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Macroscopic models for crowd motion

® Macroscopic models for crowd motion:
dip — vAp + div(pV) =0 in Q
~ p(t, x): density of pedestrians at position x € Q in time ¢
~ V(t, x, p): velocity
~ v > 0: viscosity

~ Conservation law: %L}p = Lw(va —pV)-n, wCQ

How do pedestrians choose V?

The MFEG approach: pedestrians choose V' by solving an
optimal control problem, which depends on the average
behavior of other pedestrians

Coal: propose and study a MFG model inspired by crowd
motion and taking into account some of its important features
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Macroscopic models for crowd motion

Other works on MFGs for (or related to) crowd motion:
[Lachapelle, Wolfram; 2011}, [Burger, Di Francesco, Markowich,
Wolfram; 2013], [Cardaliaguet, Mészaros, Santambrogio; 2016],
[Benamou, Carlier, Santambrogio; 2017].

Main features of our model:
¢ Each agent solves an optimization criterion with free final
time
~ Pedestrians may stop at different times and the total travel
time may be part of the optimization criterion of a pedestrian
® Congestion-dependent velocity constraint

~~ Maximal speed of a pedestrian depends on the density of
pedestrians around them
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Previous results: the first-order case

Previous work on a first-order model considered in [M,,
Santambrogio; 2019] and [Dweik, M.; 2020]:
e Players of the game evolve on an
open set Q ¢ R

e Coal of a player: reach the exit
dQ) in minimal time

o

® [nteraction through congestion: a
player’'s maximal speed depends
on the density of players around
them

In this talk, 0Q is always C?
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Introduction

Previous results: the first-order case

Mathematically:

® Distribution of players at time t given by p; € P(Q)
~ po is known, the goal is to determine p; for t > 0

® Dynamics of a player given by the control system
X(t) = k(pt, x(1))u(t)
x(t) € Q (state) —  |x(t)| < k(pt, x(1))
|u(t)] <1 (control)
¢ Choice of the control u: minimize the exit time
inf{T > 0| x(t) = k(pt, x(t))u(t), u:RL — B(0,1),
x(0) € Q fixed, x(T) € 9Q}
e Characteristics of our model:
~ Interaction between players through their dynamics

~ Control constraint: |u(t)] <1
~ Optimization criterion with free final time
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Previous results: the first-order case

Formally:

® Introduce the value function ¢@: ¢(t, x) is the minimal time to
reach dQ) for a pedestrian starting at (¢, x)

~ ¢ solves a Hamilton—Jacobi—Bellman equation
~» Natural boundary condition: <p|00 =0

Vo(t.x(t)

e Optimal control for x(t) = k(ps, x(t))u(t): u(t) = ~ ot ()]

~ p solves a continuity equation
~» No boundary condition: velocity field always points outwards

® MFG system:

. \v4
dup — div (pk(pt,-)ﬁ) 0
— 019+ k(pt, )|Vl —1=0

p0.x) =po(x)  ¢[,q=0
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Previous results: the first-order case

¢ |deally, k should be local: k(p;, x) = k(pt(x)) for absolutely
continuous ps
~ With k non-increasing, e.g., k(p) = (1 — p)+

¢ Results available only in the non-local case, e.g.

Klpi ) = ( fxte = yiny) douly)

with a uniform lower bounded k(p) > «pin > 0
~ Existence of solutions to the MFG system
— Weak (Lagrangian) notion of equilibrium: measure on the set
of trajectories concentrated on optimal trajectories
— Regqularity of optimal trajectories
— Semtconcawtg of ¢
— exists along optimal trajectories
— chques specific to the first-order case
~ pp ELP = p(t,)e P Yt>0
~ One may take some discontinuous n, e.q., n = 1g
[M., Santambrogio; 2019], [Dweik, M.; 2020]
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Previous results: the first-order case

Ve
Oip — di k(pt,)=—=1] =0
tp — div (p (Pt )|V<p|)
— i+ k(p, )|Vl =1 =0
p(0, x) = po(x) (P|aQ =0
Our MFG system above is related to Hughes model for crowd
motion [Hughes; 2002]

® Hughes model: At time ¢, a pedestrian solves an optimal
control problem assuming others remain at the same position

e MFG model: At time t, a pedestrian solves an optimal control
problem using rationality to determine future behavior
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The local second-order model

With respect to the first-order case:

(@)

e Random noise: players are
submitted to additive independent
Brownian motions

Mathematically:

® Dynamics of a player given by the stochastic control system
dXt = k(pt, Xt)Ut dt + Vv2v de,

X; @ state, Ui : control, |Uf] <1, v >0,
W; : Brownian motion (mutually indep. for different players)
e Exit time: T =1inf{t > 0| X; & Q}
~ We assume that X; stops after reaching 0Q.
¢ Choice of the control U: minimize the expected exit time E[7]
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The local second-order model

Motivation:
® |ndependent Brownian motions
= diffusion terms in the PDEs
= p and ¢ should be more regular

= possibility to treat the local case

k(pt, x) = k(p(t, x))
where k : R — (0, +00) is non-increasing.

We assume in the sequel that we are in the local case
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The local second-order model

[ssue with free final time:

® Non-compact time interval = difficulties when applying
fixed-point techniques for existence of MFG equilibria
~» First-order case: 3T > 0 s.t. all agents leave before T

Strategy:
® Prove existence for finite T, then let T — +o0
More precisely:
e T € (0,+400): time horizon
® ¢ : Q — R,: penalization for players not leaving by T
Yx) =0 < x €0Q
® QOptimization criterion:
minEfT] ~ min E[min(t, T) + (X7)]
Value function:
¢(to, x0) = ml'bn E(ty,xo)[min(T, T) 4+ ¢p(X7)]
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The local second-order model

e Hamilton—Jacobi-Bellman equation for ¢:
— 01+ k(p)|[ Vol —vAg—1=0

¢laq =0
o(T,-) =
® QOptimal control:
U = — Vo(t, Xi)
[V o(t, Xt)|

® [okker—Planck equation for p:
0ip — vAp —div (pK(p)IV |)

p‘ao =0
P(0,°) = po

Second-order local minimal-time mean field games Guilherme Mazanti
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The local second-order model

MFG system:
0¢p — vAp —div (pK(p |§(p| ) 0 (FP)
1 —0ip+k(p)|Ve|—vAp—-1=0 (HIB)
plog =0 ¢oq =0
L£(0.) = po o(T,)=4¢

Sequel of the talk:
e Existence in finite time horizon

® The case of infinite time horizon by a limit procedure
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MFEG with finite time horizon

Existence of solutions

dep — vAp — div (pK(p ;‘p' ) 0 (FP)
1 =00+ k(p)| V| —vAg —1=0 (HJB)
Plog =0 ¢log =0
L,(0,°) = po o(T,:)=y
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MFEG with finite time horizon

Existence of solutions

dep — vAp — div (pK(p ;‘p' ) 0 (FP)
1 =00+ k(p)| V| —vAg —1=0 (HJB)
Plog =0 ¢log =0
L,(0,°) = po o(T,:)=y

(p, o) € [L‘tX’L)Z( N L%Hax] is a solution if AV € LT st
® pis a weak solution with initial condition pg of
dtp — vAp + div(pV) =0
® ¢ is a weak solution with final condition ¢ of
—0tp + k(p)|[ V| —vAp—1=0
e V satisfies |V| < k(p) and V - Vo = —«k(p)|V ¢
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Existence of solutions

Theorem

Let T > 0 and assume py € L*(Q), Y € Hg(Q), k:R — (0, +00)

continuous and bounded.

Then there exists a solution (p, @) € [L?"Lf N L%H&X]Z to the

second-order local MFG system. Moreover
P e Cth

dip € L2H
@€ CH), NLIH?
at(P S L%,X
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MFEG with finite time horizon

Ingredients of the proof

e Existence, uniqueness, and energy estimates for FP and HJB
separately ~~» Classical results for parabolic PDEs

Continuity of FP with respect to the velocity field

Continuity of HIB with respect to k(p)

Fixed point argument to obtain a solution of the system
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MFG with finite time horizon
The Fokker—Planck equation

{atp —vAp +div(pV)=0
Plan=0  p(0,)=po €L’

e Existence and uniqueness of weak solutions in L$°L2 N L%Hax
when V € LTS
* Weak solutions also satisfy p € C;12, d;p € LZH ", and the
energy estimate
ollizer2 + llpllizmy + 19epll 12170 < Cllpolli2,
C=C(d, v, T,Q,M), M upper bound on ||V||L?<;
® Positivity: po >0 = p(t,:) >0

Second-order local minimal-time mean field games Guilherme Mazanti



MFG with finite time horizon
oe

MFG with finite time horizon
The Fokker—Planck equation

0ip — vAp +div(pV) =0
{m p (pV) FP)

Plan=0  p(0,-) =po € L°.

Continuity: V, = Vin LS = pn— pin L%X
® Energy estimate = (p;,), bounded in L?HJ)X
* Energy estimate = (d;p,), bounded in [ZH.'

® Aubin-Lions Lemma => (p,), compact in L?,

Passing to the limit, any limit point p* of (p,), must solve
(FP).
e Uniqueness: p* = p, then p, — p in L%X
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MFEG with finite time horizon

The Hamilton—Jacobi—Bellman equation

{—at(p—vA<p+/<|V<p|—1 =0
Plaa=0  @T.-)=4¢ € H

e Existence and uniqueness of weak solutions in L$°[2 N L%HAX
when K € LT

~- Linear heat equation with source 1 — K|V ¢| & fixed point

® Weak solutions also satisfy ¢ € CtHax NLZH?Z, 0 € L%X,

and the energy estimates
lelliez + llllizry + 100l 2 < CldN2 + 1),

[9llrg, + Il + 10rgll < € (10 +1)
C=C(d v, T,Q,M), M upper bound on |[K]| .z
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The Hamilton—Jacobi—Bellman equation

— 0,0 —VvAp+ K|V —1=0
{ tp o+ K|V (HIB)

¢l =0 oT. )=y < H

Continuity: K, = K in L2 = @p— @ in L%H&X

Energy estimate = (g,), bounded in [7H?

Energy estimate = (0dt¢n), bounded in L%,X
Aubin-Lions Lemma => (¢,), compact in LZH]
Passing to the limit, any limit point ¢* of (¢,), must solve
(HIB).

The stronger convergence L%HSX is needed because of the
non-linear term K|V ¢

Uniqueness: ¢* = ¢, then @, — ¢ in L%Hax
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Kakutant fixed point

&p—vAp—dW(pM |§¢J 0 (FP)
1 —0ip+k(p)|Ve|—vAg—1=0 (HJB)
p|ao =0 ‘P|ao =0
L p(0.°) = po o(T,:)=y

W*—L?j( — L%X — W*—L?S( — L?HAX — W*—L‘t’f;

Vi > p - K(p) — 0] — V(V)

. _{ VI < «i(p) }
(V)={Vely
V. Vo =—«kp)|Ve
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MFEG with finite time horizon

Kakutant fixed point

&p—vAp—dW(pM |§¢J 0 (FP)
1 —0ip+k(p)|Ve|—vAg—1=0 (HJB)
p|ao =0 ‘P|ao =0
L p(0.°) = po o(T,:)=y

W*—L?j( — L%X — W*—L?S( — L?HAX — W*—L‘t’f;

Vi > p K(p) — 0] — V(V)

. _{ VI < «i(p) }
(V)={Vely
V. Vo =—«kp)|Ve
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MFEG with finite time horizon

Kakutant fixed point

dep — viAp — div (pK( ;"" ) 0 (FP)
1 —0ip+«(p)|Vo|—vApg—1=0 (HJB)
p|ao =0 ‘P|ao =0
L p(0.°) = po o(T,:)=y

W*—L?j( — L%X — W*—L?S( — L?HAX — W*—L‘t’f;

Vi > p K(p) — 0] — V(V)
V| < «(p) }
V-V =—«p)|Ve|

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with finite time horizon

Kakutant fixed point

dep — viAp — div (pK( ;"" ) 0 (FP)
1 =09+ «(p)|Vo|—vAp—-1=0 (HJB)
p|ao =0 ‘P|ao =0
L~(0,°) = po o(T, )=y

wr-LgS,  — L%X - WLy - L?HAX - wh-LE
Vie po—=  klp) = ¢ = V)

(V) = Vel |V|SK(P)
Vv = —k(p) Vol
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MFEG with finite time horizon

Kakutant fixed point

dep — viAp — div (pK( ;"" ) 0 (FP)
1 =09+ «(p)|Vo|—vAp—-1=0 (HJB)
p|ao =0 ‘P|ao =0
L~(0,°) = po o(T, )=y

W*—L‘t’j( — L%X — W*—L?S( — L?HAX — W*—L‘t’f;

Vi > p K(p) — ® —  V(V)
V] < «(p) }
V- Vo =—k(p)Vyl|

Solution < V € V(V)

V(V):{VeL?f;
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MFEG with finite time horizon

Kakutant fixed point

w12 — L%,X - wh-LE - L%H&X - wr-LF
Vies p = klp) ) — V(V)
V| < k(p) }
V-V =—k(p)|Vl
Hypotheses for Kakutani fixed point theorem:

V(V) = {Ve L%

¢ V(V) non-empty, compact, convex
® 'V upper semi-continuous
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MFEG with finite time horizon

Kakutant fixed point

w12 — L%,X - wh-LE - L%H&X - wr-LF
Vies p = klp) ) — V(V)
V| < k(p) }
V-V =—k(p)|Vl
Hypotheses for Kakutani fixed point theorem:

V(V) = {Ve L%

¢ V(V) non-empty, compact, convex
® 'V upper semi-continuous

~ V= p— k(p) — ¢ all continuous
~» 'V has a closed graph

= Existence of a fixed point
— Existence of a solution to the MFG system |

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with infinite time horizon

Existence of solutions

MFG system with infinite time horizon:

i \%
atp—vAp—d'Lv(pK(p |V(p|)_0 t>0, xe
1 —0ip+k(p)|Ve| —vAg—1=0 t>0, xeq
plag =0 ¢lon =0
L ,(0,) = po

Definition of solution: similar to the finite time horizon, but we
also require ¢ to be globally bounded
® Boundedness of ¢ often required in optimal control to
identify it as the value function of an optimal control problem
® We can prove existence of solutions with bounded ¢
® Boundedness of ¢ is important to obtain results on the
asymptotic behavior of p and ¢ as t — +o0.
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MFEG with infinite time horizon

Existence of solutions

Assume py € L(Q), po > 0, k : R — (0, +00) continuous and
bounded.

Then there exists a solution (p, @) € [L?OL)Z( N L%H&X]z to the
second-order local MFG system in infinite horizon. Moreover
pE CtL)z(

9ip € L2H!
@€ CH), NLIH?
at‘P S L?x

All summabilities in t are local
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MFEG with infinite time horizon
Sketch of the proof

Start from a sequence of solutions (p,, ¢,), in finite time
horizon T,,, T, —» 4+

* We require ¢,(T,, ") = ¢, > 0 to be bounded in L[> 1 H,

¢ Goal: up to extracting a subsequence
. 2 2
Pn—p tn Lloc,tLX
: 2 1
$n — @ tn Lloc,tHOX
[ ]

If these convergences hold, it is easy to verify that (p, ¢) is a
solution in infinite horizon

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with infinite time horizon
Sketch of the proof

® Fokker—Planck equation: given T, if T, > T,
lpnllig iz + llpalli mg, +19epalliz, | 1 < C(T)polliz
~ Boundedness of (p,), in L 1yHg,
~ Boundedness of (9;p,), in Ly 1H; "
~+ Aubin-Lions Lemma == compactness of (p,), in L{ L3
~ Convergence (up to subsequence) in leoc’tL)Z(, as required

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with infinite time horizon
Sketch of the proof

® Fokker—Planck equation: given T, if T, > T,
pallis, 2 + Nonlls, g, + 19eonllz, s < CDlpollz
~ Boundedness of (p,), in L 1yHg,
~ Boundedness of (9;p,), in Ly 1H; "
~+ Aubin-Lions Lemma == compactness of (p,), in L{ L3
~ Convergence (up to subsequence) in leoc’tL)Z(, as required
® Hamilton—Jacobi-Bellman equation: same strategy does not
work immediately! Given 7, it T, > T,

l@allis, iz + Inlli, g, + 18egnlliy s < €T (a2 +1)

l@allis, b, + Neallg, 2 + 19 nlliy iz < CT) (@ Ty, +1)

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with infinite time horizon
Sketch of the proof

el iz + Ionlliy, sy, + 9Pl e < CUT)lpoll
lnllegs 2 + l@nlliz mg, + 110cnlliz s < C(T) (lea(Mlliz + 1)

l@allis, by, + Nl + 19 nlliy iz < CT) (@l Ty, +1)

PO @n(T) Un
I - } >t
0 T T, — o0

To conclude, it suffices to show that (¢,), is bounded in 512
and L?OH(;X

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with infinite time horizon
Sketch of the proof

— 09— vAp+ K|Vl —1=0
{ tp —vag Vol (HIB)

?lon=0 @T., )=y
Lemma

Assume thatT>O,KeL‘;f’X,gl/eL°°nH3, K>0,and ¢y >0
and let ¢ be the solution of (H/B).

Then 3C > 0 depending only on v, Q,
0<9p<C
Iplligory, < €

Yl

Pl st

Second-order local minimal-time mean field games Guilherme Mazanti
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MFEG with infinite time horizon
Sketch of the proof

Proof of the Lemma: To prove 0 < ¢ < C:
® Comparison principle with
—VvA®P—-1=0
lyq =0
Since 0 < g < O+ ||¢f]|1, then 0 < @ < D + ||| oo
® &: expected time to leave Q) only with Brownian motion
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MFEG with infinite time horizon
Sketch of the proof

Proof of the Lemma (cont.): To prove H(p||L?QH8 < C:
* Derivative of the /? norm:

d (1
-5 5 )a <p2) = —v [ Vel = |_xpIVelo+ | ¢
Using that ¢ is bounded:

%]
J, JoIvel < c+ln—n))
* Derivative of the /) norm:
d (1 2\ )
5 (5 |, IVel ) =v [ (B9P = [ kp)IVelap+ [ Ag
Young + Gronwall:
) ) t+1 5
Vel scf [ Vel +cC n
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MFEG with infinite time horizon
Sketch of the proof

Finally,
l@alls, iz + l@nll, g, + 10enll;

0,7)

l@allis, g, + el + 19 nlliy iz < C(T) (l@a(T) g, +1)

Ho S C(T) (lealT)lliz + 1)

Second-order local minimal-time mean field games Guilherme Mazanti



MFG with infinite time horizon
0O00000e

MFEG with infinite time horizon
Sketch of the proof

Finally,
lenlli, iz + l@alliz mg, + 19ialliz 1t < C(T)

l@nllise mg, + lonlliz e + 110 @alliz 12 < C(T)

® Boundedness of (¢g), in L(Zo,T)sz
® Boundedness of (3¢¢,), in L(ZOIT)L)Z(

¢ Aubin-Lions lemma == compactness of (¢,), in L(ZO,T)H(}X

2

1 .
toc.¢Ho» @s required W

® Convergence (up to subsequence) in L

Second-order local minimal-time mean field games Guilherme Mazanti
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Parabolic reqularization and more general initial conditions

Proposition (Parabolic reqularization)

LetV, F, f, g, ube C® V,gbel™ u>0, bes.t

oiu —Au+div(uV)+V-F+f+g-Vu<0
Then Vp > 1,¥0 > 0, 3C > 0 (indep. of F, f, and depending on
V, g only through their L*° norms), ¥t > 0,

lu(t + 0)l[ee < C([[u(®)llr + [[Flliee + [[Flle0)

General formulation: can be applied both to Fokker—Planck
and Hamilton—Jacobi-Bellman
Can be adapted to non-smooth solutions by regularization

~ Different regularization arguments for FP and HJB
Allows one to consider initial condition py € L” for FP also
for 1 < p < 2: solution becomes L* for t > 0
With some extra work, one may get existence and uniqueness
for FP also for pg € L' with finite entropy
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MFEG with infinite time horizon

Asymptotic behavior of p

Any solution (p, @) of the MFG system in infinite time horizon
with po > 0 satisfies

pt,) ——10

t—+o00
exponentially in LP for every p € [1, 00|

® First case: p =1

d ad
didaP =V an <0

d
EIQP(P:_JQP
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MFEG with infinite time horizon

Asymptotic behavior of p

Proposition

Any solution (p, @) of the MFG system in infinite time horizon
with po > 0 satisfies

exponentially in LP for every p € [1, 00|
® First case: p =1
i Jor = agn <0
%Iop(’): _fop < _H‘P?T?&fﬂp(p

— | e < e [ p0)p(0), A< llgli
= fo p(t) < Ce™
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MFEG with infinite time horizon

Asymptotic behavior of p

® Second case: p > 1 close to 1

St f

2
2 yt 2 — Kmax
= [ PP <e [ p0?,  y=ne
Exponential convergence in L' + exponential bound in [? +

interpolation
= exponential convergence in L” for p > 1 close to 1
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MFEG with infinite time horizon

Asymptotic behavior of p

® Second case: p > 1 close to 1

St f

2
2 yt 2 — Kmax
= [ PP <e [ p0?,  y=ne
Exponential convergence in L' + exponential bound in [? +

interpolation
= exponential convergence in L” for p > 1 close to 1

¢ Third case: any p

~ Parabolic reqularization: Vp > 1, Vo > 0, 3C, Vt > 0,

lp(t + 0=y < Cllp(®)]]ee(c)
~ Apply with p close to 1 from second case, 06 = 1: p(t) — 0 in
L* exponentially as t — oo n
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MFEG with infinite time horizon

Asymptotic behavior of ¢

What happens to ¢ as t — o0?
—01p + k(p)|[Ve| —vAp—1=0
¢log =0
We know that p — 0 exponentially fast in all L?
Let ¥ be the solution of
k(0)|V¥| —vAY —1=0
Wpg =0
W(x): minimal time to reach dQ) when the density is 0

Proposition

Any solution (p, ) of the MFG system in infinite time horizon
with pg > 0 satisfies
in L*° and in Hg
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MFEG with infinite time horizon

Asymptotic behavior of ¢

Strategy of the proof: Let t, —» +o0
® @,(t,x) = @(t + t,, x) converges in leoc,tH(1) as n — oo to
some @ solution of
— 0o+ k(0)|Ve| —vAg—1=0
{_ @ + k(0)| Vgl — vAp (HIBy)
Plag =0
® Consider ur, vr solutions of (HJBg) with ur(T,x) =0,
vr(T,x) = ® + M, where
{ — VA =1
Ploq =0
and M > @. Comparison principle =
0<ur(t,x) <ot x) <vr(t,x) <d(x)+ M
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MFEG with infinite time horizon

Asymptotic behavior of ¢

Strateqy of the proof (cont.):

0<ur(t,x) <ot x) <vr(t,x) <d(x)+ M
® Comparison principle between ur4p and ur = (uT)7>0
non-decreasing

® Comparison principle between vy, and vi = (v7)70
non-increasing

® — (ur)7>0 @nd (v7)7>0 converge a.e. as T — +o0, and
their limit must be W

o — ¢ = l-lJ
® Parabolic reqularization = convergence in L*°

® Bound of ¢ in Lf, ,\Hf = convergence in Hg |
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