x, \mu) := \nabla_w U(s, \mu)(x)$, this would correspond to the so-called ‘vectorial master equation’.

→ Notice that $\mathcal{V}(s, \cdot, \mu)$ is only defined on spt(μ).

→ By the previous connection between $D_x u$ and $\nabla_w U$, $D_x u$ would define a solution to the vectorial master equation which is defined for all $x \in \mathbb{R}^d$.
Master equations from (HL-\mathcal{P}_2) – the vectorial case

→ Take ∇_w of (HJB-\mathcal{P}_2) to get

$$\partial_s \nabla_w \mathcal{U}(s, \mu)(x) + D_x H(x, \nabla_w \mathcal{U}(s, \mu)(x)) + D_x \nabla_w \mathcal{U}(s, \mu)(x)D_p H(x, \nabla_w \mathcal{U}(s, \mu)(x))$$

$$+ \int_{\mathbb{R}^d} D_{ww} \mathcal{U}(s, \mu)(x, y)D_p H(y, \nabla_w \mathcal{U}(s, \mu)(y)) \, d\mu(y) = \nabla_w \mathcal{F}(\mu)(x).$$

→ By setting $\mathcal{V}(s, x, \mu) := \nabla_w \mathcal{U}(s, \mu)(x)$, this would correspond to the so-called ‘vectorial master equation’.

→ Notice that $\mathcal{V}(s, \cdot, \mu)$ is only defined on $\text{spt}(\mu)$.

→ By the previous connection between $D_x u$ and $\nabla_w \mathcal{U}$, $D_x u$ would define a solution to the vectorial master equation which is defined for all $x \in \mathbb{R}^d$.

GOAL: obtain the necessary regularity on both \mathcal{U} and u which let us justify the previous heuristic arguments!
Recall, $\Omega = [0, 1)^d$ and $H = L^2(\Omega; \mathbb{R}^d)$. We define $\tilde{F}, \tilde{U}_0 : H \rightarrow \mathbb{R}$ and $\tilde{H}, \tilde{L} : H \times H \rightarrow \mathbb{R}$ as

$$\tilde{F}(X) := F(X_\# \mathcal{L}^d \downarrow \Omega) \text{ and } \tilde{U}_0(X) := U_0(X_\# \mathcal{L}^d \downarrow \Omega), \ \forall X \in H,$$
Lift of HJB from \((\mathcal{P}_2(\mathbb{R}^d), W_2)\) to \(\mathbb{H}\)

Recall, \(\Omega = [0, 1)^d\) and \(\mathbb{H} = L^2(\Omega; \mathbb{R}^d)\). We define \(\tilde{F}, \tilde{U}_0 : \mathbb{H} \to \mathbb{R}\) and \(\tilde{H}, \tilde{L} : \mathbb{H} \times \mathbb{H} \to \mathbb{R}\) as

\[
\tilde{F}(X) := F(X#L^d \upharpoonright \Omega) \quad \text{and} \quad \tilde{U}_0(X) := U_0(X#L^d \upharpoonright \Omega), \quad \forall X \in \mathbb{H},
\]

and

\[
\tilde{H}(X, \xi) := \int_\Omega H(X(\omega), \xi(\omega)) \, d\omega \quad \text{and} \quad \tilde{L}(X, \zeta) = \int_\Omega L(X(\omega), \zeta(\omega)) \, d\omega.
\]

In fact, we have \(\mathcal{P}_2(\mathbb{R}^d) = \mathbb{H}/\sim\), where \(X \sim Y\), if \(X#L^d \upharpoonright \Omega = Y#L^d \upharpoonright \Omega\).
Lift of HJB from \(\mathcal{P}_2(\mathbb{R}^d), W_2 \) to \(\mathbb{H} \)

→ Recall, \(\Omega = [0, 1)^d \) and \(\mathbb{H} = L^2(\Omega; \mathbb{R}^d) \). We define \(\tilde{F}, \tilde{U}_0 : \mathbb{H} \to \mathbb{R} \) and \(\tilde{H}, \tilde{L} : \mathbb{H} \times \mathbb{H} \to \mathbb{R} \) as

\[
\tilde{F}(X) := F(X \# \mathcal{L}^d \sqsubset \Omega) \quad \text{and} \quad \tilde{U}_0(X) := U_0(X \# \mathcal{L}^d \sqsubset \Omega), \quad \forall \, X \in \mathbb{H},
\]

and

\[
\tilde{H}(X, \xi) := \int_{\Omega} H(X(\omega), \xi(\omega)) \, d\omega \quad \text{and} \quad \tilde{L}(X, \zeta) = \int_{\Omega} L(X(\omega), \zeta(\omega)) \, d\omega.
\]

→ In fact, we have \(\mathcal{P}_2(\mathbb{R}^d) = \mathbb{H}/\sim \), where \(X \sim Y \), if \(X \# \mathcal{L}^d \sqsubset \Omega = Y \# \mathcal{L}^d \sqsubset \Omega \).

→ Solve the optimal control problem

\[
\tilde{U}(t, X) := \inf \left\{ \tilde{U}_0(X_0) + \int_0^t \tilde{L}(X_s, \dot{X}_s) + \tilde{F}(X_s) \, ds : X_t = X \right\} \quad (\text{HL-}\mathbb{H})
\]
Lift of HJB from \((\mathcal{P}_2(\mathbb{R}^d), W_2)\) to \(\mathcal{H}\)

→ Recall, \(\Omega = [0, 1)^d\) and \(\mathcal{H} = L^2(\Omega; \mathbb{R}^d)\). We define \(\tilde{\mathcal{F}}, \tilde{U}_0 : \mathcal{H} \to \mathbb{R}\) and \(\tilde{\mathcal{H}}, \tilde{\mathcal{L}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}\) as

\[
\tilde{\mathcal{F}}(X) := \mathcal{F}(X_\# \mathcal{L}^d \subseteq \Omega) \quad \text{and} \quad \tilde{U}_0(X) := U_0(X_\# \mathcal{L}^d \subseteq \Omega), \quad \forall X \in \mathcal{H},
\]

and

\[
\tilde{\mathcal{H}}(X, \xi) := \int_{\Omega} H(X(\omega), \xi(\omega)) \, d\omega \quad \text{and} \quad \tilde{\mathcal{L}}(X, \zeta) = \int_{\Omega} L(X(\omega), \zeta(\omega)) \, d\omega.
\]

→ In fact, we have \(\mathcal{P}_2(\mathbb{R}^d) = \mathcal{H}/\sim\), where \(X \sim Y\), if \(X_\# \mathcal{L}^d \subseteq \Omega = Y_\# \mathcal{L}^d \subseteq \Omega\).

→ Solve the optimal control problem

\[
\tilde{U}(t, X) := \inf \left\{ \tilde{U}_0(X_0) + \int_0^t \tilde{\mathcal{L}}(X_s, \dot{X}_s) + \tilde{\mathcal{F}}(X_s) \, ds : X_t = X \right\}
\]

(\text{HL-\mathcal{H}})

→ Remark: since the data \(\tilde{\mathcal{F}}, \tilde{U}_0, \tilde{\mathcal{L}}\) are rearrangement invariants, so is \(\tilde{U}(t, \cdot)\) (this means \(\tilde{\mathcal{F}}(X) = \tilde{\mathcal{F}}(Y)\), whenever \(X \sim Y\)).
Important links between the control problems and HJB equations

→ Under reasonable assumptions ($\tilde{\mathcal{L}}$ is convex in the second variable, regular enough, bounded from below, \tilde{F}, \tilde{U}_0 are bounded below and regular), the control problem (HL-\mathcal{H}) has a solution (at least for short time).
Important links between the control problems and HJB equations

→ Under reasonable assumptions (\(\tilde{\mathcal{L}}\) is convex in the second variable, regular enough, bounded from below, \(\tilde{\mathcal{F}}, \tilde{\mathcal{U}}_0\) are bounded below and regular), the control problem (HL-H) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that \(\tilde{\mathcal{U}}\) is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

\[
\begin{align*}
\partial_t \tilde{\mathcal{U}}(t, X) + \tilde{\mathcal{H}}(X, \nabla \tilde{\mathcal{U}}(t, X)) &= \tilde{\mathcal{F}}(X), & \text{in } (0, T) \times \mathbb{H}, \\
\tilde{\mathcal{U}}(0, X) &= \tilde{\mathcal{U}}_0(X), & \text{in } \mathbb{H}.
\end{align*}
\]

(HJB-H)

→ Furthermore, we have the correspondence \(\tilde{\mathcal{U}}(t, X) = \mathcal{U}(t, \tilde{L}d \Omega)\).

→ And so, [Gangbo-Tudorascu, 2018] implies that \(\mathcal{U}\) is a viscosity solution to (HJB-H).

→ Moreover, \(\mathcal{U}(t, \cdot)\) is differentiable at \(\mu\) if and only if \(\tilde{\mathcal{U}}(t, \cdot)\) is differentiable at \(X\), for any \(X\) s.t. \(X \tilde{L}d \Omega\).

→ In this case \(\nabla \tilde{\mathcal{U}}(t, X) = \nabla \mathcal{U}(t, \mu) \circ X\).

→ A similar observation was made by Lions in his lectures.
Important links between the control problems and HJB equations

→ Under reasonable assumptions (\(\tilde{L}\) is convex in the second variable, regular enough, bounded from below, \(\tilde{F}, \tilde{U}_0\) are bounded below and regular), the control problem (HL-\(\mathbb{H}\)) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that \(\tilde{U}\) is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

\[
\begin{aligned}
\partial_t \tilde{U}(t, X) + \tilde{H}(X, \nabla \tilde{U}(t, X)) &= \tilde{F}(X), \quad \text{in } (0, T) \times \mathbb{H}, \\
\tilde{U}(0, X) &= \tilde{U}_0(X), \quad \text{in } \mathbb{H}.
\end{aligned}
\]

(HJB-\(\mathbb{H}\))

→ Under further suitable assumptions on the data, we have also that \(\tilde{U}(t, \cdot)\) is locally semi-concave (see for instance [Gomes-Nurbekyan, 2015]).
Important links between the control problems and HJB equations

→ Under reasonable assumptions (\(\mathcal{L}\) is convex in the second variable, regular enough, bounded from below, \(\tilde{\mathcal{F}}, \tilde{\mathcal{U}}_0\) are bounded below and regular), the control problem (HL-\(\mathcal{H}\)) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that \(\tilde{\mathcal{U}}\) is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

\[
\begin{cases}
\partial_t \tilde{U}(t, X) + \tilde{\mathcal{H}}(X, \nabla \tilde{U}(t, X)) = \tilde{\mathcal{F}}(X), & \text{in } (0, T) \times \mathcal{H}, \\
\tilde{U}(0, X) = \tilde{U}_0(X), & \text{in } \mathcal{H}.
\end{cases}
\]

(HJB-\(\mathcal{H}\))

→ Under further suitable assumptions on the data, we have also that \(\tilde{U}(t, \cdot)\) is locally semi-concave (see for instance [Gomes-Nurbekyan, 2015]).

→ Furthermore, we have the correspondence \(\tilde{U}(t, X) = U(t, X \# \mathcal{L}^d \sqcap \Omega)\).
Important links between the control problems and HJB equations

→ Under reasonable assumptions ($\tilde{\mathcal{L}}$ is convex in the second variable, regular enough, bounded from below, $\tilde{\mathcal{F}}, \tilde{\mathcal{U}}_0$ are bounded below and regular), the control problem (HL-\mathbb{H}) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that $\tilde{\mathcal{U}}$ is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

$$
\begin{aligned}
\partial_t \tilde{\mathcal{U}}(t, X) + \tilde{\mathcal{H}}(X, \nabla \tilde{\mathcal{U}}(t, X)) = \tilde{\mathcal{F}}(X), & \quad \text{in } (0, T) \times \mathbb{H}, \\
\tilde{\mathcal{U}}(0, X) = \tilde{\mathcal{U}}_0(X), & \quad \text{in } \mathbb{H}.
\end{aligned}
$$

(HJB-\mathbb{H})

→ Under further suitable assumptions on the data, we have also that $\tilde{\mathcal{U}}(t, \cdot)$ is locally semi-concave (see for instance [Gomes-Nurbekyan, 2015]).

→ Furthermore, we have the correspondence $\tilde{\mathcal{U}}(t, X) = \mathcal{U}(t, X \# \mathcal{L}^d \subset \Omega)$.

→ And so, [Gangbo-Tudorascu, 2018] implies that \mathcal{U} is a viscosity solution to (HJB-\mathcal{P}_2).
Important links between the control problems and HJB equations

→ Under reasonable assumptions (\tilde{L} is convex in the second variable, regular enough, bounded from below, \tilde{F}, \tilde{U}_0 are bounded below and regular), the control problem (HL-\(H\)) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that \tilde{U} is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

\[
\begin{aligned}
\partial_t \tilde{U}(t, X) + \tilde{\mathcal{H}}(X, \nabla \tilde{U}(t, X)) &= \tilde{F}(X), & \text{in } (0, T) \times \mathbb{H}, \\
\tilde{U}(0, X) &= \tilde{U}_0(X), & \text{in } \mathbb{H}.
\end{aligned}
\]

(HJB-\(H\))

→ Under further suitable assumptions on the data, we have also that $\tilde{U}(t, \cdot)$ is locally semi-concave (see for instance [Gomes-Nurbekyan, 2015]).

→ Furthermore, we have the correspondence $\tilde{U}(t, X) = U(t, X \# L^d \sqsubset \Omega)$.

→ And so, [Gangbo-Tudorascu, 2018] implies that U is a viscosity solution to (HJB-\(P_2\)). Moreover, $U(t, \cdot)$ is differentiable at μ if and only if $\tilde{U}(t, \cdot)$ is differentiable at X, for any X s.t. $X \# L^d \sqsubset \Omega$.
Important links between the control problems and HJB equations

→ Under reasonable assumptions ($\tilde{\mathcal{L}}$ is convex in the second variable, regular enough, bounded from below, $\tilde{\mathcal{F}}, \tilde{\mathcal{U}}_0$ are bounded below and regular), the control problem (HL-\mathcal{H}) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that $\tilde{\mathcal{U}}$ is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

$$\begin{cases}
\partial_t \tilde{\mathcal{U}}(t, X) + \tilde{\mathcal{H}}(X, \nabla \tilde{\mathcal{U}}(t, X)) = \tilde{\mathcal{F}}(X), & \text{in } (0, T) \times \mathcal{H}, \\
\tilde{\mathcal{U}}(0, X) = \tilde{\mathcal{U}}_0(X), & \text{in } \mathcal{H}.
\end{cases}$$

(HJB-\mathcal{H})

→ Under further suitable assumptions on the data, we have also that $\tilde{\mathcal{U}}(t, \cdot)$ is locally semi-concave (see for instance [Gomes-Nurbekyan, 2015]).

→ Furthermore, we have the correspondence $\tilde{\mathcal{U}}(t, X) = \mathcal{U}(t, X \# \mathcal{L}^d \subset \Omega)$.

→ And so, [Gangbo-Tudorascu, 2018] implies that \mathcal{U} is a viscosity solution to (HJB-\mathcal{P}_2). Moreover, $\mathcal{U}(t, \cdot)$ is differentiable at μ if and only if $\tilde{\mathcal{U}}(t, \cdot)$ is differentiable at X, for any X s.t. $X \# \mathcal{L}^d \subset \Omega$. In this case

$$\nabla \tilde{\mathcal{U}}(t, X) = \nabla_w \mathcal{U}(t, \mu) \circ X.$$
Important links between the control problems and HJB equations

→ Under reasonable assumptions ($\tilde{\mathcal{L}}$ is convex in the second variable, regular enough, bounded from below, $\tilde{\mathcal{F}}, \tilde{\mathcal{U}}_0$ are bounded below and regular), the control problem (HL-\mathbb{H}) has a solution (at least for short time).

→ The theory of Crandall-Lions ensures that $\tilde{\mathcal{U}}$ is the unique locally Lipschitz continuous viscosity solution to the corresponding HJB equation

$$\begin{aligned}
\left\{ \begin{array}{l}
\partial_t \tilde{\mathcal{U}}(t, X) + \tilde{\mathcal{H}}(X, \nabla \tilde{\mathcal{U}}(t, X)) = \tilde{\mathcal{F}}(X), \\
\tilde{\mathcal{U}}(0, X) = \tilde{\mathcal{U}}_0(X),
\end{array} \right.
\end{aligned}$$

in $(0, T) \times \mathbb{H}, \tilde{\mathcal{U}}(0, X) = \tilde{\mathcal{U}}_0(X)$, in \mathbb{H}. (HJB-\mathbb{H})

→ Under further suitable assumptions on the data, we have also that $\tilde{\mathcal{U}}(t, \cdot)$ is locally semi-concave (see for instance [Gomes-Nurbekyan, 2015]).

→ Furthermore, we have the correspondence $\tilde{\mathcal{U}}(t, X) = \mathcal{U}(t, X\#\mathcal{L}^d \sqsubset \Omega)$.

→ And so, [Gangbo-Tudorascu, 2018] implies that \mathcal{U} is a viscosity solution to (HJB-\mathcal{P}_2). Moreover, $\mathcal{U}(t, \cdot)$ is differentiable at μ if and only if $\tilde{\mathcal{U}}(t, \cdot)$ is differentiable at X, for any X s.t. $X\#\mathcal{L}^d \sqsubset \Omega$. In this case

$$\nabla \tilde{\mathcal{U}}(t, X) = \nabla_w \mathcal{U}(t, \mu) \circ X.$$

→ A similar observation was made by Lions in his lectures.
Further regularity of $\tilde{U}(t, \cdot)$ for arbitrary time horizon

→ Innocent observation: if in addition \tilde{u}_0 and $\tilde{L} + \tilde{F}$ are convex, then so is $\tilde{U}(t, \cdot)$ for all $t \in [0, T]$.
Further regularity of $\tilde{U}(t, \cdot)$ for arbitrary time horizon

→ Innocent observation: if in addition \tilde{U}_0 and $\tilde{L} + \tilde{F}$ are convex, then so is $\tilde{U}(t, \cdot)$ for all $t \in [0, T]$.

→ Fact: if $\tilde{V} : H \to \mathbb{R}$ is both locally semi-concave and locally semi-convex, then it is of class $C_{\text{loc}}^{1,1}(H)$.

Semi-convexity: $\exists \lambda \in \mathbb{R}$ such that for all $s \in [0, 1]$

$$\tilde{V}((1-s)X + sY) \leq (1-s)\tilde{V}(X) + s\tilde{V}(Y) - \lambda s(1-s)\|X - Y\|^2.$$

$C_{\text{loc}}^{1,1}(H)$: \tilde{V} is Fréchet differentiable and there exists $\lambda > 0$ such that for all $X, Y \in H$

$$\left|\left|\tilde{V}(Y) - \tilde{V}(X) - \int_{\Omega} \nabla \tilde{V}(X)(\omega) \cdot (Y(\omega) - X(\omega))\right|\right| \leq \lambda \|X - Y\|^2$$

or equivalently

$$\|\nabla \tilde{V}(X) - \nabla \tilde{V}(Y)\| \leq \lambda \|X - Y\|.$$

And so, in this setting one can obtain $\tilde{U}(t, \cdot) \in C_{\text{loc}}^{1,1}(H)$.

17 / 31
Further regularity of $\tilde{U}(t, \cdot)$ for arbitrary time horizon

→ **Innocent observation:** if in addition \tilde{U}_0 and $\tilde{L} + \tilde{F}$ are convex, then so is $\tilde{U}(t, \cdot)$ for all $t \in [0, T]$.

→ **Fact:** if $\tilde{V} : \mathbb{H} \to \mathbb{R}$ is both locally semi-concave and locally semi-convex, then it is of class $C^{1,1}_{\text{loc}}(\mathbb{H})$.

→ **Semi-convexity:** $\exists \lambda \in \mathbb{R}$ such that for all $s \in [0, 1]$

$$\tilde{V}((1 - s)X + sY) \leq (1 - s)\tilde{V}(X) + s\tilde{V}(Y) - \frac{\lambda}{2}s(1 - s)\|X - Y\|^2.$$
Further regularity of $\tilde{U}(t, \cdot)$ for arbitrary time horizon

→ Innocent observation: if in addition \tilde{U}_0 and $\tilde{L} + \tilde{F}$ are convex, then so is $\tilde{U}(t, \cdot)$ for all $t \in [0, T]$.

→ Fact: if $\tilde{V} : \mathbb{H} \to \mathbb{R}$ is both locally semi-concave and locally semi-convex, then it is of class $C^{1,1}_{\text{loc}}(\mathbb{H})$.

→ Semi-convexity: $\exists \lambda \in \mathbb{R}$ such that for all $s \in [0, 1]$

$$\tilde{V}((1 - s)X + sY) \leq (1 - s)\tilde{V}(X) + s\tilde{V}(Y) - \frac{\lambda}{2}s(1 - s)\|X - Y\|^2.$$

→ $C^{1,1}(\mathbb{H})$: \tilde{V} is Fréchet differentiable and there exists $\lambda > 0$ such that for all $X, Y \in \mathbb{H}$

$$\left| \tilde{V}(Y) - \tilde{V}(X) - \int_{\Omega} \nabla\tilde{V}(X)(\omega) \cdot (Y(\omega) - X(\omega)) \, d\omega \right| \leq \frac{\lambda}{2}\|X - Y\|^2.$$
Further regularity of $\tilde{U}(t, \cdot)$ for arbitrary time horizon

→ Innocent observation: if in addition \tilde{U}_0 and $\tilde{L} + \tilde{F}$ are convex, then so is $\tilde{U}(t, \cdot)$ for all $t \in [0, T]$.

→ Fact: if $\tilde{V} : \mathbb{H} \to \mathbb{R}$ is both locally semi-concave and locally semi-convex, then it is of class $C^{1,1}_{\text{loc}}(\mathbb{H})$.

→ Semi-convexity: $\exists \lambda \in \mathbb{R}$ such that for all $s \in [0, 1]$

$$\tilde{V}((1 - s)X + sY) \leq (1 - s)\tilde{V}(X) + s\tilde{V}(Y) - \frac{\lambda}{2}s(1 - s)\|X - Y\|^2.$$

→ $C^{1,1}(\mathbb{H})$: \tilde{V} is Fréchet differentiable and there exists $\lambda > 0$ such that for all $X, Y \in \mathbb{H}$

$$\left| \tilde{V}(Y) - \tilde{V}(X) - \int_{\Omega} \nabla\tilde{V}(X)(\omega) \cdot (Y(\omega) - X(\omega)) \, d\omega \right| \leq \frac{\lambda}{2}\|X - Y\|^2$$

or equivalently

$$\|\nabla\tilde{V}(X) - \nabla\tilde{V}(Y)\| \leq \lambda\|X - Y\|.$$
Further regularity of $\tilde{U}(t, \cdot)$ for arbitrary time horizon

→ **Innocent observation:** if in addition \tilde{U}_0 and $\tilde{L} + \tilde{F}$ are convex, then so is $\tilde{U}(t, \cdot)$ for all $t \in [0, T]$.

→ **Fact:** if $\tilde{V} : \mathbb{H} \to \mathbb{R}$ is both locally semi-concave and locally semi-convex, then it is of class $C_{\text{loc}}^{1,1}(\mathbb{H})$.

→ **Semi-convexity:** $\exists \lambda \in \mathbb{R}$ such that for all $s \in [0, 1]$

$$\tilde{V}((1 - s)X + sY) \leq (1 - s)\tilde{V}(X) + s\tilde{V}(Y) - \frac{\lambda}{2}s(1 - s)\|X - Y\|^2.$$

→ **$C^{1,1}(\mathbb{H})$:** \tilde{V} is Fréchet differentiable and there exists $\lambda > 0$ such that for all $X, Y \in \mathbb{H}$

$$\left|\tilde{V}(Y) - \tilde{V}(X) - \int_{\Omega} \nabla \tilde{V}(X)(\omega) \cdot (Y(\omega) - X(\omega)) \, d\omega\right| \leq \frac{\lambda}{2}\|X - Y\|^2$$

or equivalently

$$\|\nabla \tilde{V}(X) - \nabla \tilde{V}(Y)\| \leq \lambda\|X - Y\|.$$

→ And so, in this setting one can obtain $\tilde{U}(t, \cdot) \in C_{\text{loc}}^{1,1}(\mathbb{H})$.

Further regularity of $U(t, \cdot)$

Theorem (Gangbo-M., 2020)

Let $V : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{V} : \mathbb{H} \to \mathbb{R}$ be its lift. Then $\tilde{V} \in C^{1,1}_{loc}(\mathbb{H})$ if and only if $V \in C^{1,1}_{loc}(\mathcal{P}_2(\mathbb{R}^d))$.

Here, we say that $V \in C^{1,1}_{loc}(\mathcal{P}_2(\mathbb{R}^d))$, if V is differentiable and there exists $\lambda > 0$ such that

\[(1) \quad \left| \left| \left| \left| V(\nu) - V(\mu) - \int_{\mathbb{R}^d} \nabla w V(\mu)(x) \cdot (y-x) \, d\gamma(x,y) \right| \right| \right| \leq \lambda \left(W^2(\mu,\nu) \right), \quad \forall \gamma \in \Pi^{o}(\mu,\nu), \]

and

\[(2) \quad \text{spt}(\mu) \ni x \mapsto \nabla w V(\mu)(x) \text{ is } \lambda \text{-Lipschitz (independently of } \mu). \]

So, in this convex setting, one can obtain that $U(t, \cdot) \in C^{1,1}_{loc}(\mathcal{P}_2(\mathbb{R}^d))$.

Further regularity of $\mathcal{U}(t, \cdot)$

Theorem (Gangbo-M., 2020)

Let $V : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{V} : \mathbb{H} \to \mathbb{R}$ be its lift. Then $\tilde{V} \in C^{1,1}_{\text{loc}}(\mathbb{H})$ if and only if $V \in C^{1,1}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$.

Here, we say that $V \in C^{1,1}(\mathcal{P}_2(\mathbb{R}^d))$, if V is differentiable and there exists $\lambda > 0$ such that

(1) \[\left| V(\nu) - V(\mu) - \int_{\mathbb{R}^{2d}} \nabla_w V(\mu)(x) \cdot (y - x) \, d\gamma(x, y) \right| \leq \frac{\lambda}{2} W_2^2(\mu, \nu), \ \forall \gamma \in \Pi_o(\mu, \nu) \]

and

(2) $\text{spt}(\mu) \ni x \mapsto \nabla_w V(\mu)(x)$ is λ-Lipschitz (independently of μ).
Further regularity of $U(t, \cdot)$

Theorem (Gangbo-M., 2020)

Let $V : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{V} : \tilde{\mathbb{H}} \to \mathbb{R}$ be its lift. Then $\tilde{V} \in C^{1,1}_{\text{loc}}(\tilde{\mathbb{H}})$ if and only if $V \in C^{1,1}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$.

Here, we say that $V \in C^{1,1}(\mathcal{P}_2(\mathbb{R}^d))$, if V is differentiable and there exists $\lambda > 0$ such that

\begin{equation}
\left| V(\nu) - V(\mu) - \int_{\mathbb{R}^{2d}} \nabla_w V(\mu)(x) \cdot (y - x) \, d\gamma(x, y) \right| \leq \frac{\lambda}{2} W^2_2(\mu, \nu), \quad \forall \gamma \in \Pi_o(\mu, \nu)
\end{equation}

and

\begin{equation}
\text{spt}(\mu) \ni x \mapsto \nabla_w V(\mu)(x) \text{ is } \lambda\text{-Lipschitz (independently of } \mu). \quad \rightarrow \quad \text{So, in this convex setting, one can obtain that } U(t, \cdot) \in C^{1,1}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d)).
\end{equation}
Correspondence of convexities

Theorem (Gangbo-M., 2020)

Let $V : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{V} : \mathbb{H} \to \mathbb{R}$ be its lift. Then \tilde{V} continuous is locally semi-convex if and only if V is locally displacement semi-convex.

Typical examples of coupling functions in MFG:

$$F(\mu) = \int_{\mathbb{R}^d} \phi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \phi_1(x-y) \, d\mu(x) \, d\mu(y),$$

for $\phi_0, \phi_1 : \mathbb{R}^d \to \mathbb{R}$ smooth. If ϕ_0 and ϕ_1 are λ–convex, then F is displacement semi-convex.
Correspondence of convexities

Theorem (Gangbo-M., 2020)

Let $V : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{V} : \mathbb{H} \to \mathbb{R}$ be its lift. Then \tilde{V} continuous is locally semi-convex if and only if V is locally displacement semi-convex.

Here we say that V is displacement (or geodesically) semi-convex (see [McCann, 1997], [Ambrosio-Gigli-Savaré, 2005]) if there exists $\lambda \in \mathbb{R}$ such that for any $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ and $[0, 1] \ni s \mapsto \mu_s := ((1 - s)x + sy)_\# \gamma$, ($\gamma \in \Pi_o(\mu, \nu)$)

$$V(\mu_s) \leq (1 - s)V(\mu) + sV(\nu) - \frac{\lambda}{2}s(1 - s)W_2^2(\mu, \nu).$$
Correspondence of convexities

Theorem (Gangbo-M., 2020)

Let $V : \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ and let $\tilde{V} : \mathbb{H} \rightarrow \mathbb{R}$ be its lift. Then \tilde{V} continuous is locally semi-convex if and only if V is locally displacement semi-convex.

Here we say that V is displacement (or geodesically) semi-convex (see [McCann, 1997], [Ambrosio-Gigli-Savaré, 2005]) if there exists $\lambda \in \mathbb{R}$ such that for any $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ and $[0, 1] \ni s \mapsto \mu_s := ((1 - s)x + sy)\#\gamma, (\gamma \in \Pi_o(\mu, \nu))$

$$V(\mu_s) \leq (1 - s)V(\mu) + sV(\nu) - \frac{\lambda}{2} s(1 - s)W_2^2(\mu, \nu).$$

→ Typical examples of coupling functions in MFG:

$$\mathcal{F}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y),$$

for $\varphi_0, \varphi_1 : \mathbb{R}^d \rightarrow \mathbb{R}$ smooth.
Correspondence of convexities

Theorem (Gangbo-M., 2020)

Let \(V : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) and let \(\tilde{V} : \mathcal{H} \to \mathbb{R} \) be its lift. Then \(\tilde{V} \) continuous is locally semi-convex if and only if \(V \) is locally displacement semi-convex.

Here we say that \(V \) is displacement (or geodesically) semi-convex (see [McCann, 1997], [Ambrosio-Gigli-Savaré, 2005]) if there exists \(\lambda \in \mathbb{R} \) such that for any \(\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d) \) and \([0, 1] \ni s \mapsto \mu_s := ((1-s)x + sy) \# \gamma, (\gamma \in \Pi_o(\mu, \nu)) \)

\[
V(\mu_s) \leq (1-s)V(\mu) + sV(\nu) - \frac{\lambda}{2} s(1-s)W_2^2(\mu, \nu).
\]

→ Typical examples of coupling functions in MFG:

\[
\mathcal{F}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x-y) \, d\mu(x) \, d\mu(y),
\]

for \(\varphi_0, \varphi_1 : \mathbb{R}^d \to \mathbb{R} \) smooth.

→ If \(\varphi_0 \) and \(\varphi_1 \) are \(\lambda \)-convex, then \(\mathcal{F} \) is displacement semi-convex.
Displacement convexity vs monotonocity à la Lasry-Lions

Previously, in all works on the global well-posedness of master equation in the literature, it was assumed the monotonocity condition

$$\int_{\mathbb{R}^d} [f(x, \mu) - f(x, \nu)] \, d(\mu - \nu)(x) \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} [u_0(x, \mu) - u_0(x, \nu)] \, d(\mu - \nu)(x) \geq 0.$$
Displacement convexity vs monotonicity à la Lasry-Lions

→ Previously, in all works on the global well-posedness of master equation in the literature, it was assumed the monotonicity condition

\[
\int_{\mathbb{R}^d} [f(x, \mu) - f(x, \nu)] \, d(\mu - \nu)(x) \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} [u_0(x, \mu) - u_0(x, \nu)] \, d(\mu - \nu)(x) \geq 0.
\]

→ In the potential game case, i.e. if \(\nabla_w \mathcal{F}(\mu)(x) = D_x f(x, \mu) \) and \(\nabla_w \mathcal{U}_0(\mu)(x) = D_x u_0(x, \mu) \) for some \(\mathcal{F}, \mathcal{U}_0 : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \), this monotonicity is equivalent to the convexity of \(\mathcal{F}, \mathcal{U}_0 \) along classical convex interpolations of measures, i.e. \([0, 1] \ni s \mapsto (1 - s)\mu + s\nu\).
Displacement convexity vs monotonicity à la Lasry-Lions

→ Previously, in all works on the global well-posedness of master equation in the literature, it was assumed the monotonicity condition
\[
\int_{\mathbb{R}^d} [f(x, \mu) - f(x, \nu)] \, d(\mu - \nu)(x) \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} [u_0(x, \mu) - u_0(x, \nu)] \, d(\mu - \nu)(x) \geq 0.
\]

→ In the potential game case, i.e. if \(\nabla_w F(\mu)(x) = D_x f(x, \mu) \) and \(\nabla_w U_0(\mu)(x) = D_x u_0(x, \mu) \) for some \(F, U_0 : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \), this monotonicity is equivalent to the convexity of \(F, U_0 \) along classical convex interpolations of measures, i.e. \([0, 1] \ni s \mapsto (1 - s)\mu + s\nu\).

Let \(F(\mu) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y) \) such that \(\varphi_1 \) is even. Clearly, if we set \(f(x, \mu) := \delta_\mu F(\mu)(x) = (\varphi_1 * \mu)(x) \), we have that
\[
D_x f(x, \mu) = \nabla_w F(\mu)(x) = (D\varphi_1 * \mu)(x).
\]
Displacement convexity vs monotonicity à la Lasry-Lions

Previously, in all works on the global well-posedness of master equation in the literature, it was assumed the monotonicity condition
\[
\int_{\mathbb{R}^d} [f(x, \mu) - f(x, \nu)] \, d(\mu - \nu)(x) \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} [u_0(x, \mu) - u_0(x, \nu)] \, d(\mu - \nu)(x) \geq 0.
\]

In the potential game case, i.e. if \(\nabla_w F(\mu)(x) = D_x f(x, \mu) \) and \(\nabla_w U_0(\mu)(x) = D_x u_0(x, \mu) \) for some \(F, U_0 : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \), this monotonicity is equivalent to the convexity of \(F, U_0 \) along classical convex interpolations of measures, i.e. \([0, 1] \ni s \mapsto (1 - s)\mu + s\nu \).

Let \(F(\mu) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y) \) such that \(\varphi_1 \) is even. Clearly, if we set \(f(x, \mu) := \delta_\mu F(\mu)(x) = (\varphi_1 * \mu)(x) \), we have that
\[
D_x f(x, \mu) = \nabla_w F(\mu)(x) = (D\varphi_1 * \mu)(x).
\]

Lemma

Let \(\varphi_1 \in L^1(\mathbb{R}^d) \). \(f \) is monotone in the sense of Lasry-Lions if and only if the Fourier transform of \(\varphi_1 \) is nonnegative.
Previously, in all works on the global well-posedness of master equation in the literature, it was assumed the monotonicity condition
\[
\int_{\mathbb{R}^d} [f(x, \mu) - f(x, \nu)] \, d(\mu - \nu)(x) \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} [u_0(x, \mu) - u_0(x, \nu)] \, d(\mu - \nu)(x) \geq 0.
\]

In the potential game case, i.e. if \(\nabla_w F(\mu)(x) = D_x f(x, \mu) \) and \(\nabla_w U_0(\mu)(x) = D_x u_0(x, \mu) \) for some \(F, U_0 : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \), this monotonicity is equivalent to the convexity of \(F, U_0 \) along classical convex interpolations of measures, i.e. \([0, 1] \ni s \mapsto (1 - s)\mu + s\nu\).

Let \(F(\mu) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y) \) such that \(\varphi_1 \) is even. Clearly, if we set \(f(x, \mu) := \delta_\mu F(\mu)(x) = (\varphi_1 * \mu)(x) \), we have that
\[
D_x f(x, \mu) = \nabla_w F(\mu)(x) = (D \varphi_1 * \mu)(x).
\]

Lemma

Let \(\varphi_1 \in L^1(\mathbb{R}^d) \). \(f \) is monotone in the sense of Lasry-Lions if and only if the Fourier transform of \(\varphi_1 \) is nonnegative. As a consequence, there are \(\varphi_1 \) such that \(F \) is displacement convex, but \(f \) fails to be monotone.
Higher regularity of $\mathcal{U}(t, \cdot)$?

\rightarrow The $C^{1,1}$ regularity of $\tilde{\mathcal{U}}(t, \cdot)$ or $\mathcal{U}(t, \cdot)$ is **not enough** to obtain classical well-posedness of master equations.
Higher regularity of $\mathcal{U}(t, \cdot)$?

→ The $C^{1,1}$ regularity of $\tilde{\mathcal{U}}(t, \cdot)$ or $\mathcal{U}(t, \cdot)$ is not enough to obtain classical well-posedness of master equations.

→ Using purely Hilbert space calculus, one would be able to obtain higher regularity of $\tilde{\mathcal{U}}$, by using its representation via the Hamiltonian flow.
Higher regularity of $\mathcal{U}(t, \cdot)$?

→ The $C^{1,1}$ regularity of $\tilde{\mathcal{U}}(t, \cdot)$ or $\mathcal{U}(t, \cdot)$ is not enough to obtain classical well-posedness of master equations.

→ Using purely Hilbert space calculus, one would be able to obtain higher regularity of $\tilde{\mathcal{U}}$, by using its representation via the Hamiltonian flow.

→ However, this would require to impose $\tilde{\mathcal{H}}, \tilde{\mathcal{F}}, \tilde{\mathcal{U}}_0$ to be of class C^2 (in the Fréchet sense) or better.
Higher regularity of $U(t, \cdot)$?

\rightarrow The $C^{1,1}$ regularity of $\tilde{U}(t, \cdot)$ or $U(t, \cdot)$ is not enough to obtain classical well-posedness of master equations.

\rightarrow Using purely Hilbert space calculus, one would be able to obtain higher regularity of \tilde{U}, by using its representation via the Hamiltonian flow.

\rightarrow However, this would require to impose $\tilde{H}, \tilde{F}, \tilde{U}_0$ to be of class C^2 (in the Fréchet sense) or better.

\rightarrow Surprisingly, such regularity assumption might be too restrictive.
Hilbert space regularity is too restrictive for the study of MFG

Let $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{\Phi} \in C^2(\mathbb{H})$ be its lift.
Hilbert space regularity is too restrictive for the study of MFG

Let \(\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) and let \(\tilde{\Phi} \in C^2(\mathbb{H}) \) be its lift. In this case, we have the special representation of the Hessian:

\[
\nabla^2 \tilde{\Phi}(X)(h, h_*) = \int_{\Omega} D_x(\nabla_w \Phi(\mu)) \circ X h \cdot h_* d\omega \\
+ \int_{\Omega^2} \nabla^2_{ww} \Phi(\mu)(X(\omega), X(\omega_*)) h(\omega) \cdot h_*(\omega_*) d\omega d\omega_*
\]

if \(\xi, \xi_* \in \text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d) \) and \(h = \xi \circ X \) and \(h_* = \xi_* \circ X \).
Hilbert space regularity is too restrictive for the study of MFG

Let $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{\Phi} \in C^2(\mathbb{H})$ be its lift. In this case, we have the special representation of the Hessian:

$$\nabla^2 \tilde{\Phi}(X)(h, h_*) = \int_\Omega D_x(\nabla_w \Phi(\mu)) \circ X h \cdot h_* d\omega$$

$$+ \int_{\Omega^2} \nabla^2_{ww} \Phi(\mu)(X(\omega), X(\omega_*)) h(\omega) \cdot h_*(\omega_*) d\omega d\omega_*$$

if $\xi, \xi_* \in \text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d)$ and $h = \xi \circ X$ and $h_* = \xi_* \circ X$.

Lemma (Gangbo-M., 2020)

Let $\alpha \in (0, 1]$ and assume $\tilde{\Phi} \in C^2_{\text{loc}}(\mathbb{H})$ is rearrangement invariant so that it is the lift of a function Φ. If (2) holds for all $h, h_* \in \mathbb{H}$ then $D_x(\nabla_w \Phi(\mu)(\cdot))$ is a constant function on $\text{spt}(\mu)$.
Hilbert space regularity is too restrictive for the study of MFG

Let $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and let $\tilde{\Phi} \in C^2(\mathbb{H})$ be its lift. In this case, we have the special representation of the Hessian:

$$\nabla^2 \tilde{\Phi}(X)(h, h_*) = \int_{\Omega} D_x(\nabla_w \Phi(\mu)) \circ X h \cdot h_* d\omega$$

\[
\quad + \int_{\Omega^2} \nabla^2_{ww} \Phi(\mu)(X(\omega), X(\omega_*)) h(\omega) \cdot h_*(\omega_*) d\omega d\omega_*
\]

if $\xi, \xi_* \in \text{Tan}_\mu \mathcal{P}_2(\mathbb{R}^d)$ and $h = \xi \circ X$ and $h_* = \xi_* \circ X$.

Lemma (Gangbo-M., 2020)

Let $\alpha \in (0, 1]$ and assume $\tilde{\Phi} \in C^{2,\alpha}_{\text{loc}}(\mathbb{H})$ is rearrangement invariant so that it is the lift of a function Φ. If (2) holds for all $h, h_* \in \mathbb{H}$ then $D_x(\nabla_w \Phi(\mu)(\cdot))$ is a constant function on $\text{spt}(\mu)$.

Corollary: if $\tilde{\Phi}_g^{(k)}(X) := \int_{\Omega^k} g(X(\omega_1), \cdots, X(\omega_k)) d\omega_1 \cdots d\omega_k \forall X \in \mathbb{H}$, then $\tilde{\Phi}_g^{(k)} \in C^{2,\alpha}_{\text{loc}}(\mathbb{H})$ if and only if $g^{(k)}$ is a polynomial of degree at most 2.
Further consequences

→ Actually, the previous corollary for locally representable functions \(\Phi_g^{(k)} \) holds even for the class \(C^2(\mathbb{H}) \) (instead of \(C^2_{\text{loc}}(\mathbb{H}) \)).
Further consequences

→ Actually, the previous corollary for locally representable functions $\Phi_g^{(k)}$ holds even for the class $C^2(\mathbb{H})$ (instead of $(C^2_\text{loc}(\mathbb{H}))$).

→ We underline that such results would stand also for $\tilde{\mathcal{H}}$. Since this always has a local representation, imposing C^2 regularity on \mathbb{H}, would yield that H is a polynomial of degree at most 2.
Further consequences

→ Actually, the previous corollary for locally representable functions $\Phi_g^{(k)}$ holds even for the class $C^2(\mathbb{H})$ (instead of $(C^2_{\text{loc}}(\mathbb{H}))$).

→ We underline that such results would stand also for $\tilde{\mathcal{H}}$. Since this always has a local representation, imposing C^2 regularity on \mathbb{H}, would yield that H is a polynomial of degree at most 2.

→ Abandoning the Hilbert space technique, we worked out a method to obtain $U(t, \cdot) \in C^2_{\text{loc}}$ in an intrinsic way, working directly on $(\mathcal{P}_2(\mathbb{R}^d), W_2)$.
Further consequences

→ Actually, the previous corollary for locally representable functions \(\Phi^{(k)}_g \) holds even for the class \(C^2(\mathbb{H}) \) (instead of \((C^2_{\text{loc}}(\mathbb{H})) \)).

→ We underline that such results would stand also for \(\tilde{\mathcal{H}} \). Since this always has a local representation, imposing \(C^2 \) regularity on \(\mathbb{H} \), would yield that \(H \) is a polynomial of degree at most 2.

→ Abandoning the Hilbert space technique, we worked out a method to obtain \(\mathcal{U}(t, \cdot) \in C^2_{\text{loc}, \alpha, w} \) in an intrinsic way, working directly on \((\mathcal{P}_2(\mathbb{R}^d), W_2) \).

Theorem (Gangbo-M., 2020)

Let \(f, u_0 \) and \(\mathcal{F}, \mathcal{U}_0 \) are such that \(D_xf = \nabla_w F \) and \(D_xu_0 = \nabla_w U_0 \). Let moreover \(\mathcal{F}, \mathcal{U}_0 \) be of class \(C^{2,1,w}_{\text{loc}} \), \(\mathcal{U}_0 \) and \(\mathcal{L} + \mathcal{F} \) displacement convex and let \(L, H : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \) be \(C^3 \). Then there exists a unique, global in time classical solution \(\mathcal{U} \) to the equation \((\text{HJB-} \mathcal{P}_2) \) which is such that \(\mathcal{U}(t, \cdot) \in C^{2,1,w}_{\text{loc}} \). Moreover, there exists a unique global in time classical solution \(u \in C^{1,1}_{\text{loc}} ([0, +\infty) \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)) \) to (Master) and \(D_xu(t, \cdot, \mu)(\cdot) = \nabla_w \mathcal{U}(t, \mu)(\cdot) \) on \(\text{spt}(\mu) \).
\(C^{2,1,w}_{\text{loc}} \) functions on \((\mathcal{P}_2(\mathbb{R}^d), W_2)\)

We propose the following (inspired by [Chow-Gangbo, JDE 2019])

Definition

Let \(\mathcal{B} \subseteq \mathcal{P}_2(\mathbb{R}^d) \) be open and convex. We say that \(\mathcal{U} \in C^{2,1,w}(\mathcal{B}) \), if \(\mathcal{U} \in C^1(\mathcal{B}) \), and if there exist \(\Lambda_0 : \mathbb{R}^d \times \mathcal{B} \rightarrow \mathbb{R}^{d \times d} \) and \(\Lambda_1 : \mathbb{R}^d \times \mathbb{R}^d \times \mathcal{B} \rightarrow \mathbb{R}^{d \times d} \) such that \(\Lambda_0 \in L^\infty(\mathbb{R}^d; \mu) \), \(\Lambda_1 \in L^\infty(\mathbb{R}^d \times \mathbb{R}^d; \mu \otimes \mu) \) and there exists a constant \(C > 0 \) such that

\[
\begin{align*}
&\left| \nabla_w \mathcal{U}(\nu)(y) - \nabla_w \mathcal{U}(\mu)(x) - \Lambda_0(x, \mu)(y - x) - \int \int_{\mathbb{R}^d \times \mathbb{R}^d} \Lambda_1(x, a, \mu)(b - a) \, d\gamma(a, b) \right| \\
&\quad \leq C \left(|x - y|^2 + W_2^2(\mu, \nu) \right),
\end{align*}
\]

for all \(\mu, \nu \in \mathcal{B} \), \(\gamma \in \Pi_o(\mu, \nu) \) and \((x, y) \in \text{spt}(\mu) \times \text{spt}(\nu) \).

(2) \(\Lambda_0 \) and \(\Lambda_1 \) are **Lipschitz continuous**, i.e. there exists \(C > 0 \) such that

\[
|\Lambda_0(x, \mu) - \Lambda_0(y, \mu)|_{\infty} \leq C(|x - y| + W_2(\mu, \nu))
\]

and \(|\Lambda_1(x_1, x_2, \mu) - \Lambda_1(y_1, y_2, \nu)|_{\infty} \leq C(|x_1 - y_1| + |x_2 - y_2| + W_2(\mu, \nu)) \), for any \(\mu, \nu \in \mathcal{B} \) and \((x, y), (x_1, y_1), (x_2, y_2) \in \text{spt}(\mu) \times \text{spt}(\nu) \).
In the previous definition $C^{2,1}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$ means that it is satisfied on each B_r. Let $U: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be defined as

$$U(\mu) = \int \nabla w \cdot \nabla \phi_0 \, d\mu + \frac{1}{2} \int \nabla w \cdot \nabla \phi_1 \, d\mu \otimes d\mu,$$

for $\phi_0, \phi_1 : \mathbb{R}^d \to \mathbb{R}$ of class $C^{2,1}_{\text{loc}}(\mathbb{R}^d)$ such that both of them have at most quadratic growth at infinity and bounded second order derivatives. Let moreover ϕ_1 be even. Then, $U \in C^{2,1}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$. Let us notice that we have

$$\nabla U(\mu)(x) = D\phi_0(x) + (D\phi_1 \ast \mu)(x)$$

and

$$\nabla^2 U(\mu)(x) = D^2\phi_0(x) + (D^2\phi_1 \ast \mu)(x); \quad \nabla^2 w U(\mu)(x,y) = D^2\phi_1(x-y).$$

Notice that in this case $\Lambda_0(x,\mu) = \nabla U(\mu)(x)$ and $\Lambda_1(x,y,\mu) = \nabla^2 w U(\mu)(x,y)$.

Examples
→ In the previous definition $C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$ means that it is satisfied on each B_r!

Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be defined as

$$
\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y),
$$

for $\varphi_0, \varphi_0 : \mathbb{R}^d \to \mathbb{R}$ of class $C^{2,1}_{\text{loc}}(\mathbb{R}^d)$ such that both of them have at most quadratic growth at infinity and bounded second order derivatives. Let moreover φ_1 be even.

Then, $\mathcal{U} \in C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$.
In the previous definition $C^{2,1,w}_{loc}(\mathcal{P}_2(\mathbb{R}^d))$ means that it is satisfied on each B_r!

Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be defined as

$$\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x-y) \, d\mu(x) \, d\mu(y),$$

for $\varphi_0, \varphi_0 : \mathbb{R}^d \to \mathbb{R}$ of class $C^{2,1}_{loc}(\mathbb{R}^d)$ such that both of them have at most quadratic growth at infinity and bounded second order derivatives. Let moreover φ_1 be even. Then, $\mathcal{U} \in C^{2,1,w}_{loc}(\mathcal{P}_2(\mathbb{R}^d))$. Let us notice that we have

$$\nabla_w \mathcal{U}(\mu)(x) = D\varphi_0(x) + (D\varphi_1 * \mu)(x)$$

and

$$D_x \nabla_w \mathcal{U}(\mu)(x) = D^2\varphi_0(x) + (D^2\varphi_1 * \mu)(x); \quad D_{ww} \mathcal{U}(\mu)(x,y) = D^2\varphi_1(x-y).$$
Examples

In the previous definition $C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$ means that it is satisfied on each B_r!

Let $U : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be defined as

$$U(\mu) = \int_{\mathbb{R}^d} \varphi_0(x) \, d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_1(x - y) \, d\mu(x) \, d\mu(y),$$

for $\varphi_0, \varphi_0 : \mathbb{R}^d \to \mathbb{R}$ of class $C^{2,1}_{\text{loc}}(\mathbb{R}^d)$ such that both of them have at most quadratic growth at infinity and bounded second order derivatives. Let moreover φ_1 be even. Then, $U \in C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$. Let us notice that we have

$$\nabla_w U(\mu)(x) = D\varphi_0(x) + (D\varphi_1 \ast \mu)(x)$$

and

$$D_x \nabla_w U(\mu)(x) = D^2\varphi_0(x) + (D^2\varphi_1 \ast \mu)(x); \quad D_{ww}^2 U(\mu)(x, y) = D^2\varphi_1(x - y).$$

Notice that in this case $\Lambda_0(x, \mu) = D_x \nabla_w U(\mu)(x)$ and $\Lambda_1(x, y, \mu) = D_{ww}^2 U(\mu)(x, y)$.
Strategy of the proof of our main theorem

We work via a finite dimensional approximation.
Strategy of the proof of our main theorem

→ We work via a finite dimensional approximation.
→ Let $m \in \mathbb{N}$, let $x = (x_1, \ldots, x_m) \in (\mathbb{R}^d)^m$ and let us define $\mu_x^{(m)} := \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}$.
Strategy of the proof of our main theorem

→ We work via a finite dimensional approximation.

→ Let $m \in \mathbb{N}$, let $x = (x_1, \ldots, x_m) \in (\mathbb{R}^d)^m$ and let us define $\mu_x^{(m)} := \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}$.

→ Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and define $U^{(m)}(x_1, \ldots, x_m) := \mathcal{U}(\mu_x^{(m)})$.
We work via a finite dimensional approximation. Let \(m \in \mathbb{N} \), let \(x = (x_1, \ldots, x_m) \in (\mathbb{R}^d)^m \) and let us define \(\mu_x^{(m)} := \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i} \). Let \(\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) and define \(U^{(m)}(x_1, \ldots, x_m) := \mathcal{U}(\mu_x^{(m)}) \). We notice that if \(\mathcal{U} \in C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d)) \), then \(U^{(m)} \in C^{2,1}_{\text{loc}}((\mathbb{R}^d)^m) \) and we have the correspondences

\[
\nabla_w \mathcal{U}(\mu_x^{(m)})(x_i) = mD_{x_i} U^{(m)}(x),
\]
We work via a finite dimensional approximation.

Let $m \in \mathbb{N}$, let $x = (x_1, \ldots, x_m) \in (\mathbb{R}^d)^m$ and let us define $\mu^{(m)}_x := \frac{1}{m} \sum_{i=1}^m \delta_{x_i}$.

Let $\mathcal{U} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and define $U^{(m)}(x_1, \ldots, x_m) := \mathcal{U}(\mu^{(m)}_x)$.

We notice that if $\mathcal{U} \in C^{2,1,w}_{loc}(\mathcal{P}_2(\mathbb{R}^d))$, then $U^{(m)} \in C^{2,1}_{loc}((\mathbb{R}^d)^m)$ and we have the correspondences

$$\nabla_w \mathcal{U}(\mu^{(m)}_x)(x_i) = mD_{x_i} \mathcal{U}^{(m)}(x),$$

and

$$D^2_{x_i,x_j} \mathcal{U}^{(m)}(x) = \begin{cases} \frac{1}{m^2} D_{ww} \mathcal{U}(\mu^{(m)}_x)(x_i, x_j), & i \neq j, \\ \frac{1}{m} D_x \nabla_w \mathcal{U}(\mu^{(m)}_x)(x_i) + \frac{1}{m^2} D_{ww} \mathcal{U}(\mu^{(m)}_x)(x_i, x_i), & i = j. \end{cases}$$
From (HJB-\mathcal{P}_2) to (HJ-$(\mathbb{R}^d)^m$)

Lemma

Let the data be as in our theorem and let $U \in C^{1,1}_{\text{loc}}([0, T] \times \mathcal{P}_2(\mathbb{R}^d))$ be a classical solution to (HJB-\mathcal{P}_2). Let $m \in \mathbb{N}$ and define $U^{(m)} : [0, T] \times (\mathbb{R}^d)^m \to \mathbb{R}$ be defined as $U^{(m)}(t, x) = \mathcal{U}(t, \mu^{(m)}_x)$. Then $U^{(m)}$ is of class $C^{1,1}_{\text{loc}}$ and the unique classical solution of

$$\begin{cases}
\partial_t U^{(m)}(t, x) + H^{(m)}(x, D_x U^{(m)}(t, x)) = F^{(m)}(x), & \text{in } (0, T) \times (\mathbb{R}^d)^m, \\
U^{(m)}(0, x) = U^{(m)}_0(x), & \text{in } (\mathbb{R}^d)^m,
\end{cases}$$

where $F^{(m)}(x) := \mathcal{F}(\mu^{(m)}_x)$, $U^{(m)}_0(x) := \mathcal{U}_0(\mu^{(m)}_x)$ and

$$H^{(m)}(x_1, \ldots, x_m, p_1, \ldots, p_m) := \frac{1}{m} \sum_{i=1}^m H(x_i, mp_i).$$
From (HJB-\(\mathcal{P}_2\)) to (HJ-(\(\mathbb{R}^d\))^m)

Lemma

Let the data be as in our theorem and let \(U \in C^{1,1}_{\text{loc}}([0, T] \times \mathcal{P}_2(\mathbb{R}^d))\) be a classical solution to (HJB-\(\mathcal{P}_2\)). Let \(m \in \mathbb{N}\) and define \(U^{(m)} : [0, T] \times (\mathbb{R}^d)^m \to \mathbb{R}\) be defined as \(U^{(m)}(t, x) = \mathcal{U}(t, \mu_x^{(m)})\). Then \(U^{(m)}\) is of class \(C^{1,1}_{\text{loc}}\) and the unique classical solution of

\[
\begin{align*}
\partial_t U^{(m)}(t, x) + H^{(m)}(x, D_x U^{(m)}(t, x)) &= F^{(m)}(x), & \text{in } (0, T) \times (\mathbb{R}^d)^m, \\
U^{(m)}(0, x) &= U_0^{(m)}(x), & \text{in } (\mathbb{R}^d)^m,
\end{align*}
\]

(\(\text{HJ-}(\mathbb{R}^d)^m\))

where \(F^{(m)}(x) := \mathcal{F}(\mu_x^{(m)})\), \(U_0^{(m)}(x) := \mathcal{U}_0(\mu_x^{(m)})\) and

\[H^{(m)}(x_1, \ldots, x_m, p_1, \ldots, p_m) := \frac{1}{m} \sum_{i=1}^{m} H(x_i, mp_i).\]

Corollary

As a consequence of the classical theory, one has also that \(U^{(m)} \in C^{2,1}_{\text{loc}}([0, T] \times (\mathbb{R}^d)^m)!\)
How to deduce the desired $C^{2,1}_\text{loc}^w$ properties of U?

We need fine quantitative estimates on derivatives of $U^{(m)}$!

Theorem

Under the assumptions of our main theorem, we have that the solution $U^{(m)}$ of $(\text{HJ-}(\mathbb{R}^d)^m)$ satisfies the following. For all $t \in [0, T]$ and $r > 0$ there exists $C = C(t, r) > 0$ such that for all $x \in B^m_r$ we have

$$
|D^2_{x_i x_j} U^{(m)}(t, x)|_\infty \leq \begin{cases}
& \frac{C}{m}, \quad i = j; \\
& \frac{C}{m^2}, \quad i \neq j;
\end{cases} \quad (3)
$$

and

$$
|D^3_{x_i x_j x_k} U^{(m)}(t, x)|_\infty \leq \begin{cases}
& \frac{C}{m}, \quad i = j = k; \\
& \frac{C}{m^2}, \quad i = j \neq k, i \neq j = k, i = k \neq j; \\
& \frac{C}{m^3}, \quad i \neq j \neq k,
\end{cases} \quad (4)
$$

where $B^m_r := \{x \in (\mathbb{R}^d)^m : \frac{1}{m} \sum_{i=1}^m |x_i|^2 \leq r^2\}$.
How do we obtain such fine quantitative estimates?

→ It is very technical!
How do we obtain such fine quantitative estimates?

→ It is very technical!

→ We derive the regularity estimates on the associated finite dimensional Hamiltonian flow.

\[
\begin{align*}
\dot{Q}_i(s, x) &= D_pH(Q_i(s, x), mP_i(s, x)), \\
\dot{P}_i(s, x) &= -\frac{1}{m}D_xH(Q_i(s, x), mP_i(s, x)) + D_xF^{(m)}(Q_1(s, x), \ldots, Q_m(s, x)), \\
Q_i(0, x) &= x_i, \\
P_i(0, x) &= D_xU_0^{(m)}(x_1, \ldots, x_m),
\end{align*}
\]
How do we obtain such fine quantitative estimates?

→ It is very technical!

→ We derive the regularity estimates on the associated finite dimensional Hamiltonian flow.

\[
\begin{align*}
\dot{Q}_i(s,x) &= D_p H(Q_i(s,x), mP_i(s,x)), \\
\dot{P}_i(s,x) &= -\frac{1}{m} D_x H(Q_i(s,x), mP_i(s,x)) + D_{x_i} F^{(m)}(Q_1(s,x), \ldots, Q_m(s,x)), \\
Q_i(0,x) &= x_i, \ P_i(0,x) = D_{x_i} U^{(m)}_0(x_1, \ldots, x_m),
\end{align*}
\]

Since $U^{(m)}$ is of class $C^{1,1}_{\text{loc}}$, we have

→ $P_i(s,x) = D_{x_i} U^{(m)}(s, Q_1(s,x), \ldots, Q_m(s,x))$.
How do we obtain such fine quantitative estimates?

→ It is very technical!
→ We derive the regularity estimates on the associated finite dimensional Hamiltonian flow.

\[
\begin{align*}
\dot{Q}_i(s, x) &= D_pH(Q_i(s, x), mP_i(s, x)), & s \in (0, t), \\
\dot{P}_i(s, x) &= -\frac{1}{m}D_xH(Q_i(s, x), mP_i(s, x)) + D_{x_i}F^{(m)}(Q_1(s, x), \ldots, Q_m(s, x)), & s \in (0, t), \\
Q_i(0, x) &= x_i, & P_i(0, x) = D_{x_i}U^{(m)}_0(x_1, \ldots, x_m),
\end{align*}
\]

Since \(U^{(m)} \) is of class \(C_{\text{loc}}^{1,1} \), we have

→ \(P_i(s, x) = D_{x_i}U^{(m)}(s, Q_1(s, x), \ldots, Q_m(s, x)) \).
→ Therefore, regularity estimates on derivatives of \(P(s, \cdot) \) and \(Q^{-1}(s, \cdot) \) will give the required estimates on \(U^{(m)}(t, \cdot) \).
From \((HJ-(\mathbb{R}^d)^m)) to \((HJB-\mathcal{P}_2)) and to \((\text{Master}))

Theorem

Suppose that the solution \(U^{(m)}\) to \((HJ-(\mathbb{R}^d)^m)) satisfies the fine quantitative derivative estimates up to order 3. Then \(U\), the solution to \((HJB-\mathcal{P}_2)\), is of such that \(U(t, \cdot) \in C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))\).
From \((HJ-(\mathbb{R}^d)^m)\) to \((HJB-P_2)\) and to \((\text{Master})\)

Theorem

Suppose that the solution \(U^{(m)}\) to \((HJ-(\mathbb{R}^d)^m)\) satisfies the fine quantitative derivative estimates up to order 3. Then \(U\), the solution to \((HJB-P_2)\), is of such that \(U(t, \cdot) \in C^{2,1,w}_{loc}(P_2(\mathbb{R}^d))\).

This regularity is enough to deduce the existence of a **global classical solution to** the vectorial master equation.
Theorem

Suppose that the solution $U^{(m)}$ to $(HJ-(\mathbb{R}^d)^m)$ satisfies the fine quantitative derivative estimates up to order 3. Then U, the solution to $(HJB-\mathcal{P}_2)$, is of such that $U(t, \cdot) \in C^{2,1,\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))$.

→ This regularity is enough to deduce the existence of a global classical solution to the vectorial master equation.

→ The regularity of $u(t, x, \cdot)$ does not follow immediately from these arguments!
From (HJ-(\(\mathbb{R}^d\))^m) to (HJB-P_2) and to (Master)

Theorem

Suppose that the solution \(U^{(m)}\) to (HJ-(\(\mathbb{R}^d\))^m) satisfies the fine quantitative derivative estimates up to order 3. Then \(\mathcal{U}\), the solution to (HJB-P_2), is of such that \(\mathcal{U}(t, \cdot) \in C^{2,1,1}_{loc}(P_2(\mathbb{R}^d))\).

\[\rightarrow\] This regularity is enough to deduce the existence of a **global classical solution** to the vectorial master equation.

\[\rightarrow\] The regularity of \(u(t, x, \cdot)\) does not follow immediately from these arguments! Need to have the regularity of \(\mu \mapsto \sigma_s (s \in (0, t))\), where \(\sigma_t = \mu\) and

\[\partial_s \sigma_s + \nabla \cdot (\sigma_s \nabla w \mathcal{U}(s, \sigma_s)(\cdot)) = 0.\]
From \((HJ-(\mathbb{R}^d)^m)\) to \((HJB-\mathcal{P}_2)\) and to \((\text{Master})\)

Theorem

Suppose that the solution \(U^{(m)}\) to \((HJ-(\mathbb{R}^d)^m)\) satisfies the fine quantitative derivative estimates up to order 3. Then \(U\), the solution to \((HJB-\mathcal{P}_2)\), is of such that \(U(t, \cdot) \in C^{2,1,w}_{\text{loc}}(\mathcal{P}_2(\mathbb{R}^d))\).

→ This regularity is enough to deduce the existence of a global classical solution to the vectorial master equation.

→ The regularity of \(u(t, x, \cdot)\) does not follow immediately from these arguments! Need to have the regularity of \(\mu \mapsto \sigma_s (s \in (0, t))\), where \(\sigma_t = \mu\) and \(\partial_s \sigma_s + \nabla \cdot (\sigma_s \nabla_w U(s, \sigma_s)(\cdot)) = 0\).

→ One needs to perform a ‘new’ discretization argument to show this remaining regularity!
From \((HJ-(\mathbb{R}^d)^m))\) to \((HJB-\mathcal{P}_2)\) and to \((Master)\)

Theorem

Suppose that the solution \(U^{(m)}(m)\) to \((HJ-(\mathbb{R}^d)^m)\) satisfies the fine quantitative derivative estimates up to order 3. Then \(U\), the solution to \((HJB-\mathcal{P}_2)\), is of such that \(U(t, \cdot) \in C^{2,1}_{loc} (\mathcal{P}_2(\mathbb{R}^d)).\)

→ This regularity is enough to deduce the existence of a **global classical solution** to the vectorial master equation.

→ The regularity of \(u(t, x, \cdot)\) does not follow immediately from these arguments! Need to have the regularity of \(\mu \mapsto \sigma_s (s \in (0, t))\), where \(\sigma_t = \mu\) and \(\partial_s \sigma_s + \nabla \cdot (\sigma_s \nabla w U(s, \sigma_s)(\cdot)) = 0.\)

→ One needs to perform a ‘new’ discretization argument to show this remaining regularity!

→ As a conclusion, we obtain \(u \in C^{1,1}_{loc} ([0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))\) is a classical solution to \((Master)\). The uniqueness follows from the (strict) displacement convexity of the data!
Thank you for your attention!