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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionMacroscopic models for crowd motion
• Macroscopic models for crowd motion:

∂tρ − ν∆ρ + div(ρV ) = 0 in Ω
 ρ(t, x): density of pedestrians at position x ∈ Ω in time t
 V (t, x, ρ): velocity
 ν ≥ 0: viscosity
 Conservation law: ddt w

ω
ρ = w

∂ω
(ν∇ρ − ρV ) · n, ω ⊂ Ω

• How do pedestrians choose V ?
• The MFG approach: pedestrians choose V by solving anoptimal control problem, which depends on the averagebehavior of other pedestrians
• Goal: propose and study a MFG model inspired by crowdmotion and taking into account some of its important features
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionMacroscopic models for crowd motion
Other works on MFGs for (or related to) crowd motion:[Lachapelle, Wolfram; 2011], [Burger, Di Francesco, Markowich,Wolfram; 2013], [Cardaliaguet, Mészáros, Santambrogio; 2016],[Benamou, Carlier, Santambrogio; 2017].Main features of our model:
• Each agent solves an optimization criterion with free finaltime
 Pedestrians may stop at different times and the total traveltime may be part of the optimization criterion of a pedestrian

• Congestion-dependent velocity constraint
 Maximal speed of a pedestrian depends on the density ofpedestrians around them
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionPrevious results: the first-order case
Previous work on a first-order model considered in [M.,Santambrogio; 2019] and [Dweik, M.; 2020]:
• Players of the game evolve on anopen set Ω ⊂ Rd

• Goal of a player: reach the exit
∂Ω in minimal time
• Interaction through congestion: aplayer’s maximal speed dependson the density of players aroundthem

Ω

In this talk, ∂Ω is always C2
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionPrevious results: the first-order case
Mathematically:
• Distribution of players at time t given by ρt ∈ P(Ω)
 ρ0 is known, the goal is to determine ρt for t > 0

• Dynamics of a player given by the control system
ẋ(t) = k(ρt , x(t))u(t)
x(t) ∈ Ω (state)
|u(t)| ≤ 1 (control)

 ⇐⇒ |ẋ(t)| ≤ k(ρt , x(t))
• Choice of the control u: minimize the exit timeinf{T ≥ 0 | ẋ(t) = k(ρt , x(t))u(t), u : R+ → B(0, 1),

x(0) ∈ Ω fixed, x(T ) ∈ ∂Ω}
• Characteristics of our model:
 Interaction between players through their dynamics
 Control constraint: |u(t)| ≤ 1
 Optimization criterion with free final time
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionPrevious results: the first-order case
Formally:
• Introduce the value function φ: φ(t, x) is the minimal time toreach ∂Ω for a pedestrian starting at (t, x)
 φ solves a Hamilton–Jacobi–Bellman equation
 Natural boundary condition: φ∣∣∂Ω = 0

• Optimal control for ẋ(t) = k(ρt , x(t))u(t): u(t) = − ∇φ(t,x(t))
|∇φ(t,x(t))|

 ρ solves a continuity equation
 No boundary condition: velocity field always points outwards

• MFG system: 
∂tρ − div (ρk(ρt , ·) ∇φ|∇φ|

) = 0
− ∂tφ + k(ρt , ·)|∇φ| − 1 = 0
ρ(0, x) = ρ0(x) φ

∣∣
∂Ω = 0
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionPrevious results: the first-order case
• Ideally, k should be local: k(ρt , x) = κ(ρt(x)) for absolutelycontinuous ρt
 With κ non-increasing, e.g., κ(ρ) = (1− ρ)+

• Results available only in the non-local case, e.g.
k(ρt , x) = κ

(w
Ω χ(x − y)η(y) dρt(y))with a uniform lower bounded κ(ρ) ≥ κmin > 0

 Existence of solutions to the MFG system— Weak (Lagrangian) notion of equilibrium: measure on the setof trajectories concentrated on optimal trajectories— Regularity of optimal trajectories— Semiconcavity of φ— ∇φ
|∇φ| exists along optimal trajectories— Techniques specific to the first-order case

 ρ0 ∈ Lp =⇒ ρ(t, ·) ∈ Lp ∀t ≥ 0
 One may take some discontinuous η, e.g., η = 1Ω[M., Santambrogio; 2019], [Dweik, M.; 2020]
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionPrevious results: the first-order case

∂tρ − div (ρk(ρt , ·) ∇φ|∇φ|

) = 0
− ∂tφ + k(ρt , ·)|∇φ| − 1 = 0
ρ(0, x) = ρ0(x) φ

∣∣
∂Ω = 0

Our MFG system above is related to Hughes model for crowdmotion [Hughes; 2002]
• Hughes model: At time t, a pedestrian solves an optimalcontrol problem assuming others remain at the same position
• MFG model: At time t, a pedestrian solves an optimal controlproblem using rationality to determine future behavior
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionThe local second-order model
With respect to the first-order case:
• Random noise: players aresubmitted to additive independentBrownian motions

Ω
Mathematically:
• Dynamics of a player given by the stochastic control systemdXt = k(ρt , Xt)Ut dt +√2ν dWt ,

Xt : state, Ut : control, |Ut | ≤ 1, ν > 0,
Wt : Brownian motion (mutually indep. for different players)

• Exit time: τ = inf{t ≥ 0 | Xt /∈ Ω}
 We assume that Xt stops after reaching ∂Ω.

• Choice of the control U : minimize the expected exit time E[τ ]
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionThe local second-order model

Motivation:
• Independent Brownian motions
⇒ diffusion terms in the PDEs
⇒ ρ and φ should be more regular
⇒ possibility to treat the local case

k(ρt , x) = κ(ρ(t, x))where κ : R→ (0,+∞) is non-increasing.We assume in the sequel that we are in the local case
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionThe local second-order model
Issue with free final time:
• Non-compact time interval =⇒ difficulties when applyingfixed-point techniques for existence of MFG equilibria
 First-order case: ∃T > 0 s.t. all agents leave before TStrategy:

• Prove existence for finite T , then let T → +∞More precisely:
• T ∈ (0,+∞): time horizon
• ψ : Ω→ R+: penalization for players not leaving by T

ψ(x) = 0 ⇐⇒ x ∈ ∂Ω
• Optimization criterion:

���
�XXXXminE[τ ]  minE[min(τ, T ) + ψ(XT )]Value function:

φ(t0, x0) = min
U

E(t0,x0)[min(τ, T ) + ψ(XT )]
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionThe local second-order model
• Hamilton–Jacobi–Bellman equation for φ:

− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0
φ
∣∣
∂Ω = 0

φ(T , ·) = ψ
• Optimal control:

Ut = − ∇φ(t, Xt)
|∇φ(t, Xt)|

• Fokker–Planck equation for ρ:
∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0
ρ
∣∣
∂Ω = 0

ρ(0, ·) = ρ0
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Introduction MFG with finite time horizon MFG with infinite time horizonIntroductionThe local second-order model
MFG system:

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|
) = 0 (FP)

− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

Sequel of the talk:
• Existence in finite time horizon
• The case of infinite time horizon by a limit procedure

Second-order local minimal-time mean field games Guilherme Mazanti



Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonExistence of solutions
∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

Definition(ρ, φ) ∈ [L∞t L2
x ∩ L2

tH10 x]2 is a solution if ∃V ∈ L∞t,x s.t.
• ρ is a weak solution with initial condition ρ0 of

∂tρ − ν∆ρ + div(ρV ) = 0
• φ is a weak solution with final condition ψ of

−∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0
• V satisfies |V | ≤ κ(ρ) and V · ∇φ = −κ(ρ)|∇φ|
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonExistence of solutions
∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψDefinition(ρ, φ) ∈ [L∞t L2
x ∩ L2

tH10 x]2 is a solution if ∃V ∈ L∞t,x s.t.
• ρ is a weak solution with initial condition ρ0 of

∂tρ − ν∆ρ + div(ρV ) = 0
• φ is a weak solution with final condition ψ of

−∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0
• V satisfies |V | ≤ κ(ρ) and V · ∇φ = −κ(ρ)|∇φ|
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonExistence of solutions

Theorem
Let T > 0 and assume ρ0 ∈ L2(Ω), ψ ∈ H10 (Ω), κ : R→ (0,+∞)
continuous and bounded.

Then there exists a solution (ρ, φ) ∈ [L∞t L2
x ∩ L2

tH10 x]2 to the
second-order local MFG system. Moreover

ρ ∈ CtL2
x

∂tρ ∈ L2
tH−1

x

φ ∈ CtH10 x ∩ L2
tH2

x

∂tφ ∈ L2
t,x
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonIngredients of the proof

• Existence, uniqueness, and energy estimates for FP and HJBseparately  Classical results for parabolic PDEs
• Continuity of FP with respect to the velocity field
• Continuity of HJB with respect to κ(ρ)
• Fixed point argument to obtain a solution of the system
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonThe Fokker–Planck equation
{
∂tρ − ν∆ρ + div (ρV ) = 0
ρ
∣∣
∂Ω = 0 ρ(0, ·) = ρ0 ∈ L2.

• Existence and uniqueness of weak solutions in L∞t L2
x ∩ L2

tH10 xwhen V ∈ L∞t,x
• Weak solutions also satisfy ρ ∈ CtL2

x , ∂tρ ∈ L2
tH−1

x , and theenergy estimate
‖ρ‖L∞t L2

x
+ ‖ρ‖L2

tH10 x + ‖∂tρ‖L2
tH−1

x
≤ C‖ρ0‖L2 ,

C = C (d, ν, T ,Ω,M), M upper bound on ‖V ‖L∞t,x
• Positivity: ρ0 ≥ 0 =⇒ ρ(t, ·) ≥ 0
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonThe Fokker–Planck equation
{
∂tρ − ν∆ρ + div (ρV ) = 0
ρ
∣∣
∂Ω = 0 ρ(0, ·) = ρ0 ∈ L2. (FP)

Continuity: Vn ∗−⇀ V in L∞t,x =⇒ ρn → ρ in L2
t,x

• Energy estimate =⇒ (ρn)n bounded in L2
tH10 x

• Energy estimate =⇒ (∂tρn)n bounded in L2
tH−1

x
• Aubin–Lions Lemma =⇒ (ρn)n compact in L2

t,x
• Passing to the limit, any limit point ρ∗ of (ρn)n must solve(FP).
• Uniqueness: ρ∗ = ρ, then ρn → ρ in L2

t,x
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonThe Hamilton–Jacobi–Bellman equation
{
− ∂tφ − ν∆φ + K|∇φ| − 1 = 0
φ
∣∣
∂Ω = 0, φ(T , ·) = ψ ∈ H10

• Existence and uniqueness of weak solutions in L∞t L2
x ∩ L2

tH10 xwhen K ∈ L∞t,x
 Linear heat equation with source 1− K|∇φ| & fixed point

• Weak solutions also satisfy φ ∈ CtH10 x ∩ L2
tH2

x , ∂tφ ∈ L2
t,x ,and the energy estimates

‖φ‖L∞t L2
x
+ ‖φ‖L2

tH10 x + ‖∂tφ‖L2
tH−1

x
≤ C (‖ψ‖L2 + 1) ,

‖φ‖L∞t H10 x + ‖φ‖L2
tH2

x
+ ‖∂tφ‖L2

t,x
≤ C

(
‖ψ‖H10 + 1) ,

C = C (d, ν, T ,Ω,M), M upper bound on ‖K‖L∞t,x
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonThe Hamilton–Jacobi–Bellman equation
{
− ∂tφ − ν∆φ + K|∇φ| − 1 = 0
φ
∣∣
∂Ω = 0, φ(T , ·) = ψ ∈ H10 (HJB)

Continuity: Kn ∗−⇀ K in L∞t,x =⇒ φn → φ in L2
tH10 x

• Energy estimate =⇒ (φn)n bounded in L2
tH2

x
• Energy estimate =⇒ (∂tφn)n bounded in L2

t,x
• Aubin–Lions Lemma =⇒ (φn)n compact in L2

tH10 x
• Passing to the limit, any limit point φ∗ of (φn)n must solve(HJB).
• The stronger convergence L2

tH10 x is needed because of thenon-linear term K|∇φ|
• Uniqueness: φ∗ = φ, then φn → φ in L2

tH10 x
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

w∗-L∞t,x → L2
t,x → w∗-L∞t,x → L2

tH10 x → w∗-L∞t,x
V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

w∗-L∞t,x → L2
t,x → w∗-L∞t,x → L2

tH10 x → w∗-L∞t,x
V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

w∗-L∞t,x → L2
t,x → w∗-L∞t,x → L2

tH10 x → w∗-L∞t,x
V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

w∗-L∞t,x → L2
t,x → w∗-L∞t,x → L2

tH10 x → w∗-L∞t,x
V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|

) = 0 (FP)
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 (HJB)
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0 φ(T , ·) = ψ

w∗-L∞t,x → L2
t,x → w∗-L∞t,x → L2

tH10 x → w∗-L∞t,x
V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}

Solution ⇐⇒ V ∈ V(V )
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point
w∗-L∞t,x → L2

t,x → w∗-L∞t,x → L2
tH10 x → w∗-L∞t,x

V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}

Hypotheses for Kakutani fixed point theorem:
• V(V ) non-empty, compact, convex
• V upper semi-continuous

 V 7→ ρ 7→ κ(ρ) 7→ φ all continuous
 V has a closed graph=⇒ Existence of a fixed point=⇒ Existence of a solution to the MFG system �
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with finite time horizonKakutani fixed point
w∗-L∞t,x → L2

t,x → w∗-L∞t,x → L2
tH10 x → w∗-L∞t,x

V 7→ ρ 7→ κ(ρ) 7→ φ 7→ V(V )
V(V ) = {Ṽ ∈ L∞t,x ∣∣∣∣∣ |Ṽ | ≤ κ(ρ)

Ṽ · ∇φ = −κ(ρ)|∇φ|
}

Hypotheses for Kakutani fixed point theorem:
• V(V ) non-empty, compact, convex
• V upper semi-continuous
 V 7→ ρ 7→ κ(ρ) 7→ φ all continuous
 V has a closed graph=⇒ Existence of a fixed point=⇒ Existence of a solution to the MFG system �
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonExistence of solutions
MFG system with infinite time horizon:

∂tρ − ν∆ρ − div (ρκ(ρ) ∇φ|∇φ|
) = 0 t ≥ 0, x ∈ Ω

− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0 t ≥ 0, x ∈ Ω
ρ
∣∣
∂Ω = 0 φ

∣∣
∂Ω = 0

ρ(0, ·) = ρ0Definition of solution: similar to the finite time horizon, but wealso require φ to be globally bounded
• Boundedness of φ often required in optimal control toidentify it as the value function of an optimal control problem
• We can prove existence of solutions with bounded φ
• Boundedness of φ is important to obtain results on theasymptotic behavior of ρ and φ as t → +∞.
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonExistence of solutions
Theorem
Assume ρ0 ∈ L2(Ω), ρ0 ≥ 0, κ : R→ (0,+∞) continuous and
bounded.

Then there exists a solution (ρ, φ) ∈ [L∞t L2
x ∩ L2

tH10 x]2 to the
second-order local MFG system in infinite horizon. Moreover

ρ ∈ CtL2
x

∂tρ ∈ L2
tH−1

x

φ ∈ CtH10 x ∩ L2
tH2

x

∂tφ ∈ L2
t,xAll summabilities in t are local
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof

• Start from a sequence of solutions (ρn, φn)n in finite timehorizon Tn, Tn → +∞
• We require φn(Tn, ·) = ψn ≥ 0 to be bounded in L∞ ∩ H10
• Goal: up to extracting a subsequence

ρn → ρ in L2loc,tL2
x

φn → φ in L2loc,tH10 x
• If these convergences hold, it is easy to verify that (ρ, φ) is asolution in infinite horizon
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof
• Fokker–Planck equation: given T , if Tn ≥ T ,

‖ρn‖L∞(0,T )L2
x
+ ‖ρn‖L2(0,T )H10 x + ‖∂tρn‖L2(0,T )H−1

x
≤ C (T )‖ρ0‖L2

x

 Boundedness of (ρn)n in L2(0,T )H10 x
 Boundedness of (∂tρn)n in L2(0,T )H−1

x
 Aubin–Lions Lemma =⇒ compactness of (ρn)n in L2(0,T )L2

x
 Convergence (up to subsequence) in L2loc,tL2

x , as required

• Hamilton–Jacobi–Bellman equation: same strategy does notwork immediately! Given T , if Tn ≥ T ,
‖φn‖L∞(0,T )L2

x
+ ‖φn‖L2(0,T )H10 x + ‖∂tφn‖L2(0,T )H−1

x
≤ C (T ) (‖φn(T )‖L2

x
+ 1)

‖φn‖L∞(0,T )H10 x + ‖φn‖L2(0,T )H2
x
+ ‖∂tφn‖L2(0,T )L2

x
≤ C (T ) (‖φn(T )‖H10 x + 1)
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof

‖ρn‖L∞(0,T )L2
x
+ ‖ρn‖L2(0,T )H10 x + ‖∂tρn‖L2(0,T )H−1

x
≤ C (T )‖ρ0‖L2

x

‖φn‖L∞(0,T )L2
x
+ ‖φn‖L2(0,T )H10 x + ‖∂tφn‖L2(0,T )H−1

x
≤ C (T ) (‖φn(T )‖L2

x
+ 1)

‖φn‖L∞(0,T )H10 x + ‖φn‖L2(0,T )H2
x
+ ‖∂tφn‖L2(0,T )L2

x
≤ C (T ) (‖φn(T )‖H10 x + 1)

t0
ρ0

T

φn(T )
Tn

ψn

∞

To conclude, it suffices to show that (φn)n is bounded in L∞t L2
xand L∞t H10 x
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof
{
− ∂tφ − ν∆φ + K|∇φ| − 1 = 0
φ
∣∣
∂Ω = 0, φ(T , ·) = ψ

(HJB)
Lemma
Assume that T > 0, K ∈ L∞t,x , ψ ∈ L∞ ∩ H10 , K ≥ 0, and ψ ≥ 0
and let φ be the solution of (HJB).

Then ∃C > 0 depending only on ν, Ω, ‖ψ‖L∞ , ‖ψ‖H10 s.t.0 ≤ φ ≤ C
‖φ‖L∞t H10 x ≤ C
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof

Proof of the Lemma: To prove 0 ≤ φ ≤ C :
• Comparison principle with{

− ν∆Φ− 1 = 0Φ∣∣∂Ω = 0Since 0 ≤ ψ ≤ Φ + ‖ψ‖L∞ , then 0 ≤ φ ≤ Φ + ‖ψ‖L∞
• Φ: expected time to leave Ω only with Brownian motion
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof
Proof of the Lemma (cont.): To prove ‖φ‖L∞t H10 x ≤ C :
• Derivative of the L2 norm:

− ddt
(12 w

Ω φ2) = −ν w

Ω |∇φ|2 −
w

Ω κ(ρ)|∇φ|φ + w

Ω φUsing that φ is bounded:w t2
t1

w

Ω|∇φ|2 ≤ C (1 + |t2 − t1|)
• Derivative of the H10 norm:ddt

(12 w

Ω|∇φ|2
) = ν

w

Ω(∆φ)2 − w

Ω κ(ρ)|∇φ|∆φ + w

Ω ∆φYoung + Gronwall:w

Ω|∇φ(t)|2 ≤ Cw t+1
t

w

Ω|∇φ|2 + C �
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof

Finally,
‖φn‖L∞(0,T )L2

x
+ ‖φn‖L2(0,T )H10 x + ‖∂tφn‖L2(0,T )H−1

x
≤ C (T ) (‖φn(T )‖L2

x
+ 1)

‖φn‖L∞(0,T )H10 x + ‖φn‖L2(0,T )H2
x
+ ‖∂tφn‖L2(0,T )L2

x
≤ C (T ) (‖φn(T )‖H10 x + 1)

• Boundedness of (φn)n in L2(0,T )H2
x

• Boundedness of (∂tφn)n in L2(0,T )L2
x

• Aubin–Lions lemma =⇒ compactness of (φn)n in L2(0,T )H10 x
• Convergence (up to subsequence) in L2loc,tH10 x , as required �
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonSketch of the proof
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(
‖φn(T )‖L2

x
+ 1)

‖φn‖L∞(0,T )H10 x + ‖φn‖L2(0,T )H2
x
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x
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x

• Aubin–Lions lemma =⇒ compactness of (φn)n in L2(0,T )H10 x
• Convergence (up to subsequence) in L2loc,tH10 x , as required �
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonParabolic regularization and more general initial conditionsProposition (Parabolic regularization)
Let V , F , f , g, u be C∞, V , g be L∞, u ≥ 0, be s.t.

∂tu − ∆u+ div(uV ) +∇ · F + f + g · ∇u ≤ 0
Then ∀p > 1, ∀δ > 0, ∃C > 0 (indep. of F , f , and depending on
V , g only through their L∞ norms), ∀t ≥ 0,

‖u(t + δ)‖L∞ ≤ C (‖u(t)‖Lp + ‖F‖L∞ + ‖f‖L∞)
• General formulation: can be applied both to Fokker–Planckand Hamilton–Jacobi–Bellman
• Can be adapted to non-smooth solutions by regularization
 Different regularization arguments for FP and HJB

• Allows one to consider initial condition ρ0 ∈ Lp for FP alsofor 1 < p < 2: solution becomes L∞ for t > 0
• With some extra work, one may get existence and uniquenessfor FP also for ρ0 ∈ L1 with finite entropy

Second-order local minimal-time mean field games Guilherme Mazanti



Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonAsymptotic behavior of ρ
Proposition
Any solution (ρ, φ) of the MFG system in infinite time horizon
with ρ0 ≥ 0 satisfies

ρ(t, ·) −−−−→
t→+∞ 0

exponentially in Lp for every p ∈ [1,∞]
• First case: p = 1ddt w

Ω ρ = ν
w

∂Ω ∂ρ∂n ≤ 0ddt w

Ω ρφ = −w

Ω ρ

≤ − 1
‖φ‖L∞t,x

w

Ω ρφ=⇒ w

Ω ρ(t)φ(t) ≤ e−λt wΩ ρ(0)φ(0), λ ≤ 1/‖φ‖L∞t,x=⇒ w

Ω ρ(t) ≤ Ce−λt
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonAsymptotic behavior of ρ
Proposition
Any solution (ρ, φ) of the MFG system in infinite time horizon
with ρ0 ≥ 0 satisfies

ρ(t, ·) −−−−→
t→+∞ 0

exponentially in Lp for every p ∈ [1,∞]
• First case: p = 1ddt w

Ω ρ = ν
w

∂Ω ∂ρ∂n ≤ 0ddt w

Ω ρφ = −w

Ω ρ ≤ − 1
‖φ‖L∞t,x

w

Ω ρφ=⇒ w

Ω ρ(t)φ(t) ≤ e−λt wΩ ρ(0)φ(0), λ ≤ 1/‖φ‖L∞t,x=⇒ w

Ω ρ(t) ≤ Ce−λt
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonAsymptotic behavior of ρ
• Second case: p > 1 close to 1ddt w

Ω ρ2 ≤ κ2max
ν

w

Ω ρ2
=⇒ w

Ω ρ(t)2 ≤ eγt wΩ ρ(0)2, γ = κ2max
νExponential convergence in L1 + exponential bound in L2 +interpolation=⇒ exponential convergence in Lp for p > 1 close to 1

• Third case: any p
 Parabolic regularization: ∀p > 1, ∀δ > 0, ∃C , ∀t ≥ 0,

‖ρ(t + δ)‖L∞(Ω) ≤ C‖ρ(t)‖Lp(Ω)
 Apply with p close to 1 from second case, δ = 1: ρ(t)→ 0 in

L∞ exponentially as t → ∞ �
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• Second case: p > 1 close to 1ddt w
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νExponential convergence in L1 + exponential bound in L2 +interpolation=⇒ exponential convergence in Lp for p > 1 close to 1
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 Parabolic regularization: ∀p > 1, ∀δ > 0, ∃C , ∀t ≥ 0,

‖ρ(t + δ)‖L∞(Ω) ≤ C‖ρ(t)‖Lp(Ω)
 Apply with p close to 1 from second case, δ = 1: ρ(t)→ 0 in

L∞ exponentially as t → ∞ �
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonAsymptotic behavior of φWhat happens to φ as t → ∞?{
− ∂tφ + κ(ρ)|∇φ| − ν∆φ − 1 = 0
φ
∣∣
∂Ω = 0We know that ρ → 0 exponentially fast in all LpLet Ψ be the solution of{
κ(0)|∇Ψ| − ν∆Ψ− 1 = 0Ψ∣∣∂Ω = 0Ψ(x): minimal time to reach ∂Ω when the density is 0Proposition

Any solution (ρ, φ) of the MFG system in infinite time horizon
with ρ0 ≥ 0 satisfies

φ(t, ·) −−−−→
t→+∞ Ψ

in L∞ and in H10
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonAsymptotic behavior of φ
Strategy of the proof: Let tn → +∞
• φn(t, x) = φ(t + tn, x) converges in L2loc,tH10 as n → ∞ tosome φ solution of{

− ∂tφ + κ(0)|∇φ| − ν∆φ − 1 = 0
φ
∣∣
∂Ω = 0 (HJB0)

• Consider uT , vT solutions of (HJB0) with uT (T , x) = 0,
vT (T , x) = Φ +M , where{

− ν∆Φ = 1Φ∣∣∂Ω = 0and M ≥ φ. Comparison principle =⇒0 ≤ uT (t, x) ≤ φ(t, x) ≤ vT (t, x) ≤ Φ(x) +M
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Introduction MFG with finite time horizon MFG with infinite time horizonMFG with infinite time horizonAsymptotic behavior of φ
Strategy of the proof (cont.):

0 ≤ uT (t, x) ≤ φ(t, x) ≤ vT (t, x) ≤ Φ(x) +M
• Comparison principle between uT+h and uT =⇒ (uT )T>0non-decreasing
• Comparison principle between vT+h and vT =⇒ (vT )T>0non-increasing
• =⇒ (uT )T>0 and (vT )T>0 converge a.e. as T → +∞, andtheir limit must be Ψ
• =⇒ φ = Ψ
• Parabolic regularization =⇒ convergence in L∞
• Bound of φ in L2(t1,t2)H2

x =⇒ convergence in H10 �
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