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The problem

We are interested in developing computational methods for
−φt + H(t, x ,∇φ,∇2φ) = f

(
x , ρ(x , t),

∫
Ω K (x , y)ρ(y , t)dy

)
ρt −

∑
i ∂xi (ρ∇piH) +

∑
ij ∂xixj (ρ∂Mij

H) = 0

ρ(x , 0) = ρ0(x), φ(x , 1) = g
(
x , ρ(x , 1),

∫
Ω S(x , y)ρ(y , 1)dy

)
,

I The source term, and the boundary condition of HJB model
the interactions between agents.

I The nonlocal interaction terms∫
Ω
K (x , y)ρ(y , t)dy ,

∫
Ω
S(x , y)ρ(y , 1)dy

make the problem challenging from computational
perspective. Indeed, non-singular K , S yield dense systems on
a discrete level.
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Existing numerical methods

There are number of general-purpose numerical methods that
handle the system above.

I Newton’s method [ACD10, Ach13, ACCD13]

I Semi-Lagrangian methods [CS12, CS14, CS15]

I ADMM (Brenier-Benamou) [BC15, BCS17] for potential MFG

I PDHG [BnAKS18, BnAKK+19] for potential MFG

I HJB in density-space [CLOY19] for potential MFG

I Monotone flows [AFG17]

However, these methods yield dense systems on the discrete level
when the interactions are nonlocal. Thus, the algorithms become
computationally expensive and not amenable to parallelization
techniques.
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Goal

We aim at developing computational framework that

I yields sparse systems by encoding interactions in a small
number of coefficients

I yields computational cost that is on par with algorithms for
local couplings

I suits well the Lagrangian framework

I is compatible with existing convex optimization techniques
and numerical methods when interactions are of mixed type

I extends to the non-potential setting

I provides modeling framework for nonlocal problems

The references for our method are [Nur18, NS18, LJL+20].
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The method of coefficients

For concreteness and to illustrate the ideas, we consider the
following system

−φt + H(x ,∇φ) =
∫

Ω K (x , y)ρ(y , t)dy

ρt −∇ · (ρ∇pH(x ,∇φ)) = 0

ρ(x , 0) = ρ0(x), φ(x , 1) = g(x)

Our discussion will be formal. However, one can prove rigorous
results under, for instance, the following assumptions:
Ω = Td ,H ∈ C 2, and

1

C
Id ≤ ∇2

ppH(x , p) ≤ CId , −C (1 + |p|2) ≤ ∇xH(x , p) · p

Furthermore, ρ0 ∈ L∞(Td) ∩ P(Td), g ∈ C 2(Td) and
K ∈ C 2(Td × Td).
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The method of coefficients
The key idea is to rewrite

∫
Ω K (x , y)ρ(y , t)dy in a ”Fourier”

space. More precisely, suppose that

K (x , y) =
r∑

i ,j=1

kij fi (x)fj(y),

where {fi}ri=1 ⊂ C 2(Ω) is some family of functions.
Remark. In general, K may not have this form. In such cases, we
approximate K with kernels of such form.
Key observation. For any ρ we a priori have that∫

Ω
K (x , y)ρ(y , t)dt =

r∑
i=1

ai (t)fi (x),

where

ai (t) =
r∑

j=1

kij

∫
Ω
fj(y)ρ(y , t)dy .
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The method of coefficients
−φt + H(x ,∇φ) =

∫
Ω K (x , y)ρ(y , t)dy

ρt −∇ · (ρ∇pH(x ,∇φ)) = 0

ρ(x , 0) = ρ0(x), φ(x , 1) = g(x)

Therefore, the HJB equation becomes{
−φt + H(x ,∇φ) =

∑r
i=1 ai (t)fi (x)

φ(x , 1) = g(x),

and to solve the MFG, we need to find the unknown coefficients
{ai (t)}ri=1.
Of course, given {ai (t)}ri=1, the measure ρa corresponding to these
set of coefficients must satisfy the compatibility condition

ai (t) =
r∑

j=1

kij

∫
Ω
fj(y)ρa(y , t)dy .
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The method of coefficients

Summarizing, we search for unknown coefficients {ai (t)}ri=1 such
that

ai (t) =
r∑

j=1

kij

∫
Ω
fj(y)ρa(y , t)dy ,

where ρa is the distributional solution of{
ρt −∇ · (ρ∇pH(x ,∇φa)) = 0

ρ(x , 0) = ρ0(x),

and φa is the viscosity solution of{
−φt + H(x ,∇φ) =

∑r
i=1 ai (t)fi (x)

φ(x , 1) = g(x).
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Remarks

I The coefficients {ai} contain all the information about the
interactions, and there is no need to assemble∫

Ω K (x , y)ρ(y , t)dy : we just need to keep track of {ai}.
I As we shall see below, {ai} are variational; that is,

I when ρ 7→
∫

Ω
K (x , y)ρ(y)dy is monotone, these are zeroes of

a monotone inclusion,
I when ρ 7→

∫
Ω
K (x , y)ρ(y)dy is monotone and K is symmetric,

these are solutions of a convex optimization problem.

The last two observations will be the basis for computational
methods that we develop.
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A derivative formula

Recall that we have to solve

ai (t) =
r∑

j=1

kij

∫
Ω
fj(y)ρa(y , t)dy ,

Key idea. Search for gradients! Since {ai} are our parameters, we
may try to see how φa varies when {ai} vary.

Theorem
[NS18, Theorem 2.3] The functional a 7→

∫
Ω φa(x , 0)ρ0(x)dx is

concave and everywhere Fréchet differentiable. Moreover,

δ

δai

∫
Ω
φa(x , 0)ρ0(x)dx =

∫
Ω
fi (x)ρa(x , ·)dx , 1 ≤ i ≤ r .
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Remarks

I This formula is not surprising from control and constrained
optimization perspectives. Indeed, we aim at evaluating the
gradient of a 7→

∫
Ω φa(x , 0)ρ0(x)dx where (φa, a) are coupled

via {
−φt + H(x ,∇φ) =

∑r
i=1 ai (t)fi (x)

φ(x , 1) = g(x).

The adjoint method routine is in considering the adjoint of
the linearized equation with respect to φ,{

ρt −∇ · (ρ∇pH(x ,∇φa)) = 0

ρ(x , 0) = ρ0(x),

and evaluating the gradient using the solution ρa. This
method is a workhorse for PDE control and inverse problems.
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I When a 7→
∫

Ω φa(x , 0)ρ0(x)dx is a value function; that is,∫
Ω
φa(x , 0)ρ0(x)dx = inf

ζ
J(a, ζ),

the adjoint method reduces to the envelope formula

δ

δa

∫
Ω
φa(x , 0)ρ0(x)dx = ∂aJ(a, ζa),

where ζa ∈ arg minζ J(a, ζ). The formal calculation is as
follows:

d

da
J(a, ζa) = ∂aJ(a, ζa) + ∂ζJ(a, ζa)∂aζa = ∂aJ(a, ζa)

because ∂ζJ(a, ζa) = 0 from a first-order optimality condition
for ζa.

I This previous perspective is very fruitful.
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Derivation via envelope formula

We want to derive

δ

δai

∫
Ω
φa(x , 0)ρ0(x)dx =

∫
Ω
fi (x)ρa(x , ·)dx , 1 ≤ i ≤ r .

Going from Lagrangian to Eulerian coordinates in the control
problem, we obtain∫

Ω
φa(x , 0)ρ0(x)dx = inf

ρ,v

∫ 1

0

∫
Ω

(
L(x , v) +

∑
i

ai (t)fi (x)

)
ρ(x , t)dxdt

+

∫
Ω
g(x)ρ(x , 1)dx

s.t. ρt +∇ · (ρv) = 0, ρ(x , 0) = ρ0(x)

I From here, we immediately obtain that
a 7→

∫
Ω φa(x , 0)ρ0(x)dx is concave.
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Derivation via envelope formula

Furthermore, we have that∫
Ω
φa(x , 0)ρ0(x)dx =

∫ 1

0

∫
Ω

(
L(x , va) +

∑
i

ai (t)fi (x)

)
ρa(x , t)dxdt

+

∫
Ω
g(x)ρa(x , 1)dx

where va = −∇pH(x ,∇φa), and ∂tρa −∇ · (ρa∇pH(x ,∇φa)) = 0,
ρa(x , 0) = ρ0(x).
Therefore, we apply the envelope formula and differentiate w.r.t. a
ignoring the dependence of (ρa, va) on a:

δ

δai

∫
Ω
φa(x , 0)ρ0(x)dx =

∫
Ω
fi (x)ρa(x , ·)dx , 1 ≤ i ≤ r .
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Going back to the MFG system

Denote by K = (kij)
r
i ,j=1. We can assume that K is invertible.

Theorem
[NS18, Theorem 3.1]

i. (φ, ρ) is a solution of MFG iff (φ, ρ) = (φa, ρa) for
a ∈ C ([0, 1];Rr ) such that a = K δ

δa

∫
Ω φa(x , 0)ρ0(x)dx .

ii. If K is monotone, then the problem is equivalent to finding a
zero of a monotone operator
a 7→ K−1a− δ

δa

∫
Ω φa(x , 0)ρ0(x)dx .

iii. If K is also symmetric, the problem is equivalent to the
convex program

inf
a∈C([0,1];Rr )

〈K−1a, a〉
2

−
∫

Ω
φa(x , 0)ρ0(x)dx ,

where 〈a, b〉 =
∑r

i=1

∫ 1
0 ai (t)bi (t)dt for a, b ∈ C ([0, 1];Rr ).
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Remarks

I K is monotone iff ρ 7→
∫

Ω K (x , y)ρ(y)dy is monotone. The
latter is essential for uniqueness of solutions.

I K is symmetric iff K is symmetric, that is, K (x , y) = K (y , x).

I In the monotone setting, we can apply powerful convex
optimization techniques to find a.

I Formula

δ

δai

∫
Ω
φa(x , 0)ρ0(x)dx =

∫
Ω
fi (x)ρa(x , ·)dx , 1 ≤ i ≤ r .

is critical for update rules of a. Indeed,
I start from some a and produce optimal controls va,
I apply va and produce ρa
I update a by

ai (t)← ai (t)− h
∑r

j=1(K−1)ijaj(t) + h
∫

Ω
fi (x)ρa(x , t)dx , ∀i ,

where h is the step-size.
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Remarks

I As usual, explicit descent steps can be replaced by implicit
proximal steps.

I Given a, we do not need to solve perfectly for (va, ρa) to
calculate descent directions. Instead, we can produce
approximate solutions that improve as the optimization goes
on. As we shall see, primal-dual methods achieve precisely
this.

I We can work in both Eulerian and Lagrangian settings. In the
latter case, we have that

δ

δai

∫
Ω
φa(x , 0)ρ0(x)dx =

∫
Ω
fi (za(x , t))ρ0(x , ·)dx , 1 ≤ i ≤ r ,

where za are the optimal trajectories corresponding to a; that
is, za(x , 0) = x , and ża = va(za, t) [NS18]. Therefore, we can
go after high-dimensional problems.
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Remarks

I Applying our framework, virtually any HJB solver or a
single-agent trajectory planning algorithm can be augmented
to solve an MFG problem with nonlocal couplings. Indeed,
given a, we just need to produce optimal controls va and
correct a-s, and so on.

I The stability theory for nonlocal MFG yields that once we
produce an approximation Kr (x , y) =

∑r
i ,j=1 kij fi (x)fj(y) for

K (x , y), we obtain an approximation of the original problem
that is uniform across all discretizations.

I Therefore, for a fixed r , there is no computational burden due
to nonlocal couplings when the mesh is fine.
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Remarks

I In the potential case, our formulation is the Lasry-Lions
optimal control formulation written in Fourier coordinates
[LL07]:

inf
α

∫ 1

0
F∗(α(·, t))dt −

∫
Ω
φ(x , 0)ρ0(x)dx

s.t. − φt + H(x ,∇φ) = α, φ(x , 1) = g(x),

where F(ρ) = 1
2

∫
Ω K (x , y)ρ(x)ρ(y)dxdy .

When F(ρ) =
∫

Ω F (ρ) then F∗(α) =
∫

Ω F ∗(α). For the
nonlocal case though, there is no formula for F∗ on the
continuum level unless you pass to Fourier coordinates:
α(x , t) =

∑r
i=1 ai (t)fi (x). In this case,

F∗(α) =
〈K−1a, a〉

2
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A PDHG algorithm

The value function representation of a 7→
∫

Ω φa(x , 0)ρ0(x) = J(a)
allows us to develop convex optimization methods to find a. Let us
start with the potential case: K = K>. In this case, we have

inf
a

〈K−1a, a〉
2

−
∫

Ω
φa(x , 0)ρ0(x)dx

= inf
a

sup
ρt+∇·(ρv)=0

〈K−1a, a〉
2

−
∫ 1

0

∫
Ω

(
L(x , v) +

∑
i

ai (t)fi (x)

)
ρdxdt

+

∫
Ω
g(x)ρ(x , 1)dx

= inf
a

sup
ρt+∇·m=0

〈K−1a, a〉
2

−
∫ 1

0

∫
Ω
ρL

(
x ,

m

ρ

)
+
∑
i

ai (t)fi (x)ρdxdt

+

∫
Ω
g(x)ρ(x , 1)dx
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A PDHG algorithm

= inf
φ(x ,1)=g

a

sup
ρ,m

{
〈K−1a, a〉

2
−
∫

Ω
φ(x , 0)ρ0(x)dx

−
∫

Ω

∫ 1

0
(ρφt + m · ∇φ) dxdt

−
∫

Ω

∫ 1

0
ρ

(
L

(
x ,

m

ρ

)
+

r∑
i=1

ai (t)fi (x)

)
dxdt

}
= inf
φ(x ,1)=g

a

sup
ρ,m
L(φ, a, ρ,m)

Note that (φ, a) 7→ L(φ, a, ρ,m) is convex, (ρ,m) 7→ L(φ, a, ρ,m)
is concave, and the coupling between (φ, a) and (ρ,m) is bilinear.
Thus, we can apply PDHG [CP11, CP16] to solve this problem.
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The algorithm

For step-sizes τ∇φ, τφt , τφ(0), τρ, τm > 0, and current iterates

(ak , φk , ρk ,mk , āk , φ̄k) the update rules for PDHG are

(ρk+1,mk+1) = argmax
ρ,m

L(φ̄k , āk , ρ,m)− 1
2τρ
‖ρ− ρk‖2

L2
x,t

− 1
2τm
‖m −mk‖2

L2
x,t

(ak+1, φk+1) = argmin
a,φ

L(φ, a, ρk+1,mk+1)

+ 1
2τφ(0)

‖φ(·, 0)− φk(·, 0)‖2
L2
x

+ 1
2τ∇φ
‖∇φ−∇φk‖2

L2
x,t

+ 1
2τφt
‖φt − φkt ‖2

L2
x,t

+ 1
2τa
‖a− ak‖2

L2
t

(āk+1, φ̄k+1) = 2(ak+1, φk+1)− (ak , φk)
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Correct choice of spaces

I As illustrated in [JLLO19, JL19], the choices of spaces for
variables are crucial when applying PDHG. Correct choices
render algorithms with grid-size-independent convergence
rates.

I The norm of the bilinear coupling∣∣∣∣∫
Ω

∫ 1

0
(ρφt + m · ∇φ) dxdt

∣∣∣∣ ≤ ‖(ρ,m)‖L2 · ‖φ‖H1

is finite if we choose L2 norm for (ρ,m) and H1 norm for φ.

I Therefore, to obtain a grid-independent convergence rates, we
must choose H1 norm for φ.
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The updates for (ρ,m)

First-order optimality conditions for (ρ,m) yield∇vL
(
x , mρ

)
· mρ − L

(
x , mρ

)
− ρ−ρk

τρ
= φ̄kt +

∑r
i=1 ā

k
i (t)fi (x)

∇vL
(
x , mρ

)
+ m−mk

τm
= ∇φ̄k

I Note that we obtain a decoupled one-dimensional convex
optimization problems at the grid-points. Therefore the
proximal update for (ρ,m) can de performed efficiently in
parallel.

I Direct applications of existing methods to nonlocal problems
do not possess this property.

I The price that we pay are explicit updates for a small number
of coefficients {ai}.
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The updates for (a, φ)

The first-order optimality conditions for (a, φ) yield

ak+1 = (τaK−1 + I)−1

(
ak + τa

(∫
Ω
fi (x)ρk+1(x , t)dx

)r

i=1

)
,

and a space-time elliptic equation for φ,

φtt
τφt

+ ∆φ
τ∇φ

= ρk+1
t +∇ ·mk+1 + φktt

τφt
+ ∆φk

τ∇φ
in Ω× (0, 1)

φt(x ,0)
τφt

− φ(x ,0)
τφ(0)

= ρk+1(x , 0)− ρ0(x) + φkt (x ,0)
τφt

− φk (x ,0)
τφ(0)

in Ω

φ(x , 1) = g(x) in Ω
∂φ(x ,t)
∂ν = ∂φk (x ,t)

∂ν + τ∇φm
k+1 · ν in ∂Ω× (0, 1),

that can be efficiently solved via Fast Fourier Transform (FFT).
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Kernels and bases

I Our method is flexible in the choice of {fi}: trigonometric
functions, polynomials, etc.

I Kernel methods in machine-learning provide a very suitable
framework for choosing K and {fi}

I Recall that a generic agent solves

inf
u

∫ 1

t

{
L(z(s), u(s)) +

∫
Ω
K (z(s), y)ρ(y , t)dy

}
ds + g(z(T ))

Therefore, in a monotone regime, K (x , y) is a similarity
measure between positions x and y that agents try to
minimize.

I In other words, agents avoid locations that have similar
features.
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Kernels and bases

I Kernel methods in ML utilize precisely these types of kernels.

I The simplest example of K is the inner product,
K (x , y) = x · y , which is amenable to rigorous mathematical
analysis. Natural extensions of the inner product are positive
definite symmetric (PDS) kernels.

I K : (x , y) 7→ K (x , y) is a PDS kernel if (K (x i , x j))mi ,j=1 is

symmetric positive semidefinite matrix for all {x i}mi=1 ⊂ Rd .

I Assume K is a continuous PDS. Then for arbitrary
ρk = 1

N

∑
i w

i
kδx i , k = 1, 2 we have that∫

Ω2

K (x , y)d(ρ2(x)− ρ1(x))d(ρ2(y)− ρ1(y))

=
∑
i ,j

K (x i , x j)(w i
2 − w i

1)(w j
2 − w j

1) ≥ 0,

and hence ρ 7→
∫

Ω K (x , y)ρ(y)dy is monotone.
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Kernels and bases

I A remarkable fact about PDS kernels is that they are inner
products in a suitably chosen Hilbert space

K (x , y) = 〈f (x), f (y)〉H, ∀x , y

I f (x) is called the feature vector of x . If H is separable, we
have that f (x) = (f1(x), f2(x), · · · , fn(x), · · · ), and

K (x , y) =〈f (x), f (y)〉H = 〈
∑
i

fi (x)ei ,
∑
i

fi (y)ei 〉H

=
∑
i ,j

〈ei , ej〉Hfi (x)fj(y) =
∑
i ,j

kij fi (x)fj(y).

Therefore, we obtain the representation we need!
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Examples
I Maximal spread. K (x , y) = 2

∑d
i=1 λixiyi =

∑d
i=1 fi (x)fi (y),

where fi (x) =
√

2λixi . In this case we obtain K = I, and the
a-update is trivial

ak+1
i (t) =

τa
∫

Ω fi (x)ρk+1(x , t)dx + aki (t)

τa + 1

I Gaussian repulsion. K (x , y) = µ
∏d

i=1 exp
(
− |xi−yi |

2

2σ2
i

)
. In

this case, we have that

K (x , y) =
∑

α1,α2,··· ,αd≥0

fα1,α2,··· ,αd
(x)fα1,α2,··· ,αd

(y),

where

fα1,α2,··· ,αd
(x) =

√
µe
−

∑d
i=1

|xi |
2

2σ2
i

d∏
i=1

xαi
i

σαi
i αi !

, α1, α2, · · · , αd ≥ 0.

Again, we obtain K = I.
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Examples

I Differential operators. In [ACD10] the authors consider
V [ρ] = µ(I −∆)−2ρ on Td . One has that

V [ρ] =

∫
Td

Γ(x − y)ρ(y)dy ,

where (I −∆)2Γ = µδ0. So K (x , y) = Γ(x − y), and a
suitable choice for {fi} are the trigonometric functions that
diagonalize K ; that is,

K (x , y) =
∑
α≥0

f cosα (x)f cosα (y) +
∑
α>0

f sinα (x)f sinα (y),

where
f cosα (x) =

√
γα cos(2πα · x), f sinα (x) =

√
γα sin(2πα · x), and

Γ(x) =
∑

α≥0 γα cos(2πα · x). Again, we obtain K = I.
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Non-potential case

I When K is non-symmetric we obtain a non-potential MFG. In
this case, we need to solve the monotone inclusion

0 ∈ Ta− ∂aJ(a)

where Ta = K−1a, and J(a) =
∫

Ω φa(x , 0)ρ0(x)dx .
Nevertheless, PDHG algorithms extend to monotone
inclusions [CP12].

I We just need to perform proximal steps in a as follows

ak+1 = (τaT + I)−1

(
ak + τa

(∫
Ω
fi (x)ρk+1(x , t)dx

)r

i=1

)
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Mixed couplings

I Assume that we want to solve
−φt + H(x ,∇φ) = f (ρ(x , t)) +

∫
Ω K (x , y)ρ(y , t)dy

ρt −∇ · (ρ∇pH(x ,∇φ)) = 0

ρ(x , 0) = ρ0(x), φ(x , 1) = g(x),

where f is some monotone function.

I Then, we introduce parameters {ai (t)} to handle the nonlocal
case, and α(x , t) for the local part{

−φt + H(x ,∇φ) = α(x , t) +
∑r

i=1 ai (t)fi (x)

φ(x , 1) = g(x),
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Mixed couplings

I Again, we denote by φα,a the solution of{
−φt + H(x ,∇φ) = α(x , t) +

∑r
i=1 ai (t)fi (x)

φ(x , 1) = g(x),

and by ρα,a the solution of{
ρt −∇ · (ρ∇pH(x ,∇φα,a)) = 0

ρ(x , 0) = ρ0(x),

I The derivative formulas for Jα,a =
∫

Ω φα,a(x , 0)ρ0(x)dx in this
case become

∂αJ = ρα,a, ∂ai J =

∫
Ω
fi (x)ρα,a(x , ·)dx
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Mixed couplings

I Then MFG can be written as{
a = K∂aJ

α = f (∂αJ)
⇔

{
K−1a− ∂aJ = 0

(F ∗)′(α)− ∂αJ = 0,

where F ∗ is the convex dual of F ′(ρ) = f (ρ). Therefore, we
again obtain monotone inclusions and can apply primal-dual
algorithms.

I This means that we can handle convex point-wise constraints
on ρ mixed with nonlocal couplings.

I For instance, 0 ≤ ρ ≤ 1 corresponds to

F (ρ) = 10≤ρ≤1, F ∗(α) = max{α, 0}.

Proximal update steps for α are explicit in this case.
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Extensions

I Stochastic problems

I General dynamics

I Nonlinear couplings f
(
x , ρ(x , t),

∫
Ω K (x , y)ρ(y , t)dy

)

Levon Nurbekyan
Computational methods for nonlocal mean field games with applications



Numerical experiments

For numerical experiments see

I [LJL+20]

I [NS18]

I [Nur18]
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https://arxiv.org/pdf/2004.12210.pdf
https://arxiv.org/pdf/1811.01156.pdf
https://arxiv.org/pdf/1703.03954.pdf


Thank you for your attention!
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