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Given: P ∈ Rd preferred direction
of motion

V : Rd × Rd → R smooth, Zd × Zd-periodic potential (spacial
preferences)

H : Rd → R, H(p) = 1
2 |p|

2 Hamiltonian
(cost function)

g : R+ → R, g(m) = ln(m) coupling
(interactions)

ε > 0 length-scale of
heterogeneities

Problem: asymptotic behavior as ε → 0 of

Find (uε,mε, Hε) ∈ C∞(Td) × C∞(Td) × R, with mε > 0, solving






|P + ∇uε(x)|2

2
+ V

(
x,

x

ε

)
= ln(mε(x)) + Hε(P ) in Td

− div
(
mε(x)(P + ∇uε(x))

)
= 0 in Td

ˆ

Td

uε(x) dx = 0,

ˆ

Td

mε(x) dx = 1
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Key feature: spacial preferences of agents, given by V , depend on

• macroscopic variable, x

• microscopic or fast oscillating variable, x
ε

Examples: Traffic-flow in a long road with (periodically) changing road
conditions:

• x – position on the road

• x
ε – current road conditions

Agents moving through a forest or a minefield:

• x – position in the forest/minefield

• x
ε – current conditions: obstacle/no obstacle or

mine/no mine
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Underlying assumption:

heterogeneities (obstacles) are evenly
distributed at a scale much smaller than
that of the medium, allowing us to assume
that the distribution is ε-periodic
(ε > 0 small)

Y d := [0, 1)d reference cell

εY d = [0, ε)d periodicity cell

Two scales characterize the problem:

x:= macroscopic variable (position in Ω)
x
ε := microscopic variable (white or blue)

x ∈ Ω ⇒ x ∈ ε(κ + Y d) ⇒
x

ε
= κ + y, κ ∈ Zd, y ∈ Y d
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Problem: asymptotic behavior as ε → 0 of

Find (uε,mε, Hε) ∈ C∞(Td) × C∞(Td) × R, with mε > 0, solving






|P + ∇uε(x)|2

2
+ V

(
x,

x

ε

)
= ln(mε(x)) + Hε(P ) in Td

− div
(
mε(x)(P + ∇uε(x))

)
= 0 in Td

ˆ

Td

uε(x) dx = 0,

ˆ

Td

mε(x) dx = 1
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Problem: asymptotic behavior as ε → 0 of

Find (uε,mε, Hε) ∈ C∞(Td) × C∞(Td) × R, with mε > 0, solving






|P + ∇uε(x)|2

2
+ V

(
x,

x

ε

)
= ln(mε(x)) + Hε(P ) in Td

− div
(
mε(x)(P + ∇uε(x))

)
= 0 in Td

ˆ

Td

uε(x) dx = 0,

ˆ

Td

mε(x) dx = 1

� For ε � 1, numerical methods for these problems are computationally
very expensive, potentially unstable, and may breakdown

Questions: How to pass to the limit as ε → 0?

Does the limit problem preserve the MFG structure?
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Our main result in a nutshell

uε ⇀ u0, mε ⇀ m0, Hε → H, with m0 > 0 and






H̃(x, P + ∇u0(x)) = ln(m0(x)) + H(P ) in Td

− div
(
m0(x)DΛH̃(x, P + ∇u0(x)

)
= 0 in Td

ˆ

Td

u0(x) dx = 0,

ˆ

Td

m0 dx = 1,

where the homogenized Hamiltonian, H̃ = H̃(x, Λ), is given by an
auxiliary problem on the reference cell, Y d, called the cell problem.

Main tools: two-scale convergence, variational methods, PDE techniques

R. Ferreira, D. Gomes, X. Yang
Two-scale Homogenization of a stationary mean-field game.
ESAIM: Control, Optimisation and Calculus of Variations (2020)
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On the literature within Homogenization of MFGs

Prior works:

A. Cesaroni, N. Dirr, C. Marchi
Homogenization of a mean field game system in the small noise limit.
SIAM Journal on Mathematical Analysis (2016)

S. Cacace, F. Camilli, A. Cesaroni, C. Marchi
An ergodic problem for Mean Field Games: qualitative properties and
numerical simulations.
Minimax Theory and its Applications (2018)

Subsequent works:

P.-L. Lions, P. E. Souganidis
Homogenization of the backward-forward mean-field games systems in
periodic environments.
preprint arXiv:1909.01250
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Two-scale convergence

Notion introduced by Nguetseng ’89, further developed by Allaire ’92

theoretical improvement of the method of asymptotic expansions

well suited for problems with a variational structure
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Two-scale convergence

Notion introduced by Nguetseng ’89, further developed by Allaire ’92

theoretical improvement of the method of asymptotic expansions

well suited for problems with a variational structure

Idea of the of asymptotic expansions:

① Upon the observation that two scales characterize the problem,
postulate that the solution of Lεwε = f admits an expansion of the
form

wε(x) = w0

(
x,

x

ε

)
+ εw1

(
x,

x

ε

)
+ ε2w2

(
x,

x

ε

)
+ ∙ ∙ ∙
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② Insert this expansion in Lεwε = f , and match the coefficients in
terms of powers of ε
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② Insert this expansion in Lεwε = f , and match the coefficients in
terms of powers of ε
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which problem does w0 satisfy

7



Idea of the of asymptotic expansions:

① Upon the observation that two scales characterize the problem,
postulate that the solution of Lεwε = f admits an expansion of the
form

wε(x) = w0

(
x,

x

ε

)
+ εw1

(
x,

x

ε

)
+ ε2w2

(
x,

x

ε

)
+ ∙ ∙ ∙

② Insert this expansion in Lεwε = f , and match the coefficients in
terms of powers of ε

③ solve the cascade of problems obtained in ① to determine which
problem does w0 satisfy

8



Idea of the of asymptotic expansions:

① Upon the observation that two scales characterize the problem,
postulate that the solution of Lεwε = f admits an expansion of the
form

wε(x) = w0

(
x,

x

ε

)
+ εw1

(
x,

x

ε

)
+ ε2w2

(
x,

x

ε

)
+ ∙ ∙ ∙

② Insert this expansion in Lεwε = f , and match the coefficients in
terms of powers of ε

③ solve the cascade of problems obtained in ① to determine which
problem does w0 satisfy

Remark: ① – ③ are formal!

④ prove convergence of {wε} to w0 (in an appropriate space) to justify
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postulate that the solution of Lεwε = f admits an expansion of the
form

wε(x) = w0

(
x,

x

ε

)
+ εw1
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terms of powers of ε

③ solve the cascade of problems obtained in ① to determine which
problem does w0 satisfy

Remark: ① – ③ are formal!

④ prove convergence of {wε} to w0 (in an appropriate space) to justify
the method

Two-scale convergence!
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A brief idea on how the asymptotic expansions can provide the heuristics
for the limiting behavior in our case:

Postulate





uε(x) = ũ0(x) + εũ1(x, x
ε )

mε(x) = m̃0(x)(m̃1(x, x
ε ) + εm̃2(x, x

ε ))

Hε = H + εH̃

with m̃0, m̃1, and m̃2 positive.

Insert in
{

|P+∇uε(x)|2

2 + V (x, x
ε ) = ln(mε(x)) + Hε(P )

− div
(
mε(x)(P + ∇uε(x))

)
= 0.

Collect the terms containing different powers of ε to obtain a
sequence of equations, which are of the form E(x, x/ε) = 0.

Separate the scales by denoting y = x/ε and using the formal
assumption that E(x, y) = 0 holds for all x ∈ Td and y ∈ Y d
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




uε(x) = ũ0(x) + εũ1(x, x
ε )

mε(x) = m̃0(x)(m̃1(x, x
ε ) + εm̃2(x, x

ε ))

Hε = H + εH̃

Workout the algebra to find that (formally)

(ũ0, m̃0, H) solves the homogenized problem

{
H̃(x, P + ∇ũ0(x)) = ln m̃0(x) + H,

− div
(
m̃0(x)DΛH̃(x, P + ∇ũ0(x))

)
= 0,

where, for each x ∈ Td and Λ ∈ Rd, (ũ1, m̃1, H̃) solves the cell
problem

{
|Λ+∇yũ1(x,y)|2

2 + V (x, y) = ln m̃1(x, y) + H̃(x, Λ),

− divy

(
m̃1(x, y)(Λ + ∇yũ1(x, y))

)
= 0.
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Definition of two-scale convergence

Let q ∈ [1, +∞), (wε)ε ⊂ Lq(Td) bounded, w ∈ Lq(Td × Y d).

We say that (wε)ε weakly two-scale converges to w if for all ψ ∈
C∞(Td; C∞

per(Y
d))∼ C∞(Td; C∞(Td)), we have

lim
ε→0

ˆ

Td

wε(x)ψ
(
x,

x

ε

)
dx =

ˆ

Td

ˆ

Y d

w(x, y)ψ(x, y) dydx.

Notation

wε
2-sc⇀w in Lq(Td × Y d)
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Compactness for 1 < q < ∞

Let (wε)ε ⊂ Lq(Td) be bounded with q ∈ (1, +∞).

Then, there exist w ∈ Lq(Td × Y d) and a subsequence (wε′)ε′ such
that

wε′
2-sc⇀w in Lq(Td × Y d).
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Compactness for 1 < q < ∞

Let (wε)ε ⊂ Lq(Td) be bounded with q ∈ (1, +∞).

Then, there exist w ∈ Lq(Td × Y d) and a subsequence (wε′)ε′ such
that

wε′
2-sc⇀w in Lq(Td × Y d).

Compactness for q = 1

Let (wε)ε ⊂ L1(Td) be bounded and equi-integrable.

Then, there exist w ∈ L1(Td × Y d) and a subsequence (wε′)ε′ such
that

wε′
2-sc⇀w in L1(Td × Y d).
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Relationship with the weak limit in Lq

Let (wε)ε ⊂ Lq(Td) with q ∈ [1, +∞). Then,

wε
2-sc⇀w in Lq(Td × Y d) ⇒ wε ⇀ w0 =

ˆ

Y d

w(∙, y) dy in Lq(Td).

The two-scale limit captures more information on the oscillatory
behavior of a bounded sequence in Lq than its weak limit in Lq.
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Relationship with the weak limit in Lq

Let (wε)ε ⊂ Lq(Td) with q ∈ [1, +∞). Then,

wε
2-sc⇀w in Lq(Td × Y d) ⇒ wε ⇀ w0 =

ˆ

Y d

w(∙, y) dy in Lq(Td).

The two-scale limit captures more information on the oscillatory
behavior of a bounded sequence in Lq than its weak limit in Lq.

Possible weak two-scale limits:

Given w ∈ Lq(Td × Y d), there exists a bounded sequence, (wε)ε ⊂
Lq(Td), such that

wε
2-sc⇀w in Lq(Td × Y d).
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wε(x) = 1
2 cos(2πx) + 1 + 1

2(sin(2πx) + 1) cos(2π x
ε )

wε
2-sc⇀w in Lq(T× Y ), w(x, y) = 1
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More examples

If wε → w in Lq(Td), then

wε
2-sc⇀w̃ in Lq(Td × Y d) with w̃(x, y) := w(x).

Let ψ ∈ Lq(Td; Cper(Y d)), and set ψε(x) := ψ(x, x
ε ). Then,

ψε
2-sc⇀ψ in Lq(Td × Y d).
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Relationship with Asymptotic Expansions

If wε(x) = w0

(
x, x

ε

)
+ εw1

(
x, x

ε

)
+ ε2w2

(
x, x

ε

)
+ ∙ ∙ ∙ , wi smooth, wi(x, ∙)

Y d-periodic, then wε
2-sc⇀w0, w0 = w0(x, y)

Consequently, existence of the first term, w0, of the asymptotic
expansion is justified

If wε
2-sc⇀w in Lq(Td × Y d), with w ∈ Lq(Td; Cper(Y d)), and

limε→0 ‖wε‖Lq(Td) = ‖w‖Lq(Td×Y d), then

lim
ε→0

‖wε − w(∙, ∙
ε)‖Lq(Td) = 0.

Thus, convergence of the norms provides a sufficient condition for strong
convergence of wε to the first term of its asymptotic expansion

In general, ‖w̄‖Lq(Td) 6 ‖w‖Lq(Td×Y d) 6 lim infε→0 ‖wε‖Lq(Td)
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Compactness in W 1,q for 1 < q < ∞

Let (wε)ε ⊂ W 1,q(Td) be bounded with q ∈ (1, +∞).

Then, there exist w ∈ Lq(Td), w1 ∈ Lq(Td; W 1,q
per(Y d)/R), and a

subsequence (wε′)ε′ such that

wε′ ⇀ w in W 1,q(Td),

wε′
2-sc⇀w in Lq(Td × Y d),

∇wε′
2-sc⇀∇w + ∇yw1 in

[
Lq(Td × Y d)

]d
.

Remark: The term ∇yw1 can be interpreted as the gradient limit at the
microscale characterizing the problem.
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Back to our problem:

Problem

Find (uε,mε, Hε) ∈ C∞(Td) × C∞(Td) × R, with mε > 0, solving






|P + ∇uε(x)|2

2
+ V

(
x,

x

ε

)
= ln(mε(x)) + Hε(P ) in Td

− div
(
mε(x)(P + ∇uε(x))

)
= 0 in Td

ˆ

Td

uε(x) dx = 0,

ˆ

Td

mε(x) dx = 1

As proved by Evans in

L. C. Evans
Some new PDE methods for weak KAM theory.
Calculus of Variations and Partial Differential Equations (2013)

this problem has a unique solution (when ε−1 ∈ N), and is equivalent to
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Variational Problem

Find uε ∈ C∞(Td) satisfying
´
Td uε(x) dx = 0 and

Iε[uε] = inf
u∈C1(Td)´

Td u(x) dx=0

Iε[u],

where

Iε[u] =
ˆ

Td

e
|P+∇u(x)|2

2
+V (x, x

ε
) dx for u ∈ C1(Td).

through the identities
Hε(P ) = ln Iε[uε]

and

mε = e
|P+∇uε(x)|2

2
+V (x, x

ε
)−Hε(P ).
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Variational Problem

Find uε ∈ C∞(Td) satisfying
´
Td uε(x) dx = 0 and

Iε[uε] = inf
u∈C1(Td)´

Td u(x) dx=0

Iε[u],

where

Iε[u] =
ˆ

Td

e
|P+∇u(x)|2

2
+V (x, x

ε
) dx for u ∈ C1(Td).

through the identities
Hε(P ) = ln Iε[uε]

and

mε = e
|P+∇uε(x)|2

2
+V (x, x

ε
)−Hε(P ).

Note: Exponential growth makes this problem somewhat non-standard,
and therefore with independent interest in the calculus of variations.
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Exploiting both the PDE and the variational formulation, we establish

Uniform estimates in ε

Let q ∈ [1,∞). Then, there exist positive constants, C = C(P ),
Cq = C(q, P ), and Cε = C(ε, P ), such that

inf
Td×Y d

V 6 Hε(P ) 6
|P |2

2
+ sup
Td×Y d

V

sup
ε

‖uε‖W 1,q(Td) 6 Cq,

1
C
6 inf

Td
mε 6 sup

Td

mε 6 Cε,

sup
ε

ˆ

Td

mε(x) ln(mε(x)) dx 6
|P |2

2
+ sup
Td×Y d

V − inf
Td×Y d

V.

Note: The last last estimate together with the de la Vallée Poussin
criterion for equi-integrability allows us to use the compactness result for
two-scale convergence in L1 applied to (mε)ε
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Corollary

There exist α ∈ (0, 1)
u0 ∈ C0,α ∩ W 1,q(Td) with

´
Td u0 dx = 0,

u1 ∈ Lq(Td; W 1,q
per(Y d)/R),

m ∈ L1(Td × Y d) with
´
Td

´
Y d m(x, y) dydx = 1,

H(P ) ∈ R

such that, up to a subsequence,

uε → u0 in L∞(Td), uε ⇀ u0 in W 1,q(Td),

∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d), mε ⇀ m0 =

ˆ

Y d

m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R.
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uε ⇀ u0 in W 1,q(Td), ∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d), mε ⇀ m0 =

´
Y d m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R

Question: What problem(s) do u0, u1, m, m0, and H solve?

Additional assumption on the potential: V is separable in y; that is, there

exist smooth functions, Vi : Td × R→ R, where 1 6 i 6 d, such that for
all x ∈ Td and y ∈ Rd, y = (y1, . . . , yi, . . . , yd), we have

V (x, y) =
d∑

i=1

Vi(x, yi).

Then, our main theorem , stated from the variational viewpoint is:
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uε ⇀ u0 in W 1,q(Td), ∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d), mε ⇀ m0 =

´
Y d m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R

① (u0, u1) is the unique solution to the

Variational two-scale homogenized problem

Find u0 ∈ C∞(Td) with
´
Td u0 dx = 0 and u1 ∈ C∞(Td; C2,α

per (Y d)/R)
satisfying

I2sc
hom[u0, u1] = inf

u∈W1,p(Td),
´

Td u dx=0

w∈Lp(Td;W 1,p
per (Y d)/R)

I2sc
hom[u,w],

where

I2sc
hom[u,w] :=

ˆ

Td

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dydx

for (u,w) ∈ W 1,p(Td) × Lp(Td; W 1,p
per(Y d)/R)
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uε ⇀ u0 in W 1,q(Td), ∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d), mε ⇀ m0 =

´
Y d m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R

② lim
ε→0

Iε[uε] = I2sc
hom[u0, u1]; that is,

lim
ε→0

ˆ

Td

e
|P+∇uε(x)|2

2
+V (x, x

ε
) dx

=
ˆ

Td

ˆ

Y d

e
|P+∇u0(x)+∇yu1(x,y)|2

2
+V (x,y) dydx

③ H(P ) = ln I2sc
hom[u0, u1]

④ m(x, y) = e
|P+∇u0(x)+∇yu1(x,y)|

2
+V (x,y)−H(P )

⑤ u0 is the unique solution of the
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Variational homogenized problem

Find u0 ∈ C∞(Td) satisfying
´
Td u0 dx = 0 and

Ihom[u0] = inf
u∈W 1,p(Td),

´
Td u dx=0

Ihom[u],

where

Ihom[u] :=
ˆ

Td

eH̃(x,P+∇u(x)) dx for u ∈ W 1,p(Td).
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Variational homogenized problem

Find u0 ∈ C∞(Td) satisfying
´
Td u0 dx = 0 and

Ihom[u0] = inf
u∈W 1,p(Td),

´
Td u dx=0

Ihom[u],

where

Ihom[u] :=
ˆ

Td

eH̃(x,P+∇u(x)) dx for u ∈ W 1,p(Td).

Here, H̃ : Td × Rd → R is defined, for each x ∈ Td and Λ ∈ Rd, by

H̃(x, Λ) = ln Icell[x, Λ; w̃],
where

Icell[x, Λ; w] :=
ˆ

Y d

e
|Λ+∇w(y)|2

2
+V (x,y) dy for w ∈ W 1,p

per(Y
d)/R

and w̃ is the unique solution of
25



Variational cell problem

For each x ∈ Td and Λ ∈ Rd, find w̃ ∈ C2,α
per (Y d)/R, depending on x

and Λ, satisfying

Icell[x, Λ; w̃] = inf
w∈W 1,p

per (Y d)/R
Icell[x, Λ; w],

where

Icell[x, Λ; w] :=
ˆ

Y d

e
|Λ+∇w(y)|2

2
+V (x,y) dy for w ∈ W 1,p

per(Y
d)/R

Adopting a PDE viewpoint, we revisit the slide “our main result in a
nutshell” and prove the heuristics provided by the asymptotic expansion
method:
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uε ⇀ u0 in W 1,q(Td) , ∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d), mε ⇀ m0 =

´
Y d m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R

H(P ) = ln I2sc
hom[u0, u1], m(x, y) = e

|P+∇u0(x)+∇yu1(x,y)|
2

+V (x,y)−H(P )

⑤’ (u0,m0, H) is the unique solution of

Homogenized problem

Find u0 ∈ C∞(Td) with
´
Td u0 dx = 0, m0 ∈ C∞(Td) with m0 > 0,

and H ∈ R satisfying






H̃(x, P + ∇u0(x)) = ln(m0(x)) + H(P ) in Td

− div
(
m0(x)DΛH̃(x, P + ∇u0(x)

)
= 0 in Td

ˆ

Td

m0 dx = 1,
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where H̃ is determined by

Cell problem

For each x ∈ Td and Λ ∈ Rd, find w̃ ∈ C2,α
per (Y d)/R, m̃ ∈ C1,α

# (Y d),

and H̃ ∈ R, depending on x and Λ, such that (w̃, m̃, H̃) solves






|Λ + ∇yw̃(x, Λ, y)|2

2
+ V (x, y) = ln m̃(x, Λ, y) + H̃(x, Λ) in Y d

− divy

(
m̃(x, Λ, y)(Λ + ∇yw̃(x, Λ, y))

)
= 0 in Y d

ˆ

Y d

m̃(x, Λ, y) dy = 1.

Moreover, (u0, u1, m,H) is the unique solution to
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uε ⇀ u0 in W 1,q(Td) , ∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d) , mε ⇀ m0 =

´
Y d m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R

Two-scale homogenized problem

Find u0 ∈ C∞(Td) with
´
Td u0 dx = 0, u1 ∈ C∞(Td; C2,α

# (Y d)/R),

m ∈ C∞(Td; C1,α
# (Y d)) with

´
Td

´
Y d m(x, y) dydx = 1, and H ∈ R

satisfying






|P + ∇u0(x) + ∇yu1(x, y)|2

2
+ V (x, y) = ln(m(x, y)) + H(P )

− divx

( ˆ

Y d

m(x, y)(P + ∇u0(x) + ∇yu1(x, y))dy

)

= 0

− divy(m(x, y)(P + ∇u0(x) + ∇yu1(x, y))) = 0

in Td × Y d.
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A lower semicontinuity result w.r.t. two-scale convergence

Assume that

f : Rd × Rd → [0, +∞) is a Borel function such that f(∙, p) is
Y d-periodic and f(y, ∙) is convex,

wε
2-sc⇀w in [Lp(Td × Td)]d.

Then, for all φ ∈ C∞(Td; C∞
per(Y

d)) with φ > 0, we have

lim inf
ε→0

ˆ

Td

f
(x

ε
, wε(x)

)
φ
(
x,

x

ε

)
dx

>
ˆ

Td

ˆ

Y d

f(y, w(x, y))φ(x, y) dydx.

Taking

wε = ∇uε
2-sc⇀∇u0 + ∇yu1, f(x, p) = e

|P+p|2

2 , φ(x, y) = eV (x,y),

we prove a lower bound :
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lim inf
ε→0

Iε[uε] = lim inf
ε→0

ˆ

Td

e
|P+∇uε(x)|2

2 eV (x, x
ε
) dx

>
ˆ

Td

ˆ

Y d

e
|P+∇u0(x)+∇yu1(x,y)|2

2
+V (x,y) dydx

= I2sc
hom[u0, u1]

> inf
u∈W1,p(Td),

´

Td u dx=0

w∈Lp(Td;W 1,p
per (Y d)/R)

I2sc
hom[u,w]

We prove a matching upper bound and uniqueness and regularity of
minimizers by

using a continuity argument with respect to strong two-scale
convergence applied to convenient test functions:

Iε[uε] 6 Iε

[
ψ0(∙) + εψ1

(
∙, ∙

ε

)]

splitting the variational two-scale formulation into two subproblems as
follows:
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inf
u∈W1,p(Td),

´

Td u dx=0

w∈Lp(Td;W 1,p
per (Y d)/R)

ˆ

Td

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dydx

= inf
u∈W1,p(Td)´
Td u dx=0

ˆ

Td

inf
w∈Lp(Td;W 1,p

per (Y d)/R)

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dy

︸ ︷︷ ︸

dx

︸ ︷︷ ︸
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inf
u∈W1,p(Td),

´

Td u dx=0

w∈Lp(Td;W 1,p
per (Y d)/R)

ˆ

Td

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dydx

= inf
u∈W1,p(Td)´
Td u dx=0

ˆ

Td

inf
w∈Lp(Td;W 1,p

per (Y d)/R)

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dy

︸ ︷︷ ︸

eH̃(x,Λ) = inf
w∈W 1,p

per (Y d)/R

ˆ

Y d

e
|Λ+∇yw(x,y)|2

2
+V (x,y) dy

Cell problem: Existence given by the continuation method,

where the implicit function theorem plays a role a provides
regularity with respect to the parameters

dx

︸ ︷︷ ︸
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inf
u∈W1,p(Td),

´

Td u dx=0

w∈Lp(Td;W 1,p
per (Y d)/R)

ˆ

Td

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dydx

= inf
u∈W1,p(Td)´
Td u dx=0

ˆ

Td

inf
w∈Lp(Td;W 1,p

per (Y d)/R)

ˆ

Y d

e
|P+∇u(x)+∇yw(x,y)|2

2
+V (x,y) dy

︸ ︷︷ ︸

eH̃(x,Λ) = inf
w∈W 1,p

per (Y d)/R

ˆ

Y d

e
|Λ+∇yw(x,y)|2

2
+V (x,y) dy

Cell problem: Existence given by the continuation method,

where the implicit function theorem plays a role a provides
regularity with respect to the parameters

dx

︸ ︷︷ ︸

inf
u∈W 1,p(Td),

´
Td u dx=0

ˆ

Td

eH̃(x,P+∇u(x)) dx

Homogenization problem: Existence, uniqueness, and regularity given

by [Evans 2013] provided we prove that H̃ satisfies the appropriate
conditions - this is where the separability of V plays a role
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More precisely, the homogenized problem

inf
u∈W 1,p(Td),

´
Td u dx=0

ˆ

Td

eH̃(x,P+∇u(x)) dx

is considered in [Evans, 2003]. A unique smooth solution exists if H̃
satisfies

∣
∣
∣DxH̃

∣
∣
∣ 6 C,

∣
∣
∣DΛH̃

∣
∣
∣ 6 C (1 + |Λ|),

∣
∣
∣D2

xH̃
∣
∣
∣ 6 C,

∣
∣
∣D2

ΛH̃
∣
∣
∣ 6 C,

∣
∣
∣D2

x,ΛH̃
∣
∣
∣ 6 C,

ξT D2
ΛH̃ξ > C |ξ|2 for any ξ ∈ Rd

If V is separable in y, V (x, y) =
∑d

i=1 Vi(x, yi), the solution (m̃, w̃, H̃) of
the cell problem is separable in y and can be written as

m̃(x, y) =
d∏

i=1

m̃i(x, yi), w̃(x, y) =
d∑

i=1

w̃i(x, yi), H̃(x, Λ) =
d∑

i=1

H̃i(x, Λi),
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Thus, the cell problem splits into one-dimensional systems:






|Λi + (w̃i(x, yi))yi |
2

2
+ Vi(x, yi) = ln

(
m̃i(x, yi)

)
+ H̃i(x, Λi)

(
m̃i(x, yi)(Λi + (w̃i(x, yi))yi)

)
yi

= 0
ˆ 1

0
m̃i(x, yi) dy = 1

In the one-dimensional case, the current method gives strictly positive
lower bounds on mi that are uniform in Λ, and eventually allows us to
prove that

ξT D2
ΛH̃ξ > C |ξ|2 for any ξ ∈ Rd .
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Back to the upper bound: Let

ψε (x) = ψ0 (x) + εψ1

(
x,

x

ε

)
,

where ψ0 ∈ C∞(Td) and ψ1 ∈ C∞(Td; C2,α(Td)/R). The fact that uε

minimizes Iε[∙] and a continuity argument with respect to strong two-scale
convergence yield

lim sup
ε→0

Iε[uε] 6 lim sup
ε→0

Iε[ψε] = I2sc
hom[ψ0, ψ1].

Thus, using the analysis on the iterated integrals for I2sc
hom,

lim sup
ε→0

Iε[uε] 6 inf
ψ0,ψ1

I2sc
hom[ψ0, ψ1] = inf

u,w
I2sc
hom[u,w] = I2sc

homI[û0, û1]

for some smooth û0 and û1. Therefore,

lim
ε→0

Iε[uε] = I2sc
hom[û0, û1] = I2sc

hom[u0, u1].

Since the minimizer of I2sc
hom is unique, û0 = u0 and û1 = u1.
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




|P + ∇uε(x)|2

2
+ V

(
x,

x

ε

)
= ln(mε(x)) + Hε(P ) in Td

− div
(
mε(x)(P + ∇uε(x))

)
= 0 in Td

ˆ

Td

uε(x) dx = 0,

ˆ

Td

mε(x) dx = 1

uε ⇀ u0 in W 1,q(Td) , ∇uε
2-sc⇀∇u0 + ∇yu1 in [Lq(Td × Y d)]d,

mε
2-sc⇀m in L1(Td × Y d), mε ⇀ m0 =

´
Y d m(∙, y) dy in L1(Td),

Hε(P ) → H(P ) in R






H̃(x, P + ∇u0(x)) = ln(m0(x)) + H(P ) in Td

− div
(
m0(x)DΛH̃(x, P + ∇u0(x)

)
= 0 in Td

ˆ

Td

u0(x) dx = 0,

ˆ

Td

m0 dx = 1

(H̃ = H̃(x, Λ) is given by an auxiliary problem on the reference cell, Y d)
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