Numerical methods for non-linear Fokker Planck equations and applications to Mean Field Games

E. Carlini
Università Sapienza di Roma

joint work with
F.J. Silva

Workshop III: Mean Field Games and Applications Part of the Long Program
High Dimensional Hamilton-Jacobi PDEs
IPAM,LA, May 4-8
Outline

1. Numerical approximation of FPK

2. Convergence Analysis

3. Mean Field Games
 - Non linear explicit case: a new Hughes type model

4. Lagrange Galerkin
A nonlinear Fokker-Planck equation

The nonlinear FP equation

\[
\begin{aligned}
\partial_t m - \frac{1}{2} \sum_{i,j} \partial_{x_i x_j} (a_{ij}[m](x, t)m) + \text{div}(b[m](x, t) m) &= 0 \quad \mathbb{R}^d \times \mathbb{R}^+ \\
\quad m(\cdot, 0) &= m_0(\cdot) \\
\end{aligned}
\]

- \(b\) is a given vector field depending on \(m\), non locally in space and possibly non locally in time
- \((a_{i,j}(m, x, t))\) is a given diffusion matrix (possible degenerate) depending on \(m\), non locally in space and possibly non locally in time; such that

\[
a_{i,j}(m, x, t) = \sum_{p=1}^{r} \sigma_{i,p} \cdot \sigma_{j,p} = (\sigma(\sigma^\top))_{ij},
\]

for all \(i, j = 1, \ldots d\), where \(r \in \mathbb{N} \setminus \{0\}\), and for all \(p = 1, \ldots, r\).
- the density of the initial law is given by \(m_0\):

\[
m_0 \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} m_0(x)dx = 1.
\]
A nonlinear Fokker-Planck equation

The nonlinear FP equation

\[
\begin{aligned}
\partial_t m - \frac{1}{2} \sum_{i,j} \partial_{x_i x_j} (a_{ij}[m](x,t)m) + \text{div}(b[m](x,t)m) &= 0 \quad \mathbb{R}^d \times \mathbb{R}^+ \\
m(\cdot, 0) &= m_0(\cdot)
\end{aligned}
\]

- \(b\) is a given vector field depending on \(m\), non locally in space and possibly non locally in time
- \((a_{i,j}(m,x,t))\) is a given diffusion matrix (possible degenerate) depending on \(m\), non locally in space and possibly non locally in time; such that

\[
a_{i,j}(m,x,t) = \sum_{p=1}^{r} \sigma_{i,p} \cdot \sigma_{j,p} = (\sigma(\sigma^\top))_{ij},
\]

for all \(i, j = 1, \ldots d\), where \(r \in \mathbb{N} \setminus \{0\}\), and for all \(p = 1, \ldots, r\).

- the density of the initial law is given by \(m_0\):

\[
m_0 \geq 0 \quad \text{and} \quad \int_{\mathbb{R}^d} m_0(x)dx = 1.
\]
The nonlinear FP equation

\[
\begin{aligned}
\partial_t m - \frac{1}{2} \sum_{i,j} \partial_{x_i x_j} (a_{i,j}[m](x,t)m) + \text{div}(b[m](x,t) m) &= 0 \\
\quad \text{in } \mathbb{R}^d \times \mathbb{R}^+ \\
\quad m(\cdot,0) &= m_0(\cdot) \\
\quad \text{in } \mathbb{R}^d
\end{aligned}
\]

- \(b \) is a given vector field depending on \(m \), non locally in space and possibly non locally in time.
- \((a_{i,j}(m,x,t)) \) is a given diffusion matrix (possible degenerate) depending on \(m \), non locally in space and possibly non locally in time; such that \(a_{i,j}(m,x,t) = \sum_{p=1}^{r} \sigma_{i,p} \cdot \sigma_{j,p} = (\sigma(\sigma^\top))_{ij} \), for all \(i, j = 1, \ldots d \), where \(r \in \mathbb{N} \setminus \{0\} \), and for all \(p = 1, \ldots, r \).
- the density of the initial law is given by \(m_0 \):
 \(m_0 \geq 0 \) and \(\int_{\mathbb{R}^d} m_0(x)dx = 1 \).
Some applications

- Non local interactions due to collective phenomena (biophysics, social behavior)
- Hughes model $b[m](x, t) = -f^2(m(x, t))Dv[m](x, t)$ where $v[m]$ is the solution of a stationary HJB

$$|Dv| = \frac{1}{f(m(x, t))}$$

- Mean Filed Games: $b[m](x, t) = -DH(Dv[m](x, t))$ where $v[m]$ is the solution of a backward HJB

$$\begin{cases}
-\partial_t v - \frac{\sigma^2}{2} \Delta v + H(Dv) = f(x, m(t)) \\
v(x, T) = g(x, m(T)).
\end{cases}$$
Probabilistic interpretation

\((FPK)\) describes the evolution of the law of the diffusion processes
\(X(t) \in \mathbb{R}^d\)

\[
\begin{cases}
 dX(t) = b(m, X(t), t)dt + \sigma(m, X(t), t)dW(t) & t \in [0, T], \\
 X(0) = X_0,
\end{cases}
\]

where the \(r\)-dimensional Brownian motion \(\{W\}\) independent of \(X_0\), the distribution of \(X_0\) is given by \(m_0\).

- \(b(m, x, t) = b(m(t), x, t)\) and \(\sigma_{i,j}(m, x, t) = \sigma_{i,j}(m(t), x, t)\), the FPK equation is called McKean-Vlasov equation well-posedness (T. Funaki '84, S. Méléard '96).
- existence in the general case: first order (V.I. Bogachev, M. Rockner, and S. V. Shaposhnikov 2009), second order case (O.A. Manita and S.V. Shaposhnikov 2013)
Probabilistic interpretation

\((FPK)\) describes the evolution of the law of the diffusion processes \(X(t) \in \mathbb{R}^d\)

\[
\begin{cases}
 \mathrm{d}X(t) = b(m, X(t), t)\mathrm{d}t + \sigma(m, X(t), t)\mathrm{d}W(t) & t \in [0, T], \\
 X(0) = X_0,
\end{cases}
\]

where the \(r\)-dimensional Brownian motion \(\{W\}\) independent of \(X_0\), the distribution of \(X_0\) is given by \(m_0\).

- \(b(m, x, t) = b(m(t), x, t)\) and \(\sigma_{i,j}(m, x, t) = \sigma_{i,j}(m(t), x, t)\), the FPK equation is called McKean-Vlasov equation well-posedness (T. Funaki '84, S. Méléard '96).

- Existence in the general case: first order (V.I. Bogachev, M. Rockner, and S.V. Shaposhnikov 2009), second order case (O.A. Manita and S.V. Shaposhnikov 2013)
Table of Contents

1. **Numerical approximation of FPK**

2. **Convergence Analysis**

3. **Mean Field Games**
 - Non linear explicit case: a new Hughes type model

4. **Lagrange Galerkin**
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzi (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version with CFL)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993): Path Integration Method
- Achdou, Camilli, Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- M. Annunziato and A. Borzì (2013): implicit high order finite difference Chang Cooper scheme for optimal control FPK

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution, (high order).
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO
- Loy, Zanella (2019): second order, structure preserving
Representation formula for the Fokker Planck equation

\textbf{(Linear case)} \(b[m](x, t) = b(x, t), \quad \sigma[m](x, t) = \sigma(x, t) \)

\textbf{(Lip)} \(b \) and \(\sigma \) Lipschitz w.r. to \(x \), uniformly in \(t \in [0, T] \)

Let \(\Phi \) be the solution of

\[
\begin{align*}
\text{d}X(t) &= b(X(t), t)\text{d}t + \sigma(X(t), t)\text{d}W(t), \quad X(0) = X_0, \\
\Phi(\omega, x, 0, t) &= x + \int_0^t b(\Phi(\omega, x, 0, s), s)\text{d}s + \int_0^t \sigma(\Phi(\omega, x, 0, s), t)\text{d}W(s),
\end{align*}
\]

then

\[
m(t)(A) := \mathbb{E}(\Phi(\cdot, 0, t)\# m_0(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}^d), \quad t \in [0, T].
\]

Analogously, we have that for each \(h > 0 \)

\[
m(t + h)(A) = \mathbb{E}(\Phi(\cdot, t, t + h)\# m(t)(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}).
\]

or equivalently, for \(\phi \in C_0^0(\mathbb{R}^d), \)

\[
\int_{\mathbb{R}^d} \phi(x) d (m(t + h))(x) = \int_{\mathbb{R}^d} \mathbb{E}[\phi(\Phi(x, t, t + h))] d (m(t))(x).
\]
Representation formula for the Fokker Planck equation

\textbf{(Linear case)} \ b[m](x, t) = b(x, t), \quad \sigma[m](x, t) = \sigma(x, t)

\textbf{(Lip)} \ b \text{ and } \sigma \text{ Lipschitz w.r. to } x, \text{ uniformly in } t \in [0, T]

Let \(\Phi \) be the solution of

\[dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t), \quad X(0) = X_0, \]

\[\Phi(\omega, x, 0, t) = x + \int_0^t b(\Phi(\omega, x, 0, s), s)ds + \int_0^t \sigma(\Phi(\omega, x, 0, s), t)dW(s), \]

then

\[m(t)(A) := E(\Phi(\cdot, 0, t)\#\bar{m}_0(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}^d), \quad t \in [0, T]. \]

Analogously, we have that for each \(h > 0 \)

\[m(t + h)(A) = E(\Phi(\cdot, t, t + h)\#m(t)(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}). \]

or equivalently, for \(\phi \in C_c^0(\mathbb{R}^d), \)

\[\int_{\mathbb{R}^d} \phi(x) d(m(t + h))(x) = \int_{\mathbb{R}^d} E[\phi(\Phi(x, t, t + h))] d(m(t))(x). \]
Representation formula for the Fokker Planck equation

Linear case \(b[m](x, t) = b(x, t), \quad \sigma[m](x, t) = \sigma(x, t) \)

Lip \(b \) and \(\sigma \) Lipschitz w.r. to \(x \), uniformly in \(t \in [0, T] \)

Let \(\Phi \) be the solution of

\[
dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t), \quad X(0) = X_0,
\]

\[
\Phi(\omega, x, 0, t) = x + \int_0^t b(\Phi(\omega, x, 0, s), s)ds + \int_0^t \sigma(\Phi(\omega, x, 0, s), t)dW(s),
\]

then

\[
m(t)(A) := \mathbb{E}(\Phi(\cdot, 0, t)\#m_0(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}^d), \quad t \in [0, T].
\]

Analogously, we have that for each \(h > 0 \)

\[
m(t + h)(A) = \mathbb{E}(\Phi(\cdot, t, t + h)\#m(t)(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}).
\]

or equivalently, for \(\phi \in C^0_c(\mathbb{R}^d) \),

\[
\int_{\mathbb{R}^d} \phi(x)d(m(t + h))(x) = \int_{\mathbb{R}^d} \mathbb{E}[\phi(\Phi(x, t, t + h))]d(m(t))(x).
\]
Representation formula for the Fokker Planck equation

Linear case $b[m](x, t) = b(x, t), \quad \sigma[m](x, t) = \sigma(x, t)$

Lip b and σ Lipschitz w.r. to x, uniformly in $t \in [0, T]$

Let Φ be the solution of

$$dX(t) = b(X(t), t)dt + \sigma(X(t), t)dW(t), \quad X(0) = X_0,$$

$$\Phi(\omega, x, 0, t) = x + \int_0^t b(\Phi(\omega, x, 0, s), s)ds + \int_0^t \sigma(\Phi(\omega, x, 0, s), t)dW(s),$$

then

$$m(t)(A) := \mathbb{E}(\Phi(\cdot, 0, t)\#m_0(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}^d), \quad t \in [0, T].$$

Analogously, we have that for each $h > 0$

$$m(t + h)(A) = \mathbb{E}(\Phi(\cdot, t, t + h)\#m(t)(A)) \quad \forall \ A \in \mathcal{B}(\mathbb{R}).$$

or equivalently, for $\phi \in C^0_c(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \phi(x) d(m(t + h))(x) = \int_{\mathbb{R}^d} \mathbb{E}[\phi(\Phi(x, t, t + h))] d(m(t))(x).$$
Semi-discretization in time $d = 1$

Given $h > 0$, we set $t_k = kh$ for $k = 0, \ldots, N_T$.

A random walk discretization of the Brownian motion $W(\cdot)$: Weak Euler in dimension $d = 1$:

$$
\Phi^+_h(x, t_k) := x + hb(x, t_k) + \sigma(x, t_k)\sqrt{h},
$$
$$
\Phi^-_h(x, t_k) := x + hb(x, t_k) - \sigma(x, t_k)\sqrt{h}.
$$

$$
m(t_{k+1})(A) = \frac{1}{2} (\Phi^+(\cdot, t_k) \# m(t_k)(A)) + \frac{1}{2} (\Phi^-(\cdot, t_k) \# m(t_k)(A))
$$

or equivalently, for $\phi \in C^0_c(\mathbb{R})$,

$$
\int_{\mathbb{R}} \phi(x) d (m(t_{k+1}))(x) = \frac{1}{2} \int_{\mathbb{R}} [\phi (\Phi^+(x, t_k))] d (m(t_k))(x) + \frac{1}{2} \int_{\mathbb{R}} [\phi (\Phi^-(x, t_k))] d (m(t_k))(x).
$$
Semi-discretization in time $d = 1$

Given $h > 0$, we set $t_k = kh$ for $k = 0, \ldots, N_T$.

A random walk discretization of the Brownian motion $W(\cdot)$:
Weak Euler in dimension $d = 1$:

$$\Phi^+_h(x, t_k) := x + h b(x, t_k) + \sigma(x, t_k) \sqrt{h},$$
$$\Phi^-_h(x, t_k) := x + h b(x, t_k) - \sigma(x, t_k) \sqrt{h}.$$

$$m(t_{k+1})(A) = \frac{1}{2} (\Phi^+ (\cdot, t_k) \diamond m(t_k)(A)) + \frac{1}{2} (\Phi^- (\cdot, t_k) \diamond m(t_k)(A))$$

or equivalently, for $\phi \in C^0_c(\mathbb{R})$,

$$\int_\mathbb{R} \phi(x) d (m(t_{k+1}))(x) = \frac{1}{2} \int_\mathbb{R} \left[\phi (\Phi^+ (x, t_k)) \right] d (m(t_k))(x) +$$
$$+ \frac{1}{2} \int_\mathbb{R} \left[\phi (\Phi^- (x, t_k)) \right] d (m(t_k))(x).$$
Fully-discrete scheme, \(d = 1 \)

Given \(\Delta x > 0 \), we set \(G_{\Delta x} := \{ x_i = i\Delta x, i \in \mathbb{Z} \} \) and \(S_{\Delta x,h} := \{ (\mu_{i,k})_{i \in \mathbb{Z}, k=0,\ldots,N} ; \mu_{i,k} \geq 0, \sum_{i \in \mathbb{Z}} \mu_{i,k} = 1 \} \),

Discrete measure:

\[
m_k = \sum_{j \in \mathbb{Z}} m_{j,k} \delta x_j \quad \forall \ k = 0, \ldots, N - 1.
\]

\[
\sum_j \phi(x_j)m_{j,k+1} = \frac{1}{2} \sum_j \phi(\Phi^+(x_j,t_k)) m_{j,k} + \frac{1}{2} \sum_j \phi(\Phi^-(x_j,t_k)) m_{j,k}.
\]

P\(_1\)-projection: \(\{ \beta_i \} \) are \(P_1 \)-basis function, \(\phi(x) = \beta_i(x) \).

\[
m_{i,k+1} = \frac{1}{2} \sum_j \beta_i(\Phi^+_{j,k}) m_{j,k} + \frac{1}{2} \sum_j \beta_i(\Phi^-_{j,k}) m_{j,k}.
\]

where

\[
\Phi^+_{j,k} := x_j + hb(x_j, t_k) + \sqrt{h}\sigma(x_j, t_k),
\]

\[
\Phi^-_{j,k} := x_j + hb(x_j, t_k) - \sqrt{h}\sigma(x_j, t_k).
\]
Fully-discrete scheme, $d = 1$

Given $\Delta x > 0$, we set $G_{\Delta x} := \{x_i = i\Delta x, i \in \mathbb{Z}\}$ and $S_{\Delta x,h} := \{(\mu_{i,k})_{i \in \mathbb{Z}}, k=0,\ldots,N; \mu_{i,k} \geq 0, \sum_{i \in \mathbb{Z}} \mu_{i,k} = 1\}$.

Discrete measure:

$$m_k = \sum_{j \in \mathbb{Z}} m_{j,k} \delta_{x_j} \quad \forall \ k = 0, \ldots, N - 1.$$

$$\sum_{j} \phi(x_j)m_{j,k+1} = \frac{1}{2} \sum_{j} \phi \left(\Phi^+(x_j, t_k) \right) m_{j,k} + \frac{1}{2} \sum_{j} \phi \left(\Phi^-(x_j, t_k) \right) m_{j,k}.$$

\mathbb{P}_1-projection: $\{\beta_i\}$ are \mathbb{P}_1-basis function, $\phi(x) = \beta_i(x)$.

$$m_{i,k+1} = \frac{1}{2} \sum_{j} \beta_i \left(\Phi^+_{j,k} \right) m_{j,k} + \frac{1}{2} \sum_{j} \beta_i \left(\Phi^-_{j,k} \right) m_{j,k}.$$

where

$$\Phi^+_{j,k} := x_j + h b(x_j, t_k) + \sqrt{h} \sigma(x_j, t_k),$$

$$\Phi^-_{j,k} := x_j + h b(x_j, t_k) - \sqrt{h} \sigma(x_j, t_k).$$
Fully-discrete scheme for the non linear case

Given \(\mu \in \mathcal{S}^{\Delta x, h} \)

Non-linear discrete characteristics

\[
\Phi^+_{i,k}[\mu] := x_i + h b[\mu](x_i, t_k) + \sqrt{h} \sigma[\mu](x_i, t_k),
\]

\[
\Phi^-_{i,k}[\mu] := x_i + h b[\mu](x_i, t_k) - \sqrt{h} \sigma[\mu](x_i, t_k).
\]

The discretization of \((FPK)\) we propose is:

\[
\text{find } m \in \mathcal{S}^{\Delta x, h} \text{ such that }
\]

\[
\begin{cases}
 m_{i,0} = \bar{m}_0(E_i) \\
 m_{i,k+1} = \frac{1}{2} \sum_{j \in \mathbb{Z}} \left[\beta_i(\Phi^+_{j,k}[m]) + \beta_i(\Phi^-_{j,k}[m]) \right] m_{j,k} \\
 \forall \ i \in \mathbb{Z}^d, \ k = 0, \ldots, N - 1.
\end{cases}
\]

where \(E_i = [x_i - \frac{\Delta x}{2}, x_i + \frac{\Delta x}{2}] \).
Fully-discrete scheme for the non linear case

Given $\mu \in \mathcal{S}^{\Delta x, h}$

Non linear discrete characteristics

$$\Phi_{i,k}^+[\mu] := x_i + h b[\mu](x_i, t_k) + \sqrt{h} \sigma[\mu](x_i, t_k),$$

$$\Phi_{i,k}^-[\mu] := x_i + h b[\mu](x_i, t_k) - \sqrt{h} \sigma[\mu](x_i, t_k).$$

The discretization of \((FPK)\) we propose is:

$$\text{find } m \in \mathcal{S}^{\Delta x, h} \text{ such that}$$

\[
(S) \begin{cases}
 m_{i,0} = \bar{m}_0(E_i) \\
 m_{i,k+1} = \frac{1}{2} \sum_{j \in \mathbb{Z}} \left[\beta_i(\Phi_{j,k}^+[m]) + \beta_i(\Phi_{j,k}^-[m]) \right] m_{j,k} \\
 \forall \ i \in \mathbb{Z}^d, \ k = 0, \ldots, N - 1.
\end{cases}
\]

where $E_i = [x_i - \frac{\Delta x}{2}, x_i + \frac{\Delta x}{2}]$.
Main properties

- **Non-negative**: $m_{i,k} \geq 0$ for $k = 0, \ldots, N - 1, i \in \mathbb{Z}$
- Mass conservative: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N - 1$
- Generalizable to any dimension
- Generalizable to handle Dirichlet and Neumann Boundary conditions
- Generalizable to handle degeneracy of the diffusion matrix
- Large time steps are allowed: inverse CFL type condition
 \[
 \frac{(\Delta x)^2}{h} \to 0
 \]
- Duality property: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Main properties

- **Non-negative**: $m_{i,k} \geq 0$ for $k = 0, \ldots, N - 1, i \in \mathbb{Z}$
- **Mass conservative**: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N - 1$
- Generalizable to any dimension
- Generalizable to handle Dirichlet and Neumann Boundary conditions
- Generalizable to handle degeneracy of the diffusion matrix
- Large time steps are allowed: inverse CFL type condition
 \[
 \frac{(\Delta x)^2}{h} \to 0
 \]
- Duality property: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Main properties

- **Non-negative**: $m_{i,k} \geq 0$ for $k = 0, \ldots, N - 1, i \in \mathbb{Z}$
- **Mass conservative**: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N - 1$
- **Generalizable to any dimension**
- **Generalizable to handle Dirichlet and Neumann Boundary conditions**
- **Generalizable to handle degeneracy of the diffusion matrix**
- **Large time steps are allowed**: inverse CFL type condition

$$\frac{(\Delta x)^2}{h} \to 0$$

- **Duality property**: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Main properties

- **Non-negative**: $m_{i,k} \geq 0$ for $k = 0, \ldots, N - 1, i \in \mathbb{Z}$
- **Mass conservative**: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N - 1$
- Generalizable to any dimension
- Generalizable to handle Dirichlet and Neumann Boundary conditions
- Generalizable to handle degeneracy of the diffusion matrix
- Large time steps are allowed: inverse CFL type condition
 \[
 \frac{(\Delta x)^2}{h} \rightarrow 0
 \]
- Duality property: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Main properties

- **Non-negative**: $m_{i,k} \geq 0$ for $k = 0, \ldots, N - 1, i \in \mathbb{Z}$
- **Mass conservative**: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N - 1$
- **Generalizable to any dimension**
- **Generalizable to handle Dirichlet and Neumann Boundary conditions**
- **Generalizable to handle degeneracy of the diffusion matrix**
- Large time steps are allowed: inverse CFL type condition

\[
\frac{(\Delta x)^2}{h} \rightarrow 0
\]

- **Duality property**: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Main properties

- Non-negative: $m_{i,k} \geq 0$ for $k = 0, \ldots, N-1, i \in \mathbb{Z}$
- Mass conservative: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N-1$
- Generalizable to any dimension
- Generalizable to handle Dirichlet and Neumann Boundary conditions
- Generalizable to handle degeneracy of the diffusion matrix
- Large time steps are allowed: inverse CFL type condition

$$\frac{(\Delta x)^2}{h} \rightarrow 0$$

- Duality property: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Main properties

- Non-negative: $m_{i,k} \geq 0$ for $k = 0, \ldots, N - 1, i \in \mathbb{Z}$
- Mass conservative: $\sum_i m_{i,k} = 1$ for $k = 0, \ldots, N - 1$
- Generalizable to any dimension
- Generalizable to handle Dirichlet and Neumann Boundary conditions
- Generalizable to handle degeneracy of the diffusion matrix
- Large time steps are allowed: inverse CFL type condition

$$\frac{(\Delta x)^2}{h} \to 0$$

- Duality property: this scheme is the DUAL of the classical Semi-Lagrangian scheme applied to Kolmogorov forward equation
Dual Problem

Kolmogorov forward equation (FP)

\[
\begin{cases}
\partial_t m = \frac{1}{2} \sum_{i,j} \partial_{x_i x_j} (a_{ij}(x)m) - \text{div} (b(x)m) & \mathbb{R}^d \times (0, T] \\
m(\cdot, 0) = m_0
\end{cases}
\]

Kolmogorov backward equation (KB):

\[
\begin{cases}
-\partial_t u = \frac{1}{2} \sum_{i,j} a_{ij}(x) \partial_{x_i x_j} u + b(x)^\top Du & \mathbb{R}^d \times (0, T] \\
u(\cdot, T) = u_T
\end{cases}
\] \hspace{1cm} (1)
Dual Problems

Kolmogorov forward equation (FP)

\[
\begin{align*}
\frac{\partial}{\partial t} m &= \frac{1}{2} \sum_{i,j} \partial_{x_i} \partial_{x_j} (a_{ij}(x)m) - \text{div} (b(x)m) = L^*(m) \\
\quad \text{in } \mathbb{R}^d \times (0, T] \\
m(\cdot, 0) &= m_0
\end{align*}
\]

Kolmogorov backward equation (KB):

\[
\begin{align*}
-\frac{\partial}{\partial t} u &= \frac{1}{2} \sum_{i,j} a_{ij}(x) \partial_{x_i} \partial_{x_j} u + b(x)^\top Du = L(u) \\
\quad \text{in } \mathbb{R}^d \times (0, T] \\
u(\cdot, T) &= u_T
\end{align*}
\]
Dual Problems

Kolmogorov forward equation (FP):

\[
\begin{cases}
 \frac{\partial m}{\partial t} = \frac{1}{2} \sum_{i,j} \partial_{x_i} x_j (a_{ij}(x)m) - \text{div} (b(x)m) = L^*(m) \\
m(\cdot, 0) = m_0
\end{cases}
\quad \mathbb{R}^d \times (0, T]
\]

Kolmogorov backward equation (KB):

\[
\begin{cases}
 -\frac{\partial u}{\partial t} = \frac{1}{2} \sum_{i,j} a_{ij}(x) \partial_{x_i} x_j u + b(x)^\top Du = L(u) \\
u(\cdot, T) = u_T
\end{cases}
\quad \mathbb{R}^d \times (0, T]
\]

L^* is the dual of L with respect to the L_2 inner product:

\[
\int L(f)g dx = \int L^*(g)f dx
\]
Dual Schemes $d = 1$

The **SL scheme for FP** can be written in vectorial form as

$$
\mu_{k+1} := B^* \mu_k
$$

where, $\mu_k = (\mu_{j,k})_k$ and $(B^*)_{i,j} = \frac{1}{2} (\beta_i (\Phi_{j,+}) + \beta_i (\Phi_{j,-}))$.

The **SL scheme for KB**

$$
u_{i,k} = \frac{1}{2} (I[v_{k+1}](\Phi_{i,+}) + I[v_{k+1}](\Phi_{i,-})) = \frac{1}{2} \sum_{j \in \mathbb{Z}} [\beta_j (\Phi_{i,+}) + \beta_j (\Phi_{i,-})] v_{j,k+1}
$$

can also be written in vectorial form as

$$
v_k := Bv_{k+1},
$$

where, $v_k = (v_{j,k})_k$ and $B^\top = B^*$, i.e.

$$(Bv_{k+1}, \mu_k) = (v_{k+1}, B^* \mu_k)$$
Dual Schemes $d = 1$

The SL scheme for FP can be written in vectorial form as

$$\mu_{k+1} := B^* \mu_k$$

where, $\mu_k = (\mu_{j,k})_k$ and $(B^*)_{i,j} = \frac{1}{2} (\beta_i (\Phi_{j,+}) + \beta_i (\Phi_{j,-}))$.

The SL scheme for KB

$$v_{i,k} = \frac{1}{2} \left(I[v_{k+1}](\Phi_{i,+}) + I[v_{k+1}](\Phi_{i,-}) \right) = \frac{1}{2} \sum_{j \in \mathbb{Z}} [\beta_j (\Phi_{i,+}) + \beta_j (\Phi_{i,-})] v_{j,k+1}$$

can also be written in vectorial form as

$$v_k := B v_{k+1}$$

where, $v_k = (v_{j,k})_k$ and $B^\top = B^*$, i.e.

$$(Bv^{k+1}, \mu^k) = (v^{k+1}, B^* \mu^k)$$
Table of Contents

1. Numerical approximation of FPK

2. Convergence Analysis

3. Mean Field Games
 - Non linear explicit case: a new Hughes type model

4. Lagrange Galerkin
Main assumptions

\textbf{(H)}

- $\bar{m}_0 \in \mathcal{P}_2(\mathbb{R}^d)$.
- The maps b and σ are continuous.
- There exists $C > 0$ such that
 \[|b(m, x, t)| + |\sigma(m, x, t)| \leq C(1 + |x|) \quad \forall m, \quad x \in \mathbb{R}^{d_\ell}, \quad t \in [0, T].\]

\textbf{(Lip)}

- b and σ are Lipschitz w.r. to x, uniformly in $t \in [0, T]$
Well posedeness

Proposition

Under assumption (H), there exists at least one solution \(m_{i,k} \in \mathcal{S}^{\Delta x}_h \) of \((S)\).

Given \(m_{i,k} \in \mathcal{S}^{\Delta x,h} \), we define its extension \(m_{\Delta x}(t) \in C([0, T]; \mathcal{P}_1(\mathbb{R}^d)) \)

\[
m_{\Delta x}(t) := \left(\frac{t - t_k}{h} \right) \sum_{i \in \mathbb{Z}^d} m_{i,k+1} \delta_{x_i} + \left(\frac{t_{k+1} - t}{h} \right) \sum_{i \in \mathbb{Z}^d} m_{i,k} \delta_{x_i}
\]

for \(t \in [t_k, t_{k+1}] \) and \(k = 0, \ldots, N - 1 \).
Let us denote the Wasserstein distance by

\[
d_1(\mu_1, \mu_2) = \sup \left\{ \int_{\mathbb{R}^d} f(x) d(\mu_1 - \mu_2)(x) ; f \in \text{Lip}_1(\mathbb{R}^d) \right\}.
\]
Convergence

Theorem

Under assumptions \((H)\) and \((\text{Lip})\), and \(\frac{(\Delta x)^2}{h} \to 0\), we have that as \((\Delta x) \to 0\)

\[(m_{\Delta x,h}) \to (m)\]

in \(C([0,T], \mathcal{P}_1)\), where \(m\) is solution of \((FPK)\) (there exists at least one) and \(m_{\Delta x,h}\), is solution of \((S)\).

Remark: The result holds in any dimension \(d \geq 1\)
Convergence non regular case

If (Lip) does not hold, and b, σ verify only (H), it is necessary to regularize them, by using mollifiers.

$$b^\varepsilon[m](x, t) := \varphi \ast b[m](x, t), \quad \sigma^\varepsilon[m](x, t) := \varphi \ast \sigma[m](x, t)$$

We will apply this technique to approximate the solution of Mean Field Game Problem.

Find $m^\varepsilon \in S^{\Delta x, h}$ such that

$$\begin{align*}
(S^\varepsilon) \left\{
\begin{array}{l}
m_{i,0}^\varepsilon = \bar{m}_0(E_i) \\
m_{i,k+1}^\varepsilon = \frac{1}{2} \sum_{j \in \mathbb{Z}} \left[\beta_i(\Phi_{j,k}^+, \varepsilon[m^\varepsilon]) + \beta_i(\Phi_{j,k}^-, \varepsilon[m^\varepsilon]) \right] m_{j,k}^\varepsilon \\
\forall i \in \mathbb{Z}^d, \quad k = 0, \ldots, N - 1.
\end{array}
\right.
\end{align*}$$
Convergence non regular case

Theorem

Under assumptions \((H)\), and \(\frac{(\Delta x)^2}{h} \to 0, \frac{h}{\varepsilon^2} \to 0\) we have that as
\((\Delta x, h, \varepsilon) \to 0\)

\[m^{\varepsilon}_{\Delta x, h} \to m \]

in \(C([0, T], \mathcal{P}_1)\), where \(m\) is solution of \((FPK)\) (there exists at least one) and \(m^{\varepsilon}_{\Delta x, h}\) are solution of \((S^{\varepsilon})\).

Remark

In the uniform elliptic case, the assumption \(h = o(\varepsilon)\)

Remark

In the degenerate elliptic case, we need to construct approximations which are absolutely continuous w.r. to the Lebesgue measure.

If \(d = 1\), uniform bound in \(L^\infty\) is shown for the approximated density and a convergence result is proved.
Convergence non regular case

Theorem

*Under assumptions (H), and \(\frac{(\Delta x)^2}{h} \to 0, \frac{h}{\varepsilon^2} \to 0 \) we have that as \((\Delta x, h, \varepsilon) \to 0\)\n
\[m_{\Delta x, h}^\varepsilon \to m \]

in \(C([0, T], \mathcal{P}_1) \), where \(m \) is solution of \((FPK)\) (there exists at least one) and \(m_{\Delta x, h}^\varepsilon \) are solution of \((S_\varepsilon)\).*

Remark

In the uniform elliptic case, the assumption \(h = o(\varepsilon) \).

Remark

In the degenerate elliptic case, we need to construct approximations which are absolutely continuous w.r. to the Lebesgue measure. If \(d = 1 \), uniform bound in \(L^\infty \) is shown for the approximated density and a convergence result is proved.
Convergence non regular case

Theorem

Under assumptions \((H)\), and \(\frac{(\Delta x)^2}{h} \to 0, \frac{h}{\varepsilon^2} \to 0\) we have that as \((\Delta x, h, \varepsilon) \to 0\)

\[m_{\Delta x, h}^\varepsilon \to m \]

in \(C([0, T], \mathcal{P}_1)\), where \(m\) is solution of \((FPK)\) (there exists at least one) and \(m_{\Delta x, h}^\varepsilon\) are solution of \((S_\varepsilon)\).

Remark

In the uniform elliptic case, the assumption \(h = o(\varepsilon)\)

Remark

In the degenerate elliptic case, we need to construct approximations which are absolutely continuous w.r. to the Lebesgue measure.

If \(d = 1\), uniform bound in \(L^\infty\) is shown for the approximated density and a convergence result is proved.
Table of Contents

1 Numerical approximation of FPK

2 Convergence Analysis

3 Mean Field Games
 - Non linear explicit case: a new Hughes type model

4 Lagrange Galerkin
Mean Field Game

In this case the velocity field in the FP is

\[b[m](x, t) = Dv[m](x, t) \]

where \(v[m] \) is the solution of the first equation in the following system:

\[
\begin{aligned}
-\partial_t v - \sigma \Delta v + \frac{1}{2} |Dv|^2 &= F(x, m(t)), & \text{in } \mathbb{R} \times (0, T), \\
\partial_t m - \sigma \Delta m - \text{div}(Dvm) &= 0, & \text{in } \mathbb{R} \times (0, T), \\
v(x, T) &= G(x, m(T)) & \text{in } \mathbb{R} \times \{T\} \\
m(0) &= m_0. & \text{in } \mathbb{R} \times \{0\}
\end{aligned}
\]

Model introduced independently by Huang-Malhamé-Caines and, independently, by Lasry-Lions in 2006.
In this case the velocity field in the FP is

$$b[m](x, t) = Dv[m](x, t)$$

where $v[m]$ is the solution of the first equation in the following system:

$$\begin{align*}
-\partial_t v - \sigma \Delta v + \frac{1}{2}|Dv|^2 &= F(x, m(t)), & \text{in } \mathbb{R} \times (0, T), \\
\partial_t m - \sigma \Delta m - \text{div}(Dvm) &= 0, & \text{in } \mathbb{R} \times (0, T), \\
v(x, T) &= G(x, m(T)) & \text{in } \mathbb{R} \times \{T\} \\
m(0) &= m_0. & \text{in } \mathbb{R} \times \{0\}
\end{align*}$$

Model introduced independently by Huang-Malhamé-Caines and, independently, by Lasry-Lions in 2006.
(H1) F and G are continuous.

(H2) There exists a constant $c_0 > 0$ such that for any $m \in \mathcal{P}_1$

$$\|F(\cdot, m)\|_{C^2} + \|G(\cdot, m)\|_{C^2} \leq c_0,$$

where $\|f(\cdot)\|_{C^2} := \sup_{x \in \mathbb{R}^d}\{ |f(x)| + |Df(x)| + |D^2f(x)| \}$.

(H3) The initial condition $m_0 \in \mathcal{P}_1$ is absolutely continuous w. r. to the Lebesgue measure, with density m_0 s.t. $\text{supp}(m_0) \subset B(0, c)$ and $\|m_0\|_{\infty} \leq c$, for $c > 0$.

(H4) The following monotonicity conditions hold true

$$\int_{\mathbb{R}^d} [F(x, m_1) - F(x, m_2)] d[m_1 - m_2](x) \geq 0 \quad \text{for all } m_1, m_2 \in \mathcal{P}_1$$

$$\int_{\mathbb{R}^d} [G(x, m_1) - G(x, m_2)] d[m_1 - m_2](x) \geq 0 \quad \text{for all } m_1, m_2 \in \mathcal{P}_1.$$
Mean Field Game

(H1) F and G are continuous.

(H2) There exists a constant $c_0 > 0$ such that for any $m \in \mathcal{P}_1$

$$\|F(\cdot, m)\|_{C^2} + \|G(\cdot, m)\|_{C^2} \leq c_0,$$

where $\|f(\cdot)\|_{C^2} := \sup_{x \in \mathbb{R}^d} \{|f(x)| + |Df(x)| + |D^2f(x)|\}$.

(H3) The initial condition $m_0 \in \mathcal{P}_1$ is absolutely continuous w. r. to the Lebesgue measure, with density m_0 s. t. supp$(m_0) \subset B(0, c)$ and $\|m_0\|_{\infty} \leq c$, for $c > 0$.

(H4) The following monotonicity conditions hold true

$$\int_{\mathbb{R}^d} [F(x, m_1) - F(x, m_2)] d[m_1 - m_2](x) \geq 0 \quad \text{for all} \quad m_1, m_2 \in \mathcal{P}_1$$

$$\int_{\mathbb{R}^d} [G(x, m_1) - G(x, m_2)] d[m_1 - m_2](x) \geq 0 \quad \text{for all} \quad m_1, m_2 \in \mathcal{P}_1.$$
Mean Field Game

(H1) F and G are continuous.

(H2) There exists a constant $c_0 > 0$ such that for any $m \in \mathcal{P}_1$

$$\|F(\cdot, m)\|_{C^2} + \|G(\cdot, m)\|_{C^2} \leq c_0,$$

where $\|f(\cdot)\|_{C^2} := \sup_{x \in \mathbb{R}^d}\{|f(x)| + |Df(x)| + |D^2f(x)|\}$.

(H3) The initial condition $m_0 \in \mathcal{P}_1$ is absolutely continuous w. r. to the Lebesgue measure, with density m_0 s.t. supp$(m_0) \subset B(0, c)$ and $\|m_0\|_{\infty} \leq c$, for $c > 0$.

(H4) The following monotonicity conditions hold true

$$\int_{\mathbb{R}^d} [F(x, m_1) - F(x, m_2)] \, d[m_1 - m_2](x) \geq 0 \quad \text{for all } m_1, m_2 \in \mathcal{P}_1$$

$$\int_{\mathbb{R}^d} [G(x, m_1) - G(x, m_2)] \, d[m_1 - m_2](x) \geq 0 \quad \text{for all } m_1, m_2 \in \mathcal{P}_1.$$
(H1) F and G are continuous.

(H2) There exists a constant $c_0 > 0$ such that for any $m \in \mathcal{P}_1$

$$\|F(\cdot, m)\|_{C^2} + \|G(\cdot, m)\|_{C^2} \leq c_0,$$

where $\|f(\cdot)\|_{C^2} := \sup_{x \in \mathbb{R}^d}\{|f(x)| + |Df(x)| + |D^2f(x)|\}$.

(H3) The initial condition $m_0 \in \mathcal{P}_1$ is absolutely continuous w. r. to the Lebesgue measure, with density m_0 s.t. $\text{supp}(m_0) \subset B(0, c)$ and $\|m_0\|_{\infty} \leq c$, for $c > 0$.

(H4) The following monotonicity conditions hold true

$$\int_{\mathbb{R}^d} [F(x, m_1) - F(x, m_2)] \, d[m_1 - m_2](x) \geq 0 \quad \text{for all } m_1, m_2 \in \mathcal{P}_1$$

$$\int_{\mathbb{R}^d} [G(x, m_1) - G(x, m_2)] \, d[m_1 - m_2](x) \geq 0 \quad \text{for all } m_1, m_2 \in \mathcal{P}_1.$$
Some references of Numerical Approximation of MFG

- **Second order problem \((\sigma \neq 0)\)**
 - Y. Achdou, I. Capuzzo-Dolcetta ('10),
 Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta ('12)
 (Semi-implicit Finite Difference scheme, Newton Iteration)
 - A. Lachapelle, M.-T. Wolfram (Steepest descent approach for the optimal control problem),
 A. Lachapelle, J. Salomon, G. Turinici ('10) (monotonic scheme)
 - O. Gueant (finite difference for a two linear parabolic equations obtained by a change of variable)

- **First order problem \((\sigma = 0)\)**
 - F. Camilli, F. J. Silva ('12) (semi-discrete Semi-Lagrangian scheme)
 - S. Hadikhanloo, F. J. Silva ('19) (Semi-Lagrangian type with no interpolation)
 - Nuberkyan-Saude ('19) and Li-Jacobs-Li-Nuberkyan-Osher ('20) (Fourier methods)
Some references of Numerical Approximation of MFG

- **Second order problem** ($\sigma \neq 0$)
 - Y. Achdou, I. Capuzzo-Dolcetta ('10), Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta ('12)
 (Semi-implicit Finite Difference scheme, Newton Iteration)
 - A. Lachapelle, M.-T. Wolframm (Steepest descent approach for the optimal control problem), A. Lachapelle, J. Salomon, G. Turinici ('10) (monotonic scheme)
 - O. Gueant (finite difference for a two linear parabolic equations obtained by a change of variable)

- **First order problem** ($\sigma = 0$)
 - F. Camilli, F. J. Silva ('12) (semi-discrete Semi-Lagrangian scheme)
 - S. Hadikhanloo, F. J. Silva ('19) (Semi-Lagrangian type with no interpolation)
 - Nuberkyan-Saude ('19) and Li-Jacobs-Li-Nuberkyan-Osher ('20) (Fourier methods)
SL scheme for HJB

- We use a Semi-Lagrangian scheme to approximate v.
- We call $v_{\Delta x}$ the resulting interpolated discrete value functions.
- We regularize them by using space convolution

$$v_{\Delta x,h}^\varepsilon[m](\cdot, t) := \phi_\varepsilon \ast v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],$$

- We approximate the drift by

$$b[m](x, t) := -Dv_{\Delta x}^\varepsilon[m](x, t).$$

- If $\sigma = 0$ then $Dv_{\Delta x_n}^\varepsilon[m_n] \to Dv[m]$ a.e., the convergence result has been proved only for the case $d = 1$
- If $\sigma \neq 0$ then $Dv_{\Delta x_n}^\varepsilon[m_n] \to Dv[m]$ uniformly, the convergence is proved in general dimension.
SL scheme for HJB

- We use a Semi-Lagrangian scheme to approximate v.
- We call $v_{\Delta x}$ the resulting interpolated discrete value functions.
- We regularize them by using space convolution

$$v_{\Delta x,h}^\varepsilon[m](\cdot, t) := \phi_{\varepsilon} \ast v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],$$

- We approximate the drift by

$$b[m](x, t) := -Dv_{\Delta x}^\varepsilon[m](x, t).$$

- If $\sigma = 0$ then $Dv_{\Delta x_n}^\varepsilon[m_n] \rightarrow Dv[m]$ a.e., the convergence result has been proved only for the case $d = 1$.
- If $\sigma \neq 0$ then $Dv_{\Delta x_n}^\varepsilon[m_n] \rightarrow Dv[m]$ uniformly, the convergence is proved in general dimension.
SL scheme for HJB

- We use a Semi-Lagrangian scheme to approximate v.
- We call $v_{\Delta x}$ the resulting interpolated discrete value functions.
- We regularize them by using space convolution:
 \[v^{\varepsilon}_{\Delta x,h}[m](\cdot, t) := \phi_{\varepsilon} * v_{\Delta x}[m](\cdot, t) \quad \forall \, t \in [0, T], \]

- We approximate the drift by:
 \[b[m](x, t) := -Dv^{\varepsilon}_{\Delta x}[m](x, t). \]

- If $\sigma = 0$ then $Dv^{\varepsilon}_{\Delta x_n}[m_n] \to Dv[m]$ a.e., the convergence result has been proved only for the case $d = 1$.
- If $\sigma \neq 0$ then $Dv^{\varepsilon}_{\Delta x_n}[m_n] \to Dv[m]$ uniformly, the convergence is proved in general dimension.
We use a Semi-Lagrangian scheme to approximate \(v \).

We call \(v_{\Delta x} \) the resulting interpolated discrete value functions.

We regularize them by using space convolution:

\[
v_{\Delta x,h}[m](\cdot, t) := \phi_\varepsilon \ast v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],
\]

We approximate the drift by

\[
b[m](x, t) := -Dv_{\Delta x}^\varepsilon[m](x, t).
\]

- If \(\sigma = 0 \) then \(Dv_{\Delta x_n}^\varepsilon[m_n] \to Dv[m] \) a.e., the convergence result has been proved only for the case \(d = 1 \).
- If \(\sigma \neq 0 \) then \(Dv_{\Delta x_n}^\varepsilon[m_n] \to Dv[m] \) uniformly, the convergence is proved in general dimension.
We use a Semi-Lagrangian scheme to approximate v.

We call $v_{\Delta x}$ the resulting interpolated discrete value functions.

We regularize them by using space convolution

$$v_{\Delta x,h}^{\epsilon}[m](\cdot,t) := \phi_{\epsilon} * v_{\Delta x}[m](\cdot,t) \quad \forall \ t \in [0,T],$$

We approximate the drift by

$$b[m](x,t) := -Dv_{\Delta x}^{\epsilon}[m](x,t).$$

If $\sigma = 0$ then $Dv_{\Delta x_n}^{\epsilon_n}[m_n] \rightarrow Dv[m]$ a.e., the convergence result has been proved only for the case $d = 1$.

If $\sigma \neq 0$ then $Dv_{\Delta x_n}^{\epsilon_n}[m_n] \rightarrow Dv[m]$ uniformly, the convergence is proved in general dimension.
We use a Semi-Lagrangian scheme to approximate v.

We call $v_{\Delta x}$ the resulting interpolated discrete value functions

We regularize them by using space convolution

$$v_{\Delta x,h}[m](\cdot, t) := \phi_{\varepsilon} \ast v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],$$

We approximate the drift by

$$b[m](x, t) := -Dv_{\Delta x}[m](x, t).$$

If $\sigma = 0$ then $Dv_{\Delta x_n}[m_n] \to Dv[m]$ a.e., the convergence result has been proved only for the case $d = 1$

If $\sigma \neq 0$ then $Dv_{\Delta x_n}[m_n] \to Dv[m]$ uniformly, the convergence is proved in general dimension.
Domain $\Omega \times (0, T) = (-3, 3) \times (0, 5)$.

Running cost

$$F(x, t, m(t)) = d(x, D)^2 V_\delta(x, m(t)),$$

$V_\delta(x, m) = (\phi_\delta * (\phi_\delta * m))(x)$, $\phi_\delta(x) := \frac{1}{\delta \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\delta^2}\right)$, $\delta = 0.01$

$d(x, D)$ is the distance function from the set $D := [1, 1.5] \cup [-2, -2.5]$.

Final cost: $G(x, T, m(T)) = F(x, T, m(T))$

Initial mass distribution:

$$m_0(x) = \frac{\nu(x)}{\int_{\Omega} \nu(x) dx} \text{ with } \nu(x) = e^{-x^2/0.2}$$

Regularizing kernel $\phi_\varepsilon(x)$, with $\varepsilon = 0.15$.

Diffusion term $\sigma = 0$, first order MFG system

Discretization step $\Delta x = h = 0.02$.

Fix point: computed by a learning procedure as proposed by Cardaliaguet and Hadikhanloo.
Figure: Density evolution 3d and 2d view in the \((x, t)\) domain
Numerical test First order MFG

Figure: Density at time $t = 0, 0.6, T$ (black squares on the x axis represents the ‘meeting areas’)
A new Hughes type model

In this model the velocity field in the FP is

\[b[m](x, t) = Dv[m](x, t) \]

where \(v[m] \) is the solution of the first equation in the system.

\[
\begin{cases}
-\partial_s v(x, s) + \frac{1}{2}|Dv(x, s)|^2 = F(x, s, m(t)) & \text{in } \mathbb{R} \times (t, T), \\
\partial_t m - \text{div}(Dvm) = 0 & \text{in } \mathbb{R} \times (0, T), \\
v(x, T) = G(x, m(t)) & \text{for } x \in \mathbb{R}, \\
m(\cdot, 0) = m_0(\cdot)
\end{cases}
\]

(2)

where

\[F(x, s, m(t)) = d(x, P)^2 V_\delta(x, m(t)). \]

Since \(b[m](x, t) \) depends on \(m(s) \) only at time past \(t \) we get an explicit scheme.
Numerical test new Hughes type model

Figure: Density evolution 3d and 2d view in the \((x, t)\) domain
Numerical test new Hughes type mode

Figure: Density at time $t = 0, 30h, T$ (black squares on the x axis represents the ‘meeting areas’).
Numerical test new Hughes type mode

Figure: MFG (left) vs Hughes type model (right)
1. Numerical approximation of FPK

2. Convergence Analysis

3. Mean Field Games
 - Non linear explicit case: a new Hughes type model

4. Lagrange Galerkin
A Lagrange Galerkin scheme for the continuity equation

\[(CE) \begin{cases} \partial_t m + \text{div} \ (b(x, t)m) = 0 \quad (0, T) \times \mathbb{R}^d, \\
m(0, \cdot) = m_0(\cdot) \quad \mathbb{R}^d \end{cases} \]

where

- **(A1)** Let us suppose \(b(x, t) \in L^\infty(0, T; (W^{1, \infty}(\mathbb{R}^d))^d) \)
- **(A2)** \(m_0(\cdot) \in L^2(\mathbb{R}^d) \) with compact support

Representation formula: for any \(\phi \in C^\infty_c(\mathbb{R}^d) \),

\[\int_{\mathbb{R}^d} \phi(x)m(x, t_{k+1})dx = \int_{\mathbb{R}^d} [\phi (\Phi(x, t_k))] \ m(x, t_k)dx \]

where \(\Phi(x, t_k) \) are the forward characteristics, solving

\[\begin{cases} \dot{X}(s) = b(X(s), s), \quad s \in [0, h], \\
X(t_k) = x, \end{cases} \]
A Lagrange Galerkin scheme for the continuity equation

(CE) \[
\begin{aligned}
\partial_t m + \text{div} (b(x, t)m) &= 0 & (0, T) \times \mathbb{R}^d, \\
m(0, \cdot) &= m_0(\cdot) & \mathbb{R}^d
\end{aligned}
\]

where

- **(A1)** Let us suppose \(b(x, t) \in L^\infty(0, T; (W^{1,\infty}(\mathbb{R}^d))^d) \)
- **(A2)** \(m_0(\cdot) \in L^2(\mathbb{R}^d) \) with compact support

Representation formula: for any \(\phi \in C^\infty_c(\mathbb{R}^d) \),

\[
\int_{\mathbb{R}^d} \phi(x)m(x, t_{k+1})dx = \int_{\mathbb{R}^d} [\phi(\Phi(x, t_k))] m(x, t_k)dx
\]

where \(\Phi(x, t_k) \) are the forward characteristics, solving

\[
\begin{aligned}
\dot{X}(s) &= b(X(s), s), & s \in [0, h], \\
X(t_k) &= x,
\end{aligned}
\]
A Lagrange Galerkin scheme for the continuity equation

Set

\[\Phi_h(x, t_k) := x + hb(x, t_k) \]

Semi-discrete scheme

\[
\int_{\mathbb{R}^d} \phi(x) m(x, t_{k+1}) \, dx = \int_{\mathbb{R}^d} \left[\phi(\Phi_h(x, t_k)) \right] m(x, t_k) \, dx
\]

Structured mesh \(G_{\Delta x} := \{ x_i = i\Delta x; i \in \mathbb{Z}^d \} \) with \(\Delta x > 0 \) a given space step,

Standard parallelepipedal finite elements basis \(\{ \beta_i \}_{i \in \mathbb{Z}^d} \), finite element space \(V_{\Delta x} = \{ v_{\Delta x} \in L^2(\mathbb{R}^d) \text{ such that } v_{\Delta x}(x) = \sum_{i \in \mathbb{Z}^d} v_i \beta_i(x) \} \)

We consider the following approximation of \(m(x, t) \)

\[m_{\Delta x}(x, t_k) := \sum_{i \in \mathbb{Z}^d} m_{i,k} \beta_i(x) \quad \forall x \in \mathbb{R}^d, \]

for some weights \(\{ m_{i,k} \mid k = 0, \ldots, n, \ i \in \mathbb{Z}^d \} \subseteq \mathbb{R} \)
A Lagrange Galerkin scheme for the continuity equation

- Set

\[\Phi_h(x, t_k) := x + h b(x, t_k) \]

Semi-discrete scheme

\[\int_{\mathbb{R}^d} \phi(x) m(x, t_{k+1}) \, dx = \int_{\mathbb{R}^d} [\phi(\Phi_h(x, t_k))] \, m(x, t_k) \, dx \]

- **Structured mesh** \(G_{\Delta x} := \{ x_i = i \Delta x; i \in \mathbb{Z}^d \} \) with \(\Delta x > 0 \) a given space step,

- Standard parallelepipedal finite elements basis \(\{ \beta_i \}_{i \in \mathbb{Z}^d} \), finite element space \(V_{\Delta x} = \{ v_{\Delta x} \in L^2(\mathbb{R}^d) \text{ such that } v_{\Delta x}(x) = \sum_{i \in \mathbb{Z}^d} v_i \beta_i(x) \} \)

- We consider the following approximation of \(m(x, t) \)

\[m_{\Delta x}(x, t_k) := \sum_{i \in \mathbb{Z}^d} m_i, k \beta_i(x) \quad \forall \ x \in \mathbb{R}^d, \]

for some weights \(\{ m_i, k \mid k = 0, \ldots, n, \ i \in \mathbb{Z}^d \} \subseteq \mathbb{R} \)
A Lagrange Galerkin scheme for the continuity equation

- Set

\[\Phi_h(x, t_k) := x + hb(x, t_k) \]

Semi-discrete scheme

\[\int_{\mathbb{R}^d} \phi(x) m(x, t_{k+1}) dx = \int_{\mathbb{R}^d} [\phi(\Phi_h(x, t_k))] m(x, t_k) dx \]

- Structured mesh \(G_{\Delta x} := \{ x_i = i\Delta x; i \in \mathbb{Z}^d \} \) with \(\Delta x > 0 \) a given space step,

- Standard parallelepipedal finite elements basis \(\{ \beta_i \}_{i \in \mathbb{Z}^d} \), finite element space \(V_{\Delta x} = \{ v_{\Delta x} \in L^2(\mathbb{R}^d) \) such that \(v_{\Delta x}(x) = \sum_{i \in \mathbb{Z}^d} v_i \beta_i(x) \}

- We consider the following approximation of \(m(x, t) \)

\[m_{\Delta x}(x, t_k) := \sum_{i \in \mathbb{Z}^d} m_{i,k} \beta_i(x) \quad \forall \ x \in \mathbb{R}^d, \]

for some weights \(\{ m_{i,k} \mid k = 0, \ldots, n, \ i \in \mathbb{Z}^d \} \subseteq \mathbb{R} \)
A Lagrange Galerkin scheme for the continuity equation

Set

\[\Phi_h(x, t_k) := x + hb(x, t_k) \]

Semi-discrete scheme

\[\int_{\mathbb{R}^d} \phi(x) m(x, t_{k+1}) dx = \int_{\mathbb{R}^d} [\phi(\Phi_h(x, t_k))] m(x, t_k) dx \]

- **Structured mesh** \(G_{\Delta x} := \{ x_i = i \Delta x; i \in \mathbb{Z}^d \} \) with \(\Delta x > 0 \) a given space step,
- **Standard parallelepipedal finite elements basis** \(\{ \beta_i \}_{i \in \mathbb{Z}^d} \), finite element space \(V_{\Delta x} = \{ v_{\Delta x} \in L^2(\mathbb{R}^d) \text{ such that } v_{\Delta x}(x) = \sum_{i \in \mathbb{Z}^d} v_i \beta_i(x) \} \)
- We consider the following approximation of \(m(x, t) \)

\[m_{\Delta x}(x, t_k) := \sum_{i \in \mathbb{Z}^d} m_{i,k} \beta_i(x) \quad \forall \ x \in \mathbb{R}^d, \]

for some weights \(\{ m_{i,k} \mid k = 0, \ldots, n, \ i \in \mathbb{Z}^d \} \subseteq \mathbb{R} \)
A Lagrange Galerkin scheme for the continuity equation

We project the semi discrete scheme

\[\int_{\mathbb{R}^d} \phi(x)m(x, t_{k+1})dx = \int_{\mathbb{R}^d} [\phi(\Phi_h(x, t_k))] m(x, t_k)dx \]

in \(V_{\Delta x} \): find \(m_{i, k} \), with \(i \in \mathbb{Z}^d \) and \(k = 0, \ldots, N \)

(\(LG \))

\[\begin{align*}
\sum_{i \in \mathbb{Z}^d} m_{i,k+1} \int_{\mathbb{R}^d} \beta_i(x)\beta_j(x)dx &= \sum_{i \in \mathbb{Z}^d} m_{i,k} \int_{\mathbb{R}^d} \beta_j(\Phi_h(t_k, x))\beta_i(x)dx \\
\sum_{i \in \mathbb{Z}^d} m_{i,0} \int_{\mathbb{R}^d} \beta_i(x)\beta_j(x)dx &= \int_{\mathbb{R}^d} m_0(x)\beta_j(x)dx.
\end{align*} \]

The \((LG) \) scheme for \((CE) \) can be written in vectorial form as

\[Mm_{k+1} := Bm_k \]

where, \(m_k = (m_{j,k})_j \),

\((M)_{i,j} = \int_{\mathbb{R}^d} \beta_i(x)\beta_j(x)dx \), \((B)_{i,j} = \int_{\mathbb{R}^d} \beta_i(x)\beta_j(\Phi_h(t_k, x))dx \)

Ref. Morton, Priestley, Suli ('88)
A Lagrange Galerkin scheme for the continuity equation

We project the semi discrete scheme

\[\int_{\mathbb{R}^d} \phi(x) m(x, t_{k+1}) dx = \int_{\mathbb{R}^d} \phi(\Phi_h(x, t_k)) m(x, t_k) dx \]

in \(V_{\Delta x} \): find \(m_{i,k} \), with \(i \in \mathbb{Z}^d \) and \(k = 0, ..., N \)

\[
\begin{cases}
\sum_{i \in \mathbb{Z}^d} m_{i,k+1} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx = \sum_{i \in \mathbb{Z}^d} m_{i,k} \int_{\mathbb{R}^d} \beta_j(\Phi_h(t_k, x)) \beta_i(x) dx \\
\sum_{i \in \mathbb{Z}^d} m_{i,0} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx = \int_{\mathbb{R}^d} m_0(x) \beta_j(x) dx.
\end{cases}
\]

The (LG) scheme for (CE) can be written in vectorial form as

\[
Mm_{k+1} := Bm_k
\]

where, \(m_k = (m_{j,k})_j \),

\[
(M)_{i,j} = \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx, \quad (B)_{i,j} = \int_{\mathbb{R}^d} \beta_i(x) \beta_j(\Phi_h(t_k, x)) dx
\]

Ref. Morton, Priestley, Suli (’88)
A Lagrange Galerkin scheme for the continuity equation

Proposition

Under assumption (A1)-(A2), the following assertions hold true:

(i) **Well-posedness** There exists a unique solution to (LG).

(ii) **Non-negativity** If \(\{\beta_i\}_{i \in \mathbb{Z}^d} \) is s.t. \(\int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) = \delta_{i,j} \) and \(\beta_i(x) \geq 0 \), we have \(m_{i,k} \geq 0 \)

(iii) **Mass conservation** \(\int_{\mathbb{R}^d} m_{\Delta x}(t_k, x) dx = 1 \)

(iv) **\(L^2 \)-stability** If \(h \) is sufficiently small, there exists \(C > 0 \), s.t.

\[
\|m_{\Delta x}(t_k, \cdot)\|_{L^2} \leq C \|m_0\|_{L^2}
\]

(v) **Equi-continuity** Suppose \((\Delta x)^2 = O(h) \), for all \(t_1, t_2 \in [0, T] \), we have that

\[
d_1(m_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C |t_1 - t_2|.
\]
A Lagrange Galerkin scheme for the continuity equation

Proposition

Under assumption \((A1)-(A2)\), the following assertions hold true:

(i) **Well-posedness** There exists a unique solution to \((LG)\).

(ii) **Non-negativity** If \(\{\beta_i\}_{i\in\mathbb{Z}^d}\) is s.t. \(\int_{\mathbb{R}^d} \beta_i(x)\beta_j(x) = \delta_{i,j}\) and \(\beta_i(x) \geq 0\), we have \(m_{i,k} \geq 0\).

(iii) **Mass conservation** \(\int_{\mathbb{R}^d} m_{\Delta x}(t_k, x) dx = 1\)

(iv) **\(L^2\)-stability** If \(h\) is sufficiently small, there exists \(C > 0\), s.t.

\[
\|m_{\Delta x}(t_k, \cdot)\|_{L^2} \leq C\|m_0\|_{L^2}
\]

(v) **Equi-continuity** Suppose \((\Delta x)^2 = O(h)\), for all \(t_1, t_2 \in [0, T]\), we have that

\[
d_1(m_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C|t_1 - t_2|.
\]
A Lagrange Galerkin scheme for the continuity equation

Proposition

Under assumption \((A1)-(A2)\), the following assertions hold true:

(i) **Well-posedness** There exists a unique solution to \((LG)\).

(ii) **Non-negativity** If \(\{\beta_i\}_{i \in \mathbb{Z}^d}\) is s.t. \(\int_{\mathbb{R}^d} \beta_i(x)\beta_j(x) = \delta_{i,j}\) and \(\beta_i(x) \geq 0\), we have \(m_{i,k} \geq 0\).

(iii) **Mass conservation** \(\int_{\mathbb{R}^d} m_{\Delta x}(t_k, x)dx = 1\)

(iv) **\(L^2\)-stability** If \(h\) is sufficiently small, there exists \(C > 0\), s.t.

\[\|m_{\Delta x}(t_k, \cdot)\|_{L^2} \leq C\|m_0\|_{L^2} \]

(v) **Equi-continuity** Suppose \((\Delta x)^2 = O(h)\), for all \(t_1, t_2 \in [0, T]\), we have that

\[d_1(m_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C|t_1 - t_2|. \]
A Lagrange Galerkin scheme for the continuity equation

Proposition

Under assumption (A1)-(A2), the following assertions hold true:

(i) **Well-posedness** There exists a unique solution to (LG).

(ii) **Non-negativity** If \(\{ \beta_i \}_{i \in \mathbb{Z}^d} \) is s.t. \(\int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) = \delta_{i,j} \) and \(\beta_i(x) \geq 0 \), we have \(m_{i,k} \geq 0 \)

(iii) **Mass conservation** \(\int_{\mathbb{R}^d} m_{\Delta x}(t_k, x) dx = 1 \)

(iv) **L^2-stability** If \(h \) is sufficiently small, there exists \(C > 0 \), s.t.

\[
\| m_{\Delta x}(t_k, \cdot) \|_{L^2} \leq C \| m_0 \|_{L^2}
\]

(v) **Equi-continuity** Suppose \((\Delta x)^2 = O(h) \), for all \(t_1, t_2 \in [0, T] \), we have that

\[
d_1(m_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C |t_1 - t_2|.
\]
A Lagrange Galerkin scheme for the continuity equation

Proposition

Under assumption (A1)-(A2), the following assertions hold true:

(i) **Well-posedness** There exists a unique solution to (LG).

(ii) **Non-negativity** If \(\{\beta_i\}_{i \in \mathbb{Z}^d} \) is s.t. \(\int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) = \delta_{i,j} \) and \(\beta_i(x) \geq 0 \), we have \(m_{i,k} \geq 0 \)

(iii) **Mass conservation** \(\int_{\mathbb{R}^d} m_{\Delta x}(t_k, x) dx = 1 \)

(iv) **L^2-stability** If \(h \) is sufficiently small, there exists \(C > 0 \), s.t.

\[
\| m_{\Delta x}(t_k, \cdot) \|_{L^2} \leq C \| m_0 \|_{L^2}
\]

(v) **Equi-continuity** Suppose \((\Delta x)^2 = O(h)\), for all \(t_1, t_2 \in [0, T] \), we have that

\[
d_1(m_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C|t_1 - t_2|.
\]
First order MFG

We consider the first order case $\sigma = 0$ and the particular case of a quadratic Hamiltonian:

$$
\begin{aligned}
(MFG) \quad &
\begin{cases}
-\partial_t v(x, t) + \frac{1}{2}|Dv(x, t)|^2 = F(x, m(t)) & \mathbb{R}^d \times (0, T) \\
v(x, T) = G(x, m(T)) & \mathbb{R}^d \\
\partial_t m(x, t) - \text{div}(Dv(x, t)m(x, t)) = 0 & \mathbb{R}^d \times (0, T) \\
m(0) = m_0 & \mathbb{R}^d
\end{cases}
\end{aligned}
$$
We use a Semi-Lagrangian scheme to approximate $v[m]$. We call $v_{\Delta x}[m]$ the resulting interpolated discrete value functions. We regularize them by using space convolution

$$v^\varepsilon_{\Delta x}[m](\cdot, t) := \phi \ast v_{\Delta x}[m](\cdot, t) \quad \forall t \in [0, T],$$

Lemma

For every $t \in [0, T]$, the following assertions hold true:

(i) Lipschitz property The function $v^\varepsilon_{\Delta x}[\mu](\cdot, t)$ is Lipschitz with constant d_0 independent of $(\Delta x, h, \mu, t)$.

(i) Semiconcavity There exists $d_1 > 0$ independent of $(\Delta x, h, \varepsilon, \mu, t)$, such that

$$\langle D^2 v^\varepsilon_{\Delta x}[\mu](x, t) y, y \rangle \leq d_1 \left(1 + \frac{\Delta x^2}{\varepsilon^4}\right) |y|^2 \quad \forall x, y \in \mathbb{R}^d. \quad (3)$$
SL scheme for HJB

- We use a Semi-Lagrangian scheme to approximate $v[m]$.
- We call $v_{\Delta x}[m]$ the resulting interpolated discrete value functions.
- We regularize them by using space convolution

$$v_{\Delta x}^\varepsilon[m](\cdot, t) := \phi_\varepsilon \ast v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],$$

Lemma

For every $t \in [0, T]$, the following assertions hold true:

(i) **Lipschitz property** The function $v_{\Delta x}^\varepsilon[\mu](\cdot, t)$ is Lipschitz with constant d_0 independent of $(\Delta x, h, \mu, t)$.

(i) **Semiconcavity** There exists $d_1 > 0$ independent of $(\Delta x, h, \varepsilon, \mu, t)$, such that

$$\langle D^2 v_{\Delta x}^\varepsilon[\mu](x, t) y, y \rangle \leq d_1 \left(1 + \frac{\Delta x^2}{\varepsilon^4}\right) |y|^2 \quad \forall \ x, y \in \mathbb{R}^d.$$ \hspace{1cm} (3)
We use a Semi-Lagrangian scheme to approximate $v[m]$. We call $v_{\Delta x}[m]$ the resulting interpolated discrete value functions. We regularize them by using space convolution:

$$v_{\Delta x}^\varepsilon[m](\cdot, t) := \phi_{\varepsilon} \ast v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],$$

Lemma

For every $t \in [0, T]$, the following assertions hold true:

(i) **Lipschitz property** The function $v_{\Delta x}^\varepsilon[\mu](\cdot, t)$ is Lipschitz with constant d_0 independent of $(\Delta x, h, \mu, t)$.

(ii) **Semiconcavity** There exists $d_1 > 0$ independent of $(\Delta x, h, \varepsilon, \mu, t)$, such that

$$\langle D^2 v_{\Delta x}^\varepsilon[\mu](x, t)y, y \rangle \leq d_1 \left(1 + \frac{\Delta x^2}{\varepsilon^4}\right) |y|^2 \quad \forall \ x, y \in \mathbb{R}^d. \quad (3)$$
We use a Semi-Lagrangian scheme to approximate $v[m]$.

We call $v_{\Delta x}[m]$ the resulting interpolated discrete value functions.

We regularize them by using space convolution:

$$v^{\varepsilon}_{\Delta x}[m](\cdot, t) := \phi_{\varepsilon} * v_{\Delta x}[m](\cdot, t) \quad \forall \ t \in [0, T],$$

Lemma

For every $t \in [0, T]$, the following assertions hold true:

(i) **Lipschitz property** The function $v^{\varepsilon}_{\Delta x}[\mu](\cdot, t)$ is Lipschitz with constant d_0 independent of $(\Delta x, h, \mu, t)$.

(ii) **Semiconcavity** There exists $d_1 > 0$ independent of $(\Delta x, h, \varepsilon, \mu, t)$, such that

$$\langle D^2 v^{\varepsilon}_{\Delta x}[\mu](x, t)y, y \rangle \leq d_1 \left(1 + \frac{\Delta x^2}{\varepsilon^4}\right) |y|^2 \quad \forall \ x, y \in \mathbb{R}^d.$$(3)
A Lagrange Galerkin scheme for deterministic MFG

Given \(\mu \in C([0, T]; \mathcal{P}_1) \) and \(\varepsilon > 0 \) let us define

\[
\Phi_h^\varepsilon[\mu](x, t_k) := x - hDv_\Delta x^\varepsilon[\mu](x, t_k)
\]

We propose the following scheme for (MFG):

Find \(\mu = (\mu^k_i) \) such that \(\mu_i, k = m^\varepsilon_{i, k}[\mu] \)

where \(m^\varepsilon_{i, k}[\mu] \) is defined as

\[
\begin{align*}
\sum_{i \in \mathbb{Z}^d} m^\varepsilon_{i, k+1} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx &= \sum_{i \in \mathbb{Z}^d} m^\varepsilon_{i, k} \int_{\mathbb{R}^d} \beta_j(\Phi_h^\varepsilon[\mu](t_k, x)) \beta_i(x) dx \\
\sum_{i \in \mathbb{Z}^d} m^\varepsilon_{i, 0} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx &= \int_{\mathbb{R}^d} m_0(x) \beta_j(x) dx
\end{align*}
\]

The (LG) scheme for (MFG) can be written in vectorial form as

\[
M m^\varepsilon_{k+1} := B^\varepsilon m^\varepsilon_k
\]

where, \(m^\varepsilon_k = (m^\varepsilon_{j, k})_j \), \((B^\varepsilon)_{i, j} = \int_{\mathbb{R}^d} \beta_j(\Phi_h^\varepsilon[\mu](t_k, x)) \beta_i(x) dx \).
A Lagrange Galerkin scheme for deterministic MFG

Given $\mu \in C([0,T];\mathcal{P}_1)$ and $\varepsilon > 0$ let us define

$$\Phi^\varepsilon_h[\mu](x, t_k) := x - hDv^\varepsilon_{\Delta x}[\mu](x, t_k)$$

We propose the following scheme for (MFG):

Find $\mu = (\mu^k_i)$ such that $\mu_{i,k} = m_{i,k}^\varepsilon[\mu]$ where $m_{i,k}^\varepsilon[\mu]$ is defined as

$$\begin{cases}
\sum_{i \in \mathbb{Z}^d} m_{i,k+1}^\varepsilon \int_{\mathbb{R}^d} \beta_i(x)\beta_j(x)\,dx = \sum_{i \in \mathbb{Z}^d} m_{i,k}^\varepsilon \int_{\mathbb{R}^d} \beta_j(\Phi^\varepsilon_h[\mu](t_k, x))\beta_i(x)\,dx \\
\sum_{i \in \mathbb{Z}^d} m_{i,0}^\varepsilon \int_{\mathbb{R}^d} \beta_i(x)\beta_j(x)\,dx = \int_{\mathbb{R}^d} m_0(x)\beta_j(x)\,dx
\end{cases}$$

The (LG) scheme for (MFG) can be written in vectorial form as

$$Mm_{k+1}^\varepsilon := B^\varepsilon m_k^\varepsilon$$

where, $m_k^\varepsilon = (m_{j,k}^\varepsilon)_j$, $(B^\varepsilon)_{i,j} = \int_{\mathbb{R}^d} \beta_j(\Phi^\varepsilon_h[\mu](t_k, x))\beta_i(x)\,dx$.
A Lagrange Galerkin scheme for deterministic MFG

Given $\mu \in C([0, T]; \mathcal{P}_1)$ and $\varepsilon > 0$ let us define

$$\Phi^{\varepsilon}_h[\mu](x, t_k) := x - hDv^{\varepsilon}_{\Delta x}[\mu](x, t_k)$$

We propose the following scheme for (MFG):

Find $\mu = (\mu^k_i)$ such that $\mu_i, k = m^{\varepsilon}_{i,k}[\mu]$ where $m^{\varepsilon}_{i,k}[\mu]$ is defined as

$$
\begin{cases}
\sum_{i \in \mathbb{Z}^d} m^{\varepsilon}_{i,k+1} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx = \sum_{i \in \mathbb{Z}^d} m^{\varepsilon}_{i,k} \int_{\mathbb{R}^d} \beta_j(\Phi^{\varepsilon}_h[\mu](t_k, x)) \beta_i(x) dx \\
\sum_{i \in \mathbb{Z}^d} m^{\varepsilon}_{i,0} \int_{\mathbb{R}^d} \beta_i(x) \beta_j(x) dx = \int_{\mathbb{R}^d} m_0(x) \beta_j(x) dx
\end{cases}
$$

The (LG) scheme for (MFG) can be written in vectorial form as

$$M m^{\varepsilon}_{k+1} := B^{\varepsilon} m^{\varepsilon}_k$$

where, $m^{\varepsilon}_k = (m^{\varepsilon}_{j,k})_j$, $(B^{\varepsilon})_{i,j} = \int_{\mathbb{R}^d} \beta_j(\Phi^{\varepsilon}_h[\mu](t_k, x)) \beta_i(x) dx$.
Convergence analysis LG for MFG

Key Property: Semiconcavity of $v^\varepsilon_{\Delta x}$

Proposition

Under assumptions (H1)-(H2)-(H3), the following assertions hold true:

(i) **L^2-stability** If h is sufficiently small, there exists a constant $C > 0$, such that

$$
\| m^\varepsilon_{\Delta x}(t_k, \cdot) \|_{L^2} \leq c \| m_0 \|_{L^2}
$$

(ii) **Equicontinuity** Suppose $(\Delta x)^2 = O(h)$, for all $t_1, t_2 \in [0, T]$, we have that

$$
d_1(m^\varepsilon_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C |t_1 - t_2|.
$$
Convergence analysis LG for MFG

Key Property: **Semiconcavity** of $v^\varepsilon_{\Delta x}$

Proposition

Under assumptions (H1)-(H2)-(H3), the following assertions hold true:

(i) **L^2-stability** If h is sufficiently small, there exists a constant $C > 0$, such that

$$
\|m^\varepsilon_{\Delta x}(t_k, \cdot)\|_{L^2} \leq c \|m_0\|_{L^2}
$$

(ii) **Equicontinuity** Suppose $(\Delta x)^2 = O(h)$, for all $t_1, t_2 \in [0, T]$, we have that

$$
d_1(m^\varepsilon_{\Delta x}(t_1), m_{\Delta x}(t_2)) \leq C|t_1 - t_2|.
$$
Theorem

Under assumptions (H1)-(H2)-(H3), consider a sequence of positive numbers $\Delta x_n, h_n, \varepsilon_n$ satisfying that

$$
\Delta x_n/\varepsilon_n^2 \leq C \quad (\Delta x_n)^2/h_n \to 0, \quad h_n/\varepsilon_n \to 0
$$

as $\varepsilon_n \downarrow 0$. Let $\{m_{\Delta x_n}^{\varepsilon_n}\}_{n \in \mathbb{N}}$ be a sequence of solutions of (LG) for the corresponding parameters $\Delta x_n, h_n, \varepsilon_n$.

Then every limit point in $C([0, T]; \mathcal{P}_1)$ and in $L^2(\mathbb{R}^d \times [0, T])$-weak of $m_{\Delta x_n}^{\varepsilon_n}$ (there exists at least one) solves (MFG).

In particular, if (H4) holds we have that $m_{\Delta x_n}^{\varepsilon_n} \to m$ (the unique solution of (MFG)) in $C([0, T]; \mathcal{P}_1)$ and in $L^2(\mathbb{R}^d \times [0, T])$-weak.

Possible Setting of parameters

$$
h = \Delta x, \quad \varepsilon = \sqrt{\Delta x}
$$
LG + area-weighting

In general, the integral \(\int_{\mathbb{R}^d} \beta_j(\Phi^\varepsilon_h(t_k, x)) \beta_i(x) dx \) can not be exactly computed.

- inexact integration: quadrature formulae
- area-weighting: approximate the trajectories neglecting the deformation caused by advection and compute exact integration

Using area-weighting + basis \(\beta^0_i \in \mathbb{P}_0 \)

\[
(M)_{i,j} = \int_{\mathbb{R}^d} \beta^0_i(x) \beta^0_j(x) dx = \delta_{i,j}
\]

\[
(B^\varepsilon_{aw})_{i,j} = \int_{\mathbb{R}^d} \beta^0_j(x - x_i + \Phi^\varepsilon_h(t_k, x_i)) \beta^0_i(x) dx = \int_{\mathbb{R}^d} \beta^0_j(x - hDv^\varepsilon_{Ax}[\mu](t_k, x_i)) \beta^0_i(x) dx = \\
\beta^1_j(x_i - hDv^\varepsilon_{Ax}[\mu](t_k, x_i)) = (B^*)_i,j.
\]

Ref. Morton, Priestley, Suli ('88), Ferretti ('12)
LG + area-weighting

In general, the integral \(\int_{\mathbb{R}^d} \beta_j(\Phi^\varepsilon_{h}(t_k, x)) \beta_i(x) dx \) cannot be exactly computed.

- inexact integration: quadrature formulae
- area-weighting: approximate the trajectories neglecting the deformation caused by advection and compute exact integration

Using area-weighting + basis \(\beta^0_i \in \mathbb{P}_0 \)

\[
(M)_{i,j} = \int_{\mathbb{R}^d} \beta^0_i(x) \beta^0_j(x) dx = \delta_{i,j}
\]

\[
(B^\varepsilon_{aw})_{i,j} = \int_{\mathbb{R}^d} \beta^0_j(x - x_i + \Phi^\varepsilon_{h}(t_k, x_i)) \beta^0_i(x) dx = \int_{\mathbb{R}^d} \beta^0_j(x - hDv^\varepsilon_{\Delta x}[\mu](t_k, x_i)) \beta^0_i(x) dx = \beta^1_j(x_i - hDv^\varepsilon_{\Delta x}[\mu](t_k, x_i)) = (B^*)_{i,j}.
\]

Ref. Morton, Priestley, Suli ('88), Ferretti ('12)
Conclusions and Future Works

Conclusions

- we have proposed a scheme for non-linear non-local FP
- it allows large time steps and is explicit
- it applies to get existence and numerical approximation of a new Hughes model
- it applies to approximate second order possibly degenerate MFG
- we have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)
Conclusions and Future Works

Conclusions

- we have proposed a scheme for non-linear non-local FP
- it allows large time steps and is explicit
- it applies to get existence and numerical approximation of a new Hughes model
- it applies to approximate second order possibly degenerate MFG
- we have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)
Conclusions and Future Works

Conclusions

- we have proposed a scheme for non-linear non-local FP
- it allows large time steps and is explicit
- it applies to get existence and numerical approximation of a new Hughes model
- it applies to approximate second order possibly degenerate MFG
- we have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)
Conclusions and Future Works

Conclusions

- we have proposed a scheme for non-linear non-local FP
- it allows large time steps and is explicit
- it applies to get existence and numerical approximation of a new Hughes model
- it applies to approximate second order possibly degenerate MFG
- we have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)
Conclusions

- we have proposed a scheme for non-linear non-local FP
- it allows large time steps and is explicit
- it applies to get existence and numerical approximation of a new Hughes model
- it applies to approximate second order possibly degenerate MFG
- we have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)
Conclusions and Future Works

Conclusions

- We have proposed a scheme for non-linear non-local FP
- It allows large time steps and is explicit
- It applies to get existence and numerical approximation of a new Hughes model
- It applies to approximate second order possibly degenerate MFG
- We have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)
Conclusions

- we have proposed a scheme for non-linear non-local FP
- it allows large time steps and is explicit
- it applies to get existence and numerical approximation of a new Hughes model
- it applies to approximate second order possibly degenerate MFG
- we have proposed a LG scheme for MFG first order getting convergence in arbitrary dimension

Future works

- Extension to non-linear non-local FP with general Neumann condition and application on MFG (with E. Calzola and F.J.Silva)
- Extension LG scheme for MFG second order (with E. Calzola and F.J.Silva)

