Computational methods for nonlocal mean field games with applications

Levon Nurbekyan

UCLA

Joint work with S. Liu, M. Jacobs, W. Li, S. Osher, and J. Saúde
The problem

We are interested in developing computational methods for

\[
\begin{align*}
-\phi_t + H(t, x, \nabla \phi, \nabla^2 \phi) &= f(x, \rho(x, t), \int_{\Omega} K(x, y)\rho(y, t)dy) \\
\rho_t - \sum_i \partial_{x_i}(\rho \nabla p_i H) + \sum_{ij} \partial_{x_ix_j}(\rho \partial_{M_{ij}} H) &= 0 \\
\rho(x, 0) &= \rho_0(x), \quad \phi(x, 1) = g(x, \rho(x, 1), \int_{\Omega} S(x, y)\rho(y, 1)dy),
\end{align*}
\]

- The source term, and the boundary condition of HJB model
- the interactions between agents.
- The nonlocal interaction terms

\[
\int_{\Omega} K(x, y)\rho(y, t)dy, \quad \int_{\Omega} S(x, y)\rho(y, 1)dy
\]

make the problem challenging from computational perspective. Indeed, non-singular K, S yield dense systems on a discrete level.
Existing numerical methods

There are number of general-purpose numerical methods that handle the system above.

▶ Newton’s method [ACD10, Ach13, ACCD13]
▶ Semi-Lagrangian methods [CS12, CS14, CS15]
▶ ADMM (Brenier-Benamou) [BC15, BCS17] for potential MFG
▶ PDHG [BnAKS18, BnAKK+19] for potential MFG
▶ HJB in density-space [CLOY19] for potential MFG
▶ Monotone flows [AFG17]

However, these methods yield dense systems on the discrete level when the interactions are nonlocal. Thus, the algorithms become computationally expensive and not amenable to parallelization techniques.
Goal

We aim at developing computational framework that

▶ yields sparse systems by encoding interactions in a small number of *coefficients*

▶ yields computational cost that is on par with algorithms for local couplings

▶ suits well the Lagrangian framework

▶ is compatible with existing convex optimization techniques and numerical methods when interactions are of mixed type

▶ extends to the non-potential setting

▶ provides modeling framework for nonlocal problems

The references for our method are [Nur18, NS18, LJL⁺20].
The method of coefficients

For concreteness and to illustrate the ideas, we consider the following system

\[
\begin{align*}
-\phi_t + H(x, \nabla \phi) & = \int_{\Omega} K(x, y) \rho(y, t) dy \\
\rho_t - \nabla \cdot (\rho \nabla_p H(x, \nabla \phi)) & = 0 \\
\rho(x, 0) & = \rho_0(x), \quad \phi(x, 1) = g(x)
\end{align*}
\]

Our discussion will be formal. However, one can prove rigorous results under, for instance, the following assumptions: \(\Omega = \mathbb{T}^d\), \(H \in C^2\), and

\[
\frac{1}{C} l_d \leq \nabla_{pp} H(x, p) \leq C l_d, \quad -C(1 + |p|^2) \leq \nabla_x H(x, p) \cdot p
\]

Furthermore, \(\rho_0 \in L^\infty(\mathbb{T}^d) \cap \mathcal{P}(\mathbb{T}^d)\), \(g \in C^2(\mathbb{T}^d)\) and \(K \in C^2(\mathbb{T}^d \times \mathbb{T}^d)\).
The method of coefficients

The key idea is to rewrite \(\int_{\Omega} K(x, y) \rho(y, t) dy \) in a "Fourier" space. More precisely, suppose that

\[
K(x, y) = \sum_{i,j=1}^{r} k_{ij} f_i(x) f_j(y),
\]

where \(\{f_i\}_{i=1}^{r} \subset C^2(\Omega) \) is some family of functions.

Remark. In general, \(K \) may not have this form. In such cases, we approximate \(K \) with kernels of such form.

Key observation. For any \(\rho \) we a priori have that

\[
\int_{\Omega} K(x, y) \rho(y, t) dt = \sum_{i=1}^{r} a_i(t) f_i(x),
\]

where

\[
a_i(t) = \sum_{j=1}^{r} k_{ij} \int_{\Omega} f_j(y) \rho(y, t) dy.
\]
The method of coefficients

\[
\begin{cases}
\phi_t - H(x, \nabla \phi) = \int_{\Omega} K(x, y) \rho(y, t) dy \\
\rho_t - \nabla \cdot (\rho \nabla_p H(x, \nabla \phi)) = 0 \\
\rho(x, 0) = \rho_0(x), \quad \phi(x, 1) = g(x)
\end{cases}
\]

Therefore, the HJB equation becomes

\[
\begin{cases}
\phi_t - H(x, \nabla \phi) = \sum_{i=1}^{r} a_i(t) f_i(x) \\
\phi(x, 1) = g(x),
\end{cases}
\]

and to solve the MFG, we need to find the unknown coefficients \(\{a_i(t)\}_{i=1}^{r} \).

Of course, given \(\{a_i(t)\}_{i=1}^{r} \), the measure \(\rho_a \) corresponding to these set of coefficients must satisfy the compatibility condition

\[
a_i(t) = \sum_{j=1}^{r} k_{ij} \int_{\Omega} f_j(y) \rho_a(y, t) dy.
\]
The method of coefficients

Summarizing, we search for unknown coefficients \(\{a_i(t)\}_{i=1}^r \) such that

\[
a_i(t) = \sum_{j=1}^r k_{ij} \int_{\Omega} f_j(y) \rho_a(y, t) dy,
\]

where \(\rho_a \) is the distributional solution of

\[
\left\{
\begin{aligned}
\rho_t - \nabla \cdot (\rho \nabla p H(x, \nabla \phi_a)) &= 0 \\
\rho(x, 0) &= \rho_0(x),
\end{aligned}
\right.
\]

and \(\phi_a \) is the viscosity solution of

\[
\left\{
\begin{aligned}
-\phi_t + H(x, \nabla \phi) &= \sum_{i=1}^r a_i(t) f_i(x) \\
\phi(x, 1) &= g(x).
\end{aligned}
\right.
\]
Remarks

- The coefficients \(\{a_i\} \) contain all the information about the interactions, and there is no need to assemble
 \[\int_{\Omega} K(x, y) \rho(y, t) dy \]: we just need to keep track of \(\{a_i\} \).
- As we shall see below, \(\{a_i\} \) are variational; that is,
 - when \(\rho \mapsto \int_{\Omega} K(x, y) \rho(y) dy \) is monotone, these are zeroes of a monotone inclusion,
 - when \(\rho \mapsto \int_{\Omega} K(x, y) \rho(y) dy \) is monotone and \(K \) is symmetric, these are solutions of a convex optimization problem.

The last two observations will be the basis for computational methods that we develop.
A derivative formula

Recall that we have to solve

$$a_i(t) = \sum_{j=1}^{r} k_{ij} \int_{\Omega} f_j(y) \rho_a(y, t) dy,$$

Key idea. Search for gradients! Since \(\{a_i\} \) are our parameters, we may try to see how \(\phi_a \) varies when \(\{a_i\} \) vary.

Theorem

[NS18, Theorem 2.3] The functional \(a \mapsto \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx \) is concave and everywhere Fréchet differentiable. Moreover,

$$\frac{\delta}{\delta a_i} \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \int_{\Omega} f_i(x) \rho_a(x, \cdot) dx, \quad 1 \leq i \leq r.$$
Remarks

This formula is not surprising from control and constrained optimization perspectives. Indeed, we aim at evaluating the gradient of \(a \mapsto \int_{\Omega} \phi_a(x, 0) \rho_0(x) \, dx \) where \((\phi_a, a)\) are coupled via

\[
\begin{align*}
-\phi_t + H(x, \nabla \phi) &= \sum_{i=1}^{r} a_i(t) f_i(x) \\
\phi(x, 1) &= g(x).
\end{align*}
\]

The adjoint method routine is in considering the adjoint of the linearized equation with respect to \(\phi \),

\[
\begin{align*}
\rho_t - \nabla \cdot (\rho \nabla_p H(x, \nabla \phi_a)) &= 0 \\
\rho(x, 0) &= \rho_0(x),
\end{align*}
\]

and evaluating the gradient using the solution \(\rho_a \). This method is a workhorse for PDE control and inverse problems.
When \(a \mapsto \int_{\Omega} \phi_a(x, 0) \rho_0(x) \, dx \) is a value function; that is,

\[
\int_{\Omega} \phi_a(x, 0) \rho_0(x) \, dx = \inf_{\zeta} J(a, \zeta),
\]

the adjoint method reduces to the envelope formula

\[
\frac{\delta}{\delta a} \int_{\Omega} \phi_a(x, 0) \rho_0(x) \, dx = \partial_a J(a, \zeta_a),
\]

where \(\zeta_a \in \arg \min_{\zeta} J(a, \zeta) \). The formal calculation is as follows:

\[
\frac{d}{da} J(a, \zeta_a) = \partial_a J(a, \zeta_a) + \partial_\zeta J(a, \zeta_a) \partial_a \zeta_a = \partial_a J(a, \zeta_a)
\]

because \(\partial_\zeta J(a, \zeta_a) = 0 \) from a first-order optimality condition for \(\zeta_a \).

This previous perspective is very fruitful.
Derivation via envelope formula

We want to derive

$$\frac{\delta}{\delta a_i} \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \int_{\Omega} f_i(x) \rho_a(x, \cdot) dx, \; 1 \leq i \leq r.$$

Going from Lagrangian to Eulerian coordinates in the control problem, we obtain

$$\int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \inf_{\rho, v} \int_0^1 \int_{\Omega} \left(L(x, v) + \sum_i a_i(t)f_i(x) \right) \rho(x, t) dx dt$$

$$+ \int_{\Omega} g(x) \rho(x, 1) dx$$

s.t. \(\rho_t + \nabla \cdot (\rho v) = 0, \; \rho(x, 0) = \rho_0(x) \)

\[\Rightarrow\] From here, we immediately obtain that

\(a \mapsto \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx \) is concave.
Derivation via envelope formula

Furthermore, we have that

\[
\int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \int_0^1 \int_{\Omega} \left(L(x, v_a) + \sum_i a_i(t) f_i(x) \right) \rho_a(x, t) dx dt \\
+ \int_{\Omega} g(x) \rho_a(x, 1) dx
\]

where \(v_a = -\nabla p H(x, \nabla \phi_a) \), and \(\partial_t \rho_a - \nabla \cdot (\rho_a \nabla p H(x, \nabla \phi_a)) = 0 \), \(\rho_a(x, 0) = \rho_0(x) \).

Therefore, we apply the envelope formula and differentiate w.r.t. \(a \) ignoring the dependence of \((\rho_a, v_a)\) on \(a \):

\[
\frac{\delta}{\delta a_i} \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \int_{\Omega} f_i(x) \rho_a(x, \cdot) dx, \; 1 \leq i \leq r.
\]
Going back to the MFG system

Denote by $\mathbf{K} = (k_{ij})_{i,j=1}^r$. We can assume that \mathbf{K} is invertible.

Theorem

[NS18, Theorem 3.1]

i. (ϕ, ρ) is a solution of MFG iff $(\phi, \rho) = (\phi_a, \rho_a)$ for $a \in C([0, 1]; \mathbb{R}^r)$ such that $a = \mathbf{K} \frac{\delta}{\delta a} \int_\Omega \phi_a(x, 0) \rho_0(x) dx$.

ii. If \mathbf{K} is monotone, then the problem is equivalent to finding a zero of a monotone operator $a \mapsto \mathbf{K}^{-1} a - \frac{\delta}{\delta a} \int_\Omega \phi_a(x, 0) \rho_0(x) dx$.

iii. If \mathbf{K} is also symmetric, the problem is equivalent to the convex program

$$\inf_{a \in C([0,1]; \mathbb{R}^r)} \left\{ \frac{\langle \mathbf{K}^{-1} a, a \rangle}{2} - \int_\Omega \phi_a(x, 0) \rho_0(x) dx, \right\}$$

where $\langle a, b \rangle = \sum_{i=1}^r \int_0^1 a_i(t) b_i(t) dt$ for $a, b \in C([0, 1]; \mathbb{R}^r)$.
Remarks

- **K** is monotone iff \(\rho \mapsto \int_{\Omega} K(x, y) \rho(y) dy \) is monotone. The latter is essential for uniqueness of solutions.
- **K** is symmetric iff \(K \) is symmetric, that is, \(K(x, y) = K(y, x) \).
- In the monotone setting, we can apply powerful convex optimization techniques to find \(a \).
- Formula

 \[
 \frac{\delta}{\delta a_i} \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \int_{\Omega} f_i(x) \rho_a(x, \cdot) dx, \ 1 \leq i \leq r.
 \]

 is critical for update rules of \(a \). Indeed,

 - start from some \(a \) and produce optimal controls \(v_a \),
 - apply \(v_a \) and produce \(\rho_a \)
 - update \(a \) by

 \[
 a_i(t) \leftarrow a_i(t) - h \sum_{j=1}^{r} (K^{-1})_{ij} a_j(t) + h \int_{\Omega} f_i(x) \rho_a(x, t) dx, \ \forall i,
 \]

 where \(h \) is the step-size.
Remarks

- As usual, explicit descent steps can be replaced by implicit proximal steps.
- Given a, we do not need to solve perfectly for (v_a, ρ_a) to calculate descent directions. Instead, we can produce approximate solutions that improve as the optimization goes on. As we shall see, primal-dual methods achieve precisely this.
- We can work in both Eulerian and Lagrangian settings. In the latter case, we have that

$$\frac{\delta}{\delta a_i} \int_{\Omega} \phi_a(x, 0) \rho_0(x) dx = \int_{\Omega} f_i(z_a(x, t)) \rho_0(x, \cdot) dx, \quad 1 \leq i \leq r,$$

where z_a are the optimal trajectories corresponding to a; that is, $z_a(x, 0) = x$, and $\dot{z}_a = v_a(z_a, t)$ [NS18]. Therefore, we can go after high-dimensional problems.
Applying our framework, virtually any HJB solver or a single-agent trajectory planning algorithm can be augmented to solve an MFG problem with nonlocal couplings. Indeed, given a, we just need to produce optimal controls v_a and correct a-s, and so on.

The stability theory for nonlocal MFG yields that once we produce an approximation $K_r(x, y) = \sum_{i,j=1}^r k_{ij} f_i(x) f_j(y)$ for $K(x, y)$, we obtain an approximation of the original problem that is uniform across all discretizations.

Therefore, for a fixed r, there is no computational burden due to nonlocal couplings when the mesh is fine.
Remarks

- In the potential case, our formulation is the Lasry-Lions optimal control formulation written in Fourier coordinates [LL07]:

\[
\inf_{\alpha} \int_0^1 \mathcal{F}^*(\alpha(\cdot, t)) \, dt - \int_{\Omega} \phi(x, 0) \rho_0(x) \, dx
\]

s.t. \(- \phi_t + H(x, \nabla \phi) = \alpha, \quad \phi(x, 1) = g(x)\),

where \(\mathcal{F}(\rho) = \frac{1}{2} \int_{\Omega} K(x, y) \rho(x) \rho(y) \, dx \, dy\).

When \(\mathcal{F}(\rho) = \int_{\Omega} F(\rho)\) then \(\mathcal{F}^*(\alpha) = \int_{\Omega} F^*(\alpha)\). For the nonlocal case though, there is no formula for \(\mathcal{F}^*\) on the continuum level unless you pass to Fourier coordinates: \(\alpha(x, t) = \sum_{i=1}^{r} a_i(t) f_i(x)\). In this case,

\[
\mathcal{F}^*(\alpha) = \frac{\langle K^{-1}a, a \rangle}{2}
\]
A PDHG algorithm

The value function representation of \(a \mapsto \int_{\Omega} \phi_a(x, 0)\rho_0(x) = J(a) \) allows us to develop convex optimization methods to find \(a \). Let us start with the potential case: \(K = K^\top \). In this case, we have

\[
\inf_a \frac{\langle K^{-1}a, a \rangle}{2} - \int_{\Omega} \phi_a(x, 0)\rho_0(x)dx
\]

\[
= \inf_a \sup_{\rho_t + \nabla \cdot (\rho v) = 0} \frac{\langle K^{-1}a, a \rangle}{2} - \int_0^1 \int_{\Omega} \left(L(x, v) + \sum_i a_i(t)f_i(x) \right) \rho dxdt
\]

\[
+ \int_{\Omega} g(x)\rho(x, 1)dx
\]

\[
= \inf_a \sup_{\rho_t + \nabla \cdot m = 0} \frac{\langle K^{-1}a, a \rangle}{2} - \int_0^1 \int_{\Omega} \rho L \left(x, \frac{m}{\rho} \right) + \sum_i a_i(t)f_i(x)\rho dxdt
\]

\[
+ \int_{\Omega} g(x)\rho(x, 1)dx
\]
A PDHG algorithm

\[
\begin{align*}
\inf_{\phi(x,1)=g} & \sup_{\rho, m} \left\{ \frac{\langle K^{-1} a, a \rangle}{2} - \int_{\Omega} \phi(x, 0) \rho_0(x) dx \\
& - \int_{\Omega} \int_{0}^{1} (\rho \phi_t + m \cdot \nabla \phi) \, dxdt \\
& - \int_{\Omega} \int_{0}^{1} \rho \left(L \left(x, \frac{m}{\rho} \right) + \sum_{i=1}^{r} a_i(t) f_i(x) \right) \, dxdt \right\} \\
= & \inf_{\phi(x,1)=g} \sup_{\rho, m} \mathcal{L}(\phi, a, \rho, m)
\end{align*}
\]

Note that \((\phi, a) \mapsto \mathcal{L}(\phi, a, \rho, m)\) is convex, \((\rho, m) \mapsto \mathcal{L}(\phi, a, \rho, m)\) is concave, and the coupling between \((\phi, a)\) and \((\rho, m)\) is bilinear. Thus, we can apply PDHG [CP11, CP16] to solve this problem.
The algorithm

For step-sizes $\tau \phi, \tau \phi_t, \tau \phi(0), \tau \rho, \tau m > 0$, and current iterates $(a^k, \phi^k, \rho^k, m^k, \bar{a}^k, \bar{\phi}^k)$ the update rules for PDHG are

$$
\begin{align*}
 (\rho^{k+1}, m^{k+1}) &= \operatorname{argmax}_{\rho, m} \mathcal{L}(\bar{\phi}^k, \bar{a}^k, \rho, m) - \frac{1}{2\tau\rho} \| \rho - \rho^k \|^2_{L^2_{x,t}} \\
 &\quad - \frac{1}{2\tau m} \| m - m^k \|^2_{L^2_{x,t}} \\

 (a^{k+1}, \phi^{k+1}) &= \operatorname{argmin}_{a, \phi} \mathcal{L}(\phi, a, \rho^{k+1}, m^{k+1}) \\
 &\quad + \frac{1}{2\tau\phi(0)} \| \phi(\cdot, 0) - \phi^k(\cdot, 0) \|^2_{L^2_x} + \frac{1}{2\tau\phi_t} \| \nabla \phi - \nabla \phi^k \|^2_{L^2_{x,t}} \\
 &\quad + \frac{1}{2\tau\phi_t} \| \phi_t - \phi^k_t \|^2_{L^2_{x,t}} + \frac{1}{2\tau a} \| a - a^k \|^2_{L^2_t} \\

 (\bar{a}^{k+1}, \bar{\phi}^{k+1}) &= 2(a^{k+1}, \phi^{k+1}) - (a^k, \phi^k)
\end{align*}
$$
Correct choice of spaces

- As illustrated in [JLLO19, JL19], the choices of spaces for variables are crucial when applying PDHG. Correct choices render algorithms with grid-size-independent convergence rates.

- The norm of the bilinear coupling

\[\left| \int_{\Omega} \int_{0}^{1} (\rho \phi_t + m \cdot \nabla \phi) \, dx \, dt \right| \leq (\rho, m)_{L^2} \cdot \| \phi \|_{H^1} \]

is finite if we choose \(L^2 \) norm for \((\rho, m)\) and \(H^1 \) norm for \(\phi \).

- Therefore, to obtain a grid-independent convergence rates, we must choose \(H^1 \) norm for \(\phi \).
The updates for \((\rho, m)\)

First-order optimality conditions for \((\rho, m)\) yield

\[
\begin{aligned}
\nabla_v L \left(x, \frac{m}{\rho} \right) \cdot \frac{m}{\rho} &- L \left(x, \frac{m}{\rho} \right) - \frac{\rho - \rho^k}{\tau_\rho} = \bar{\phi}_t^k + \sum_{i=1}^{r} \bar{a}_i^k(t)f_i(x) \\
\nabla_v L \left(x, \frac{m}{\rho} \right) + \frac{m - m^k}{\tau_m} &= \nabla \bar{\phi}_k^k
\end{aligned}
\]

- Note that we obtain a decoupled one-dimensional convex optimization problems at the grid-points. Therefore the proximal update for \((\rho, m)\) can be performed efficiently in parallel.

- Direct applications of existing methods to nonlocal problems do not possess this property.

- The price that we pay are explicit updates for a small number of coefficients \({a_i}\).
The updates for \((a, \phi)\)

The first-order optimality conditions for \((a, \phi)\) yield

\[
a^{k+1} = (\tau_a K^{-1} + I)^{-1} \left(a^k + \tau_a \left(\int_{\Omega} f_i(x) \rho^{k+1}(x, t) dx \right)_{i=1}^r \right),
\]

and a space-time elliptic equation for \(\phi\),

\[
\begin{aligned}
\frac{\phi_{tt}}{\tau_{\phi_t}} + \frac{\Delta \phi}{\tau_{\nabla \phi}} &= \rho_t^{k+1} + \nabla \cdot m^{k+1} + \frac{\phi_{tt}}{\tau_{\phi_t}} + \frac{\Delta \phi^k}{\tau_{\nabla \phi}} \quad \text{in} \quad \Omega \times (0, 1) \\
\frac{\phi_t(x, 0)}{\tau_{\phi_t}} - \frac{\phi(x, 0)}{\tau_{\phi(0)}} &= \rho^{k+1}(x, 0) - \rho_0(x) + \frac{\phi_t^k(x, 0)}{\tau_{\phi_t}} - \frac{\phi^k(x, 0)}{\tau_{\phi(0)}} \quad \text{in} \quad \Omega \\
\phi(x, 1) &= g(x) \quad \text{in} \quad \Omega \\
\frac{\partial \phi(x, t)}{\partial \nu} &= \frac{\partial \phi^k(x, t)}{\partial \nu} + \tau_{\nabla \phi} m^{k+1} \cdot \nu \quad \text{in} \quad \partial \Omega \times (0, 1),
\end{aligned}
\]

that can be efficiently solved via Fast Fourier Transform (FFT).
Kernels and bases

- Our method is flexible in the choice of \(\{f_i\} \): trigonometric functions, polynomials, etc.

- Kernel methods in machine-learning provide a very suitable framework for choosing \(K \) and \(\{f_i\} \)

- Recall that a generic agent solves

\[
\inf_u \int_t^1 \left\{ L(z(s), u(s)) + \int_\Omega K(z(s), y) \rho(y, t) dy \right\} ds + g(z(T))
\]

Therefore, in a monotone regime, \(K(x, y) \) is a similarity measure between positions \(x \) and \(y \) that agents try to minimize.

- In other words, agents avoid locations that have similar features.
Kernels and bases

Kernel methods in ML utilize precisely these types of kernels.

The simplest example of K is the inner product, $K(x, y) = x \cdot y$, which is amenable to rigorous mathematical analysis. Natural extensions of the inner product are positive definite symmetric (PDS) kernels.

$K : (x, y) \mapsto K(x, y)$ is a PDS kernel if $(K(x^i, x^j))_{i,j=1}^m$ is symmetric positive semidefinite matrix for all $\{x^i\}_{i=1}^m \subset \mathbb{R}^d$.

Assume K is a continuous PDS. Then for arbitrary $\rho_k = \frac{1}{N} \sum_i w_k^i \delta_{x^i}$, $k = 1, 2$ we have that

$$\int_{\Omega^2} K(x, y)d(\rho_2(x) - \rho_1(x))d(\rho_2(y) - \rho_1(y))$$

$$= \sum_{i,j} K(x^i, x^j)(w_2^i - w_1^i)(w_2^j - w_1^j) \geq 0,$$

and hence $\rho \mapsto \int_{\Omega} K(x, y)\rho(y)dy$ is monotone.
Kernels and bases

- A remarkable fact about PDS kernels is that they are inner products in a suitably chosen Hilbert space

\[K(x, y) = \langle f(x), f(y) \rangle_H, \quad \forall x, y \]

- \(f(x) \) is called the feature vector of \(x \). If \(H \) is separable, we have that \(f(x) = (f_1(x), f_2(x), \cdots, f_n(x), \cdots) \), and

\[
K(x, y) = \langle f(x), f(y) \rangle_H = \langle \sum_i f_i(x) e_i, \sum_i f_i(y) e_i \rangle_H \\
= \sum_{i,j} \langle e_i, e_j \rangle_H f_i(x) f_j(y) = \sum_{i,j} k_{ij} f_i(x) f_j(y).
\]

Therefore, we obtain the representation we need!
Examples

- **Maximal spread.** $K(x, y) = 2 \sum_{i=1}^{d} \lambda_i x_i y_i = \sum_{i=1}^{d} f_i(x) f_i(y)$, where $f_i(x) = \sqrt{2\lambda_i} x_i$. In this case we obtain $K = I$, and the a-update is trivial

$$a_i^{k+1}(t) = \frac{\tau_a \int_\Omega f_i(x) \rho^{k+1}(x, t) dx + a_i^k(t)}{\tau_a + 1}$$

- **Gaussian repulsion.** $K(x, y) = \mu \prod_{i=1}^{d} \exp \left(-\frac{|x_i - y_i|^2}{2\sigma_i^2} \right)$. In this case, we have that

$$K(x, y) = \sum_{\alpha_1, \alpha_2, \ldots, \alpha_d \geq 0} f_{\alpha_1, \alpha_2, \ldots, \alpha_d}(x) f_{\alpha_1, \alpha_2, \ldots, \alpha_d}(y),$$

where

$$f_{\alpha_1, \alpha_2, \ldots, \alpha_d}(x) = \sqrt{\mu} e^{-\sum_{i=1}^{d} \frac{|x_i|^2}{2\sigma_i^2}} \prod_{i=1}^{d} \frac{x_i^{\alpha_i}}{\sigma_i^{\alpha_i} \alpha_i!}, \quad \alpha_1, \alpha_2, \ldots, \alpha_d \geq 0.$$
Examples

- **Differential operators.** In [ACD10] the authors consider
 \[V[\rho] = \mu (I - \Delta)^{-2} \rho \] on \(\mathbb{T}^d \). One has that

 \[V[\rho] = \int_{\mathbb{T}^d} \Gamma(x - y) \rho(y) dy, \]

 where \((I - \Delta)^2 \Gamma = \mu \delta_0\). So \(K(x, y) = \Gamma(x - y) \), and a suitable choice for \(\{f_i\} \) are the trigonometric functions that diagonalize \(K \); that is,

 \[K(x, y) = \sum_{\alpha \geq 0} f_{\alpha}^{\cos}(x) f_{\alpha}^{\cos}(y) + \sum_{\alpha > 0} f_{\alpha}^{\sin}(x) f_{\alpha}^{\sin}(y), \]

 where

 \[f_{\alpha}^{\cos}(x) = \sqrt{\gamma_{\alpha}} \cos(2\pi \alpha \cdot x), \quad f_{\alpha}^{\sin}(x) = \sqrt{\gamma_{\alpha}} \sin(2\pi \alpha \cdot x), \]

 and

 \[\Gamma(x) = \sum_{\alpha \geq 0} \gamma_{\alpha} \cos(2\pi \alpha \cdot x). \] Again, we obtain \(K = I \).
Non-potential case

- When K is non-symmetric we obtain a non-potential MFG. In this case, we need to solve the monotone inclusion

$$0 \in Ta - \partial_a J(a)$$

where $Ta = K^{-1}a$, and $J(a) = \int_{\Omega} \phi_a(x, 0)\rho_0(x)dx$. Nevertheless, PDHG algorithms extend to monotone inclusions [CP12].

- We just need to perform proximal steps in a as follows

$$a^{k+1} = (\tau_a T + I)^{-1} \left(a^k + \tau_a \left(\int_{\Omega} f_i(x)\rho^{k+1}(x, t)dx \right)_{i=1}^r \right)$$
Mixed couplings

Assume that we want to solve

\[
\begin{cases}
-\phi_t + H(x, \nabla \phi) = f(\rho(x, t)) + \int_\Omega K(x, y)\rho(y, t)dy \\
\rho_t - \nabla \cdot (\rho \nabla p H(x, \nabla \phi)) = 0 \\
\rho(x, 0) = \rho_0(x), \ \phi(x, 1) = g(x),
\end{cases}
\]

where \(f\) is some monotone function.

Then, we introduce parameters \(\{a_i(t)\}\) to handle the nonlocal case, and \(\alpha(x, t)\) for the local part

\[
\begin{cases}
-\phi_t + H(x, \nabla \phi) = \alpha(x, t) + \sum_{i=1}^r a_i(t)f_i(x) \\
\phi(x, 1) = g(x),
\end{cases}
\]
Mixed couplings

Again, we denote by $\phi_{\alpha, a}$ the solution of

$$
\begin{cases}
-\phi_t + H(x, \nabla \phi) = \alpha(x, t) + \sum_{i=1}^r a_i(t)f_i(x) \\
\phi(x, 1) = g(x),
\end{cases}
$$

and by $\rho_{\alpha, a}$ the solution of

$$
\begin{cases}
\rho_t - \nabla \cdot (\rho \nabla_p H(x, \nabla \phi_{\alpha, a})) = 0 \\
\rho(x, 0) = \rho_0(x),
\end{cases}
$$

The derivative formulas for $J_{\alpha, a} = \int_{\Omega} \phi_{\alpha, a}(x, 0)\rho_0(x) \, dx$ in this case become

$$
\begin{align*}
\partial_\alpha J &= \rho_{\alpha, a}, \\
\partial_{a_i} J &= \int_{\Omega} f_i(x)\rho_{\alpha, a}(x, \cdot) \, dx.
\end{align*}
$$
Mixed couplings

Then MFG can be written as

\[
\begin{align*}
 a &= K \partial_a J \\
 \alpha &= f(\partial_\alpha J)
\end{align*}
\]

\[\iff\]

\[
\begin{align*}
 K^{-1}a - \partial_a J &= 0 \\
 (F^*)'(\alpha) - \partial_\alpha J &= 0,
\end{align*}
\]

where \(F^*\) is the convex dual of \(F'(\rho) = f(\rho)\). Therefore, we again obtain monotone inclusions and can apply primal-dual algorithms.

This means that we can handle convex point-wise constraints on \(\rho\) mixed with nonlocal couplings.

For instance, \(0 \leq \rho \leq 1\) corresponds to

\[
F(\rho) = 1_{0 \leq \rho \leq 1}, \quad F^*(\alpha) = \max\{\alpha, 0\}.
\]

Proximal update steps for \(\alpha\) are explicit in this case.
Extensions

- Stochastic problems
- General dynamics
- Nonlinear couplings \(f(x, \rho(x, t), \int_{\Omega} K(x, y)\rho(y, t)\,dy) \)
Numerical experiments

For numerical experiments see

- [LJL⁺20]
- [NS18]
- [Nur18]
Thank you for your attention!

J.-D. Benamou and G. Carlier.
Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations.

J.-D. Benamou, G. Carlier, and F. Santambrogio.
Variational mean field games.

On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings.

L. M. Briceño Arias, D. Kalise, and F. J. Silva.
Proximal methods for stationary mean field games with local couplings.

Yat Tin Chow, Wuchen Li, Stanley Osher, and Wotao Yin.
Algorithm for Hamilton–Jacobi equations in density space via a generalized Hopf formula.

Antonin Chambolle and Thomas Pock.
A first-order primal-dual algorithm for convex problems with applications to imaging.

Patrick L. Combettes and Jean-Christophe Pesquet.
Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators.

Antonin Chambolle and Thomas Pock.
On the ergodic convergence rates of a first-order primal-dual algorithm.

Fabio Camilli and Francisco Silva.
A semi-discrete approximation for a first order mean field game problem.

E. Carlini and F. J. Silva.
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.

Elisabetta Carlini and Francisco J. Silva.
A semi-Lagrangian scheme for a degenerate second order mean field game system.

M. Jacobs and F. Léger.
A fast approach to optimal transport: the back-and-forth method.

Matt Jacobs, Flavien Léger, Wuchen Li, and Stanley Osher. Solving large-scale optimization problems with a convergence rate independent of grid size.

Levon Nurbekyan and J. Saúde.
Fourier approximation methods for first-order nonlocal mean-field games.

Levon Nurbekyan.
One-dimensional, non-local, first-order stationary mean-field games with congestion: a Fourier approach.