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Given: P cR¢
V :RY x R? — R smooth, Z< x Zd-periodic
H:R'—R, H(p) = 3lp|
g:RT =R, g(m)=1In(m)
e>0

Problem: asymptotic behavior as ¢ — 0 of

preferred direction
of motion

potential (spacial
preferences)

Hamiltonian
(cost function)
coupling
(interactions)

length-scale of
heterogeneities

Find (ue, me, He) € C®(T?) x C®(T?) x R, with m. > 0, solving

w +- = In(me(x)) + H(P) inT¢

—div (me(z)(P + Vue(z))) =0
/W ue(z)dr =0, /11‘d me(z)de =1

in T¢



Key feature: spacial preferences of agents, given by V, depend on
e macroscopic variable, =

e microscopic or fast oscillating variable, %

Examples: Traffic-flow in a long road with (periodically) changing road
conditions:

e x — position on the road

° % — current road conditions

Agents moving through a forest or a minefield:
e x — position in the forest/minefield

e £ — current conditions: obstacle/no obstacle or
mine/no mine



Underlying assumption:

heterogeneities (obstacles) are evenly ’
distributed at a scale much smaller than
that of the medium, allowing us to assume

that the distribution is e-periodic
(e > 0 small)

Y?:=1[0,1)? reference cell

eYd = [0,¢)? periodicity cell

Two scales characterize the problem:

@ x:= macroscopic variable (position in 2)

@ Z:= microscopic variable (white or blue)

xEQ:xEE(/ﬂ+Yd):>§:H+y.HGZd.yEYd



Problem: asymptotic behavior as ¢ — 0 of

Find (u, me, He) € C®(T?) x C®(T?) x R, with m, > 0, solving

w -I-- = In(me(x)) + H(P) inT¢

—div (me(z)(P + Vue(z))) =0 in T¢

/Edue(m) da =0, /Td me(z)de = 1



Problem: asymptotic behavior as ¢ — 0 of

Find (u, me, He) € C®(T?) x C®(T?) x R, with m, > 0, solving

w + - = In(me(x)) + H(P) inT¢

—div (me(z)(P + Vue(z))) =0 in T¢

/Edue(x) da =0, /Td me(z)de = 1

For ¢ < 1, numerical methods for these problems are computationally
very expensive, potentially unstable, and may breakdown

Questions: How to pass to the limit as ¢ — 07
Does the limit problem preserve the MFG structure?



Our main result in a nutshell

Ue — Ug, Me — Mo, He — H, with mg > 0 and

H(z,P+ Vuo(x)g =In(mo(z)) + H(P) inT¢
—div (mo(z)DaH (2, P+ Vug(z)) =0 in T?

/ up(x)dx =0,
Td

modx =1,
Td

where the homogenized Hamiltonian, H = fI(x,A), is given by an
auxiliary problem on the reference cell, Y'¢, called the cell problem.

Main tools: two-scale convergence, variational methods, PDE techniques

@ R. Ferreira, D. Gomes, X. Yang
Two-scale Homogenization of a stationary mean-field game.
ESAIM: Control, Optimisation and Calculus of Variations (2020)



On the literature within Homogenization of MFGs

Prior works:

[@ A. Cesaroni, N. Dirr, C. Marchi
Homogenization of a mean field game system in the small noise limit.
SIAM Journal on Mathematical Analysis (2016)

[@ S. Cacace, F. Camilli, A. Cesaroni, C. Marchi
An ergodic problem for Mean Field Games: qualitative properties and
numerical simulations.
Minimax Theory and its Applications (2018)

Subsequent works:

@ P-L. Lions, P. E. Souganidis
Homogenization of the backward-forward mean-field games systems in
periodic environments.
preprint arXiv:1909.01250
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Idea of the of asymptotic expansions:

[] Upon the observation that two scales characterize the problem,
postulate that the solution of L.w. = f admits an expansion of the

form
T

x 2 xT
ws(iv) = wo(w, —) + ewq (x, —) + e“woq (g;7 _> 4o
e I c
[l Insert this expansion in L.w. = f, and match the coefficients in

terms of powers of ¢

[] solve the cascade of problems obtained in [J to determine which
problem does wy satisfy

Remark: [ — [ are formal!

1 prove convergence of {w.} to wp (in an appropriate space) to justify
the method

Two-scale convergencel!



A brief idea on how the asymptotic expansions can provide the heuristics
for the limiting behavior in our case:

@ Postulate
ue(z) = up(x) + eur(z, 7)
me(x) = mo(x)(m1(z, Z) + ema(z, T))
H.=H+¢cH

with mg, m1, and Mo positive.

@ Insert in
{w +V(2,2) = In(me(z)) + He(P)
—div (me(2)(P + Vu(z))) = 0.

@ Collect the terms containing different powers of € to obtain a
sequence of equations, which are of the form E(z,z/¢) = 0.

@ Separate the scales by denoting y = /¢ and using the formal
assumption that E(x,%) = 0 holds for all z € T¢ and y € Y¢



ue(x) = up(w) + eur(z, ¥)

me(x) = mo(x)(mi(z, 2) + ema(z

H.=H+eH

@ Workout the algebra to find that (formally)

o (tig, mo, H) solves the homogenized problem

H(x, P+ Viig(z)) = Ining(z) + H,
— div (mg(x )DAH (2, P + Viig(x))) =

o where, for each z € T¢ and A € R?, (@, my, H) solves the cell

problem

o .
{'“VM +V(2,y) = i (2,9) + H(z, A),

— divy, (m1 (2, y)(A + Vi (z,y))) = 0.

)



Definition of two-scale convergence

Let g € [1,+00), (we)e C LI(T?) bounded, w € LI(T¢ x Y9).

We say that (w¢). weakly two-scale converges to w if for all ¢ €
C=(T4; C2. (YD) ~ (T °(T?)), we have

per

lim » we(x)zﬁ(af:, %) dz = /]l‘d /Yd w(z,y)Y(r,y) dyde.

e—0

Notation

we-E5¢sqp in LI(T? x YY)



Compactness for 1 < g <

Let (we)e € L(T?) be bounded with ¢ € (1,+0c0).

Then, there exist w € LI(T¢ x Y?) and a subsequence (we)e such
that
we Eqp in LY(T? x YY),



Compactness for 1 < g <

Let (we)e € L(T?) be bounded with ¢ € (1,+0c0).

Then, there exist w € LI(T¢ x Y?) and a subsequence (we)e such
that
we Eqp in LY(T? x YY),

Compactness for ¢ = 1

Let (we)e € L*(T9) be bounded and equi-integrable.

Then, there exist w € L'(T? x Y?) and a subsequence (we )¢ such
that
we -Eqw in LT x Y9),



Relationship with the weak limit in ¢

Let (we)e € LI(T4) with g € [1,+00). Then,

weEsq in LUTY x V) = we — wp :/ w(-,y)dy in LYTY).
yd

The two-scale limit captures more information on the oscillatory
behavior of a bounded sequence in L4 than its weak limit in L9.



Relationship with the weak limit in ¢

Let (we)e € LI(T4) with g € [1,+00). Then,

weEsq in LUTY x V) = we — wp :/ w(-,y)dy in LYTY).
yd

The two-scale limit captures more information on the oscillatory
behavior of a bounded sequence in L4 than its weak limit in L9.
Possible weak two-scale limits:

Given w € LI(T? x Y'9), there exists a bounded sequence, (w¢). C
L9(T4), such that

weEq in LI(TE x Y.



Example

w(@,y)

we(z) = 1 cos(2mx) + 1 + 1(sin(27z) + 1) cos(2rZ)

w2y in LT x V), w(z,y) =} cos(2ra) + 1

+ L(sin(27z) + 1) cos(2my)
we — wp in LYT), wo(x) = 3 cos(2mz) + 1



More examples

o If w. — w in LI(T?), then

w, 2-sc @ in L(I(']I‘d X Yd) with 'UNJ(I’,y) = w(x)

o Let ¢ € LYT% Cper(Y'?)), and set 1 (z) := 9(z, Z). Then,

ey in LI(TY x V).



Relationship with Asymptotic Expansions

If we(z) = wo(z, L) + ewr (2, L) + 2wa(x,Z) + - -+, w; smooth, w;(z,)
Y ?-periodic, then w25 wy, wy = wo(z, y)

Consequently, existence of the first term, wg, of the asymptotic
expansion is justified

If w2 w in LY(T? x Y¥), with w € LI(T% Cper(Y'?)), and
lime g [[wel pa(ray = l|wlpa(raxya), then

lim Jwe —w(-; 2l La(ray = 0.

Thus, convergence of the norms provides a sufficient condition for strong
convergence of w, to the first term of its asymptotic expansion

In general, |[@]|Lq(ra) < [[wl|pa(raxyay < liminfe g [[wellpo(ra)



Compactness in W14 for 1 < ¢ < oo

Let (we)e € WH9(T9) be bounded with g € (1,400).
Then, there exist w € LY(T%), w; € LI(T% Wh(Y%)/R), and a
subsequence (we ) such that

we — w in WHY(TY),

we -Eq in LYT? x Y9,

Vwe 25V + Vyywy in [LI(T4 x Y47,

Remark: The term V,w; can be interpreted as the gradient limit at the
microscale characterizing the problem.



Back to our problem:

Problem

Find (ue, me, He) € C®(T?) x C®(T?) x R, with m, > 0, solving

w + - = In(me(x)) + H(P) in T¢

—div (me(z)(P + Vue(z))) =0 in T4
/Td Ue(x)dz =0, /Td me(z)dr =1

As proved by Evans in

@ L.C. Evans
Some new PDE methods for weak KAM theory.
Calculus of Variations and Partial Differential Equations (2013)

this problem has a unique solution (when e~! € N), and is equivalent to



Variational Problem
Find u. € C*°(T?) satisfying Jpa ue(z)dz = 0 and

I[ud] = inf I[u],
uecl(Td)
Jpa w(z) de=0

where

u(x 2 x
I[u] :/ IRV @D 4z | for u e cH(Td).
Td

through the identities
H.(P) = InI[u]

and

e ()2 R
M, — QW'FV(%?)_HE(P).



Variational Problem
Find u. € C*°(T?) satisfying Jpa ue(z)dz = 0 and

I[ud] = inf I[u],
uwecl(Td)
Jpa w(z) de=0

where

u(x 2 x
I[u] :/ IRV @D 4z | for u e cH(Td).
Td

through the identities
H.(P) = InI[u]

and

we ()2 A
M, — eW'FV(x’?)_HE(P).

Note: Exponential growth makes this problem somewhat non-standard,
and therefore with independent interest in the calculus of variations.



Exploiting both the PDE and the variational formulation, we establish

Uniform estimates in ¢

Let ¢ € [1,00). Then, there exist positive constants, C' = C(P),
Cy=0C(q,P), and C. = C(¢, P), such that
: — |P|?
inf V<H(P)< —+ sup V
TdxYyd 2 Tdxyd

sup [|uellyr.a(ray < Gy,
€

5 < i’]?dfme < Sudpme g C&‘a
T

P> .
m In(m dx < + sup V — inf V.
Sl:p Td E(x) n( 6(3:)) “ 2 TdXI;/d TdxYd

Note: The last last estimate together with the de la Vallée Poussin
criterion for equi-integrability allows us to use the compactness result for
two-scale convergence in L' applied to (m.).



Corollary

There exist a € (0, 1)
up € CO* N WH(TY) with [, ugdz =0,
uy € LT Whd(vd)/R),
m € LY(T? x Y?) with [ [y-a m(z,y) dydz = 1,
H(P) € R

such that, up to a subsequence,

ue — ug in L(TY),  ue — ug in WH4(T?),

Ve 25 Vg + Vyuy in [L9(T¢ x Y4)]4,
me 2=5¢ o in Ll(’]rd % Yd)’ Me — My :/ m(,y) dy in Ll(Td),
ya

H.(P)— H(P)inR.



ue — ug in WH(T),  Vu 25 Vg + Vyuy in [LY(T? x Y4)]4,
meZ2min LT x Y9),  me —mg = [yam(-,y)dy in LY(T9),
H(P)— H(P)inR

Question: What problem(s) do wug, u1, m, mg, and H solve?

Additional assumption on the potential: V is separable in y; that is, there

exist smooth functions, V; : T% x R — R, where 1 < i < d, such that for
allz € Tandy € RY, y = (y1,...,¥i,...,yq), we have

d

Vix,y) = Z Vi(x,yi).

=1

Then, our main theorem , stated from the variational viewpoint is:



ue — ug in WHe(Td),  Vu 25 Vug + Vyuy in [LY(T4 x Y9))4,
meE2m in LY(T? x YY), me —mo = [y.am(-,y)dy in L}(T?),
H.(P)— A(P)in R

[ (up,u1) is the unique solution to the

Variational two-scale homogenized problem

Find ug € C°°(T?) with [ ugda = 0 and uy € C®(T% Cpit (Y4) /R)
satisfying
Tioaluo, ur] = inf T lu, wl,
uElep(Td),de u dz=0

weLP (T WaR(Yd) /R)

|P+Vu x)+Vyw(x y)\
I [u,w) := V@Y dyda
Td Yd

for (u,w) € WP (T4 x LP(T4 W (Y?)/R)

where




ue — ug in WHe(Td),  Vu 25 Vug + Vyuy in [LY(T4 x Y9))4,
meE2m in LY(T? x YY), me —mo = [y.am(-,y)dy in L}(T?),
H.(P)— A(P)in R

0 lin% Ie[ue] = IZC [ug, uq); that is,
€—>

P4V 2
lim | e V@D gy
€e—0 Jd

P+V +Vyuq (z,y)]2
_ el ug () s yu(z,y)l +V(z,y) dyd:]:
Td JYd

0 H(P) =InI%C [ug,u]

hom

O m(e, y) = e Ty (ay) - H(P)

[ ug is the unique solution of the



Variational homogenized problem

Find up € C°°(T?) satisfying [, updz = 0 and
Thom|uo| = inf Thom|u],
hom[ 0] uEWlap(Td),de wdz=0 hom[ ]

where

Thom|[u] := /T ) H@P+Vu@) gz | for w € WLP(TY).




Variational homogenized problem

Find up € C°°(T?) satisfying [, updz = 0 and
Thom|uo| = inf Thom|u],
hom[ 0] ueWhp(Td), [14udz=0 hom[ ]

where

Ihom[u] := / eﬁ(m’P+V“(I)) dz| foru e Wl’p(']I‘d).
']I*d

Here, H : T¢ x R? — R is defined, for each z € T¢ and A € R, by

f[(x, A) =In Icell[xa A7 {E]?
where

Icell[xa A; w] = /

yd

[A+Vw(y)|?
o AV (

2 dy | for w e WIP(Y)/R

per

and w is the unique solution of



Variational cell problem

For each z € T¢ and A € RY, find w € Cgé?(Yd)/R, depending on z
and A, satisfying

Teen [IE, A; '[17] = 1inf Teen [.%', A; U}],
weWpdk (Y4)/R

where

per

w 2
Leenar, A w) := / EFEEV @Y 4y | for w e WHP(YY) /R
yd

Adopting a PDE viewpoint, we revisit the slide “our main result in a
nutshell” and prove the heuristics provided by the asymptotic expansion
method:



ue — ug in WhH4(TY) | Vu, 255 Vug + Vyup in [LY(T? x Y9)]4,
meE2m in LY(T? x YY), me = mg = [y,am(-,y)dy in L*(T?),
H.(P)— H(P)inR

|[P+Vuq(z)+Vyuq (z,y)]

ﬁ( ) In IZSC [’LLO7’I,L1], m(IL‘, y) =e 3 +V(m,y)—F(P)

hom

L’ (uo,mo,ﬁ) is the unique solution of
Homogenized problem

Find ug € C*°(T?) with [y ugdz =0, mg € C°°(T?) with mg > 0,
and H € R satisfying

H(z, P+ Vug(z)) = In(mo(z)) + H(P ) in T¢

—div (mg(m‘)DAPNI(m, P+ Vuy(z)) = in T4

modz =1,
Td



where H is determined by

Cell problem

For each z € T¢ and A € RY, find @ € CRf (Y)/R, m € C*(YY),
and H € R, depending on z and A, such that (w, m, ﬁ) solves

~ 2 .
|A + Vyw(x7A?y)’ + V(m,y) — hlﬁ’L(.fL‘,A,y) + H(.I, A) in Yd

2
— divy, (m(z, A, y)(A + Vyw(z, A, y))) =0 in Y4
m(z,\,y)dy = 1.

yd

Moreover, (ug,u1,m, H) is the unique solution to



ue = ug in WHa(TY) | Vue 254 Vug + Vyup in [LY(T? x Y9)]4,
Mme 225 m in LY(TEx YY) | m.—mg= fyd m(-,y)dy in L'(T?),

H.(P)— HP)nR

Two-scale homogenized problem

Find ug € C*(T) with [, ugda =0, uy € C®(T% CE* (YY) /R),
m € C®(T% C ’a(Yd with [4 [yam(z,y)dyde =1, and H € R
satisfying

ug(x ui (2,y)[?
|P + Vug( );'Vy 1(y)| +V(z,y) = In(m(z,y)) + H(P)

~aive ([ me)(P+ Vuala) + Ty )y ) =0
—divy(m(z,y)(P + Vug(z) + Vyui(z,y))) =0

in T4 x Y49,



A lower semicontinuity result w.r.t. two-scale convergence

Assume that

o f:R?xR? — [0,+00) is a Borel function such that f(-,p) is
Y ?-periodic and f(y,-) is convex,

0 w Ly in [LP(T? x T4

Then, for all ¢ € C°(T4; C2.(Y?)) with ¢ > 0, we have

per

gt [ S(Gu)o(o:7) ao
/w/ [y, w(z,y)o(z,y) dydz.

Taking

P 2
P4 el (z,y)

w5=Vu52_¢VU0+VyU17 f(xap) =e 2 ) ¢(x,y):eV$

we prove a lower bound :



P+V 2 .
[P+ ;e(z)\ ev(x’g)

liminf I.[u] = liminf [ e dz
e—0 e—0 Td
|P+Vug(2)+Vyug (=y)|
Td Jyd
2
= Inom[vo0, u1]
> inf I [u, w)

uwewbLp(Td), Jpd wdz=0
weLP(THWaR(Yd) /R)

We prove a matching upper bound and uniqueness and regularity of
minimizers by

@ using a continuity argument with respect to strong two-scale
convergence applied to convenient test functions:
Ie[ue] < Ie [1/}0() + €¢1 ('7 g)]

@ splitting the variational two-scale formulation into two subproblems as
follows:



‘ [P+ Vu(e)+Vyw(z,y)|2
f . > HVY) Qyda
Td JYyd

ueWLp(']I‘d), ’Td udr=0
weLP(TLWp2 (Y)/R)

. ) |P+Vu(z)+Vyw(z,y)l?
= inf inf e 2 V) dy dz
Td Yyd

wew1.p(Td) weLP(’Jl’d;WééIr)(Yd)/R)
Jpa udz=0




‘ [P+ Vu(e)+Vyw(z,y)|2
f . > HVY) Qyda
Td JYyd

wewlp(Td), Jpq wdz=0
weLP(THWaR(Y4)/R)

. . |P+Vu(z)+Vyw(z,y) 2
= inf / inf / e 2 VY gy de
wewlp(rd) JTd  weLp(T4Wak (Y)/R) Jyd

Jpa udz=0

= ) |A+Vyw(z,y)|?
cH(@A) _ inf / e 3 V(@) gy
weWa(Yd)/R Jyd

Cell problem: Existence given by the continuation method,
where the implicit function theorem plays a role a provides
regularity with respect to the parameters




‘ [P+ Vu(e)+Vyw(z,y)|2
f . > HVY) Qyda
Td JYyd

wewlp(Td), Jpq wdz=0
weLP(THWaR(Y4)/R)

) . |P+Vu(e)+Vyw(z,y)|?
= inf / inf / e 2 VY gy de
wewlp(rd) JTd  weLp(T4Wak (Y)/R) Jyd
Jpa udz=0
~ A+Vyw(z, 2
cH(@A) _ inf / 67‘ yQ( D4y () dy
weWa(Yd)/R Jyd

Cell problem: Existence given by the continuation method,
where the implicit function theorem plays a role a provides
regularity with respect to the parameters

/ A (@ PHVu(@)) g
']I‘d

inf
ueWbp(T4), (14 udz=0
Homogenization problem: Existence, uniqueness, and regularity given
by [Evans 2013] provided we prove that H satisfies the appropriate
conditions - this is where the separability of V' plays a role



More precisely, the homogenized problem

inf / (@ PHVu() 4,
uweWLp(T4), [1q udz=0JTd

is considered in [Evans, 2003]. A unique smooth solution exists if H
satisfies

° ‘szl‘ <C ‘DAEI‘ <C(1+]A),
° ’D%fl‘ <, ‘Diff’ <C ’DgAff‘ <C
o (TD3HE > C|¢f for any € € RY
If V' is separable in y, V(z,y) = Z?Zl Vi(z,yi), the solution (i, @, H) of

the cell problem is separable in y and can be written as

ﬁi(fE,Ai),

s.
i Mg
)

Hm;x/yz szxyl (va):



Thus, the cell problem splits into one-dimensional systems:

i (Wi (2, 1i))y, |2 H
|A; + ( 2(2 2 Yi))i + Vi(w,yi) = In (m(z, y:)) + Hi(w, A;)

(M, ya) (Ni + (@i, 92))y,)),, =0
1
/ mi(z,y;)dy =1
0
In the one-dimensional case, the current method gives strictly positive

lower bounds on m; that are uniform in A, and eventually allows us to
prove that

ETDYHE > C|€? for any € € RY .



Back to the upper bound: Let
x
be (@) = o (o) + ety (2.%),

where g € C®(T%) and ¢; € C>®(T?; C?*(T%)/R). The fact that u,
minimizes I[-] and a continuity argument with respect to strong two-scale
convergence yield

lim sup I [u] < limsup I [¢] = I}%E(I:n[l/}[),’(ﬁl].

e—0 e—0

Thus, using the analysis on the iterated integrals for Iﬁf);l

limsup I [uc] < inf IS [, 1] = inf IES [u, w] = 2, T[tg, 1]
e—0 o1 u,w

for some smooth Uy and @y. Therefore,

lim I [uc] = Iiog, [to, 1] = Iiog, [uo, u).
e—0

Since the minimizer of Iﬁf)fn is unique, g = ug and Uy = u;.



w —|-- =In(mc(x)) + H(P) inT¢

—div (me(z)(P + Vue(z))) =0 in T4
/11‘(1 ue(z)dr =0, /11‘«1 me(z)de =1

e — ug in WhHa(T?) | Vu, 255 Vug + Vyup in [LY(T? x Y4))4,
me-Zm in LYT? x YY),  me —=mgy = fyd m(-,y)dy in LY(T%),

H.(P)— H(P)nR

H(z, P+ Vug(x)) = In(mo(z)) + H(P) in T
—div (mo(x)DaH (2, P + Vug(z)) =0  inT¢

uo(z)dx =0, mode =1
d Td

(H = H(x,A) is given by an auxiliary problem on the reference cell, Y'%)
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