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Motivation: Machine learning

• Label dataset: Sm = {(x1, y1), . . . , (xm, ym)}
• Hypothesis class of functions mapping data x to labels y :

H = {f (x ,w) : w ∈ Rn}

• Loss function defined on labels: L(f (xi ,w), yi )
• Empirical Loss Minimization problem:

min
w∈Rn

f (w) =
1
m

m∑
i=1

L(f (xi ,w), yi ).
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Optimization for machine learning: SGD

• Why is stochastic gradient important for machine learning? Evaluate full
Loss (and its gradient) on all m data points can be too costly.

• Define random minibatch I ⊂ {1, . . . ,m},

fI (w) =
1
|I |
∑
i∈I

L(f (xi ,w), yi ).

• Stochastic Gradient Descent corresponds to

wk+1 = wk − hk∇w fIk (w
k), Ik random and hk learning rate
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Stochastic Approximation

• The minibatch stochastic gradient is harder to analyze (future work)
• Instead make the standart Stochastic Approximation assumption: Let ĝ be
the stochastic gradient of f

ĝ(x , ξ) = ∇f (x) + e(x , ξ),

where the noise e satisfies

E[e] = 0 and Var(e) = σ2.

• In particular,

E[ĝ(x , ξ)] = ∇f (x) and E[|ĝ(x , ξ)|2] = |∇f (x)|2 + σ2.
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Strong convexity and L-smoothness

Let f be proper convex function, x∗ = argminxf(x) and f ∗ = f (x∗).
• f is L-smooth: ∀x , y ∈ Rn

f (x)− f (y) +∇f (y) · (y − x) 6
L

2
|x − y |2

• f is µ-strongly convex: ∀x , y ∈ Rn

f (x)− f (y) +∇f (y) · (y − x) >
µ

2
|x − y |2

Cf :=
L
µ : condition number of f .

f quadratic: the constants are the smallest and largest eigenvalues of the Hessian
of f .
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Gradient descent

Goal: minimize convex function f with gradient oracle.

• Continuous interpretation:
ẋ = −∇f (x)

• Algorithm:
xk+1 = xk − h∇f (xk)

• Convergence: Lyapunov analysis, h = 1
L ,

f (xk)− f ∗ 6
L

2k
|x0 − x∗|2 (convex)

and

f (xk)− f ∗ 6
(
1− µ

L

)k
(f (x0)− f ∗) (strongly convex)
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Stochastic Gradient descent

Goal: minimize convex function f with stochastic gradient oracle.

Algorithm: Stochastic Gradient descent

• Variable learning rate: e.g: hk = c
k+k0

• stochastic variance: σ2

xk+1 = xk − hk ĝ(xk),

where ĝ(x) = ∇f (x) + e(x , ξ) with

E[e] = 0 and Var(e) = σ2.
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Convergence

From Bottou, Curtis, Nocedal (2016),

E[f (xk)− f ∗] 6 C1(1− µh)k + C2hσ
2

Need: h↘ 0 or σ2 ↘ 0.

• Noise reduction techniques:

I Variance reduction: SVRG (Jonhson, Zhang, 2013), SAG (Schmidt, Le Roux,
Bach, 2013), SAGA (Defazio, Bach, Lacoste-Julien, 2014),...

Does not seem to help in deep learning.

I Strong Growth Condition: Assume
E[|ĝ(x , ξ)|2] 6 ρ|∇f (x)|2

Strong assumption: can exactly fit the data!

• Variable learning rate:

I Convergence in average: Polyak, Juditsky (1992), Rakhlin, Shamir, Sridharan
(2011), Lacoste-Julien, Schmidt, Bach (2012), Shamir, Zhang (2013),...

Optimal rates: O
(

1√
k

)
(convex), O

( 1
k

)
(strongly convex)
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E[|ĝ(x , ξ)|2] 6 ρ|∇f (x)|2

Strong assumption: can exactly fit the data!

• Variable learning rate:

I Convergence in average: Polyak, Juditsky (1992), Rakhlin, Shamir, Sridharan
(2011), Lacoste-Julien, Schmidt, Bach (2012), Shamir, Zhang (2013),...

Optimal rates: O
(

1√
k

)
(convex), O

( 1
k

)
(strongly convex)

M. Laborde IPAM, April 2020 10 / 43



Convergence

From Bottou, Curtis, Nocedal (2016),

E[f (xk)− f ∗] 6 C1(1− µh)k + C2hσ
2

Need: h↘ 0 or σ2 ↘ 0.

• Noise reduction techniques:

I Variance reduction: SVRG (Jonhson, Zhang, 2013), SAG (Schmidt, Le Roux,
Bach, 2013), SAGA (Defazio, Bach, Lacoste-Julien, 2014),...

Does not seem to help in deep learning.

I Strong Growth Condition: Assume
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Variable learning rate: Convergence for the last iterate

Define G 2 bound on stochastic gradient: E[ĝ2] ≤ G 2

Remark: G 2 = L2D2 + σ2 where D is the diameter of the domain

• Strongly convex case: Learning rate hk = O
( 1
k

)
I Previous results: Nemirovski, Juditsky, Lan, and Shapiro (2009), Shamir,

Zhang (2013), Jain, Kakade, Netrapalli, Sidford (2018): optimal rate O
( 1
k

)
with constants depending on G 2, D and µ.

I Our result: O
( 1
k

)
rate with constants independent of the L-smoothness bound

of the gradient (depends only on σ2 and µ).
• Convex case:

I Shamir, Zhang (2013): optimal rate order: log(k)√
k

with a rate constant that

depends on G 2 and D. Learning rate: hk = O
(

1√
k

)
.

I Jain, Nagaraj, Netrapalli (2019) remove the log factor assuming that the
number of iterations is decided in advance.

I Our result: O(log(k)/
√
k) rate for the last iterate, with a constant which

depends on σ2, but independent of the L-smoothness. New learning rate
schedule
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Nesterov’s accelerated gradient descent
Nesterov’s accelerated gradient descent

https://distill.pub/2017/momentum/

Accelerated gradient descent: same budget, faster convergence.

Gradient descent.

xk+1 = xk � hrf(xk)
<latexit sha1_base64="nISIooKD8vOJ72lwbR05SPNnr5c=">AAACCHicbVC7SgNBFJ2Nrxhfq5YWjgYhIobdWGgjBG0sI5gHZMMyO5lNhp2dXWZmJWFJaWPjh9hYKGKbT7DzQ+ydPApNPHDhcM693HuPFzMqlWV9GZmFxaXllexqbm19Y3PL3N6pySgRmFRxxCLR8JAkjHJSVVQx0ogFQaHHSN0Lrkd+/Z4ISSN+p/oxaYWow6lPMVJacs39npsGJ/YAXsKeG8BT2IUORx5D0C9o4dg181bRGgPOE3tK8uUDp/A9fHIqrvnptCOchIQrzJCUTbsUq1aKhKKYkUHOSSSJEQ5QhzQ15SgkspWOHxnAI620oR8JXVzBsfp7IkWhlP3Q050hUl05643E/7xmovyLVkp5nCjC8WSRnzCoIjhKBbapIFixviYIC6pvhbiLBMJKZ5fTIdizL8+TWqlonxVLtzqNKzBBFuyBQ1AANjgHZXADKqAKMHgAz+AVvBmPxovxbnxMWjPGdGYX/IEx/AEWyJsn</latexit>

Remark: two main A-GD algorithms, correspond to convex and strongly convex case.
We focus on one, convex case, to simplify presentation.  Strongly convex case is also covered.

Heuristic: momentum term remembers old gradients, 
overshoots instead of getting stuck.  

Momentum term remembers old gradients, overshoots instead of getting stuck.

Remark: two main A-GD algorithms, correspond to convex and strongly convex
case. We focus on convex case, to simplify presentation. Strongly convex case is
also covered.
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ODE interpretation of Nesterov’s method

• Nesterov’s method for a convex, L-smooth function, f , [Nesterov, 2013]
xk+1 = yk −

1
L
∇f (yk)

yk+1 = xk+1 +
k

k + 3
(xk+1 − xk)

(C-Nest)

• Connection between (C-Nest) and

ẍ +
3
t
ẋ +∇f (x) = 0, (A-ODE)

[Su, Boyd, Candés, 2014].
• (A-ODE) can be written as the first order system

ẋ =
2
t
(v − x)

v̇ = − t

2
∇f (x).

(S-A-ODE)

Connection: finite differences in time, and evaluate gradient at y convex
combination between x and v .
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Convergence of Nesterov’s algorithm

• Lyapunov analysis: Su, Boyd, Candès (2014), Wibisono, Wilson, Jordan
(2016), Wilson, Recht, Jordan (2016), Wilson, Mackey, Wibisono (2019),...

• Define
E ac,c(t, x , v) = t2(f (x)− f ∗) + 2|v − x∗|2

Then,

f (x)− f ∗ 6
2
t2
|v0 − x∗|2,

and for h = 1√
L
, tk = k+2√

L
,

f (xk)− f ∗ 6
2L

(k + 1)2
|v0 − x∗|2
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Heuristic accelerated SGD

Use standard Nesterov algorithm for
Neural Network, with
• Stochastic gradient,
• constant learning rate α = 1

L ,
• momentum β = 0.9

Scheduled learning rate for SGD,
converges at 1/k rate.

• Works well in practice: fast initial drop, then noise takes over.
• What could you prove? Vanilla SGD converges at rate 1/k . Have lower
bounds. Only room for improvement is the rate constant.
Our goal: better understand this algorithm to build an effective stochastic

version
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Accelerated SGD?

• Go back to ODE for Nesterov (there is more than one)

• Redo convergence rate, first in continuous, then in discrete time (Lyapunov
analysis).

• Find the dissipation of the Lyapunov analysis for stochastic version

• Prove the convergence rate

• Use proof to tune the learning rate schedule, for optimal convergence rate

• Determine if we get a practical algorithm.

• There are two algorithms: convex version, and strongly convex version.
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Table of contents
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Another ODE for Nesterov’s Method

Our starting point is a perturbation of (S-A-ODE)
ẋ =

2
t
(v − x)− 1√

L
∇f (x)

v̇ = − t

2
∇f (x),

(1st-ODE)

The system (1st-ODE) is equivalent to the following ODE

ẍ +
3
t
ẋ +∇f (x) = − 1√

L

(
D2f (x) · ẋ +

1
t
∇f (x)

)
(H-ODE)

which has an additional Hessian damping term with coefficient 1/
√
L.

• 2nd order ODE with Hessian damping: Alvarez, Attouch, Bolte, Redont
(2002), Attouch, Peyrouquet, Redont (2016)

• Shi, Du, Jordan, Su (2018) introduced a family of high resolution second
order ODEs which also lead to Nesterov’s method: (H-ODE), special case
s = 1√

L
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Advantages of (1st-ODE)

• First order system (no Hessian)

• The system (1st-ODE) can be discretized to recover Nesterov’s method using
an explicit discretization with a constant time step h = 1√

L

• Decrease the same Lyapunov function as (S-A-ODE) but faster (gap).
⇒ Faster convergence for h < 1√

L
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From (1st-ODE) to Nesterov

Define the learning rate hk > 0 and a discretization of the total time tk .
The time discretization of (1st-ODE) with gradients evaluated at

yk =

(
1− 2hk

tk

)
xk +

2hk
tk

vk .

is given by 
xk+1 − xk =

2hk
tk

(vk − xk)−
hk√
L
∇f (yk),

vk+1 − vk = −hktk
2
∇f (yk),

(FE-C)

Proposition
The discretization of (1st-ODE) given by (FE-C) with hk = h = 1√

L
and

tk = h(k + 2) is equivalent to the standard Nesterov’s method (C-Nest).

Fix learning rate, get Nesterov’s algorithm
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Stochastic gradient version


xk+1 − xk =

2hk
tk

(vk − xk)−
hk√
L
(∇f (yk) + ek),

vk+1 − vk = −hktk
2

(∇f (yk) + ek),

(1)

with

hk =
c

kα
6

1√
L
, tk =

k∑
i=1

hi , and α ∈
[
3
4
, 1
)

Same algorithm as before, but now
• Variable learning rate
• Stochastic gradient
• Optimal exponent for learning rate: α = 3

4

• Determined by convergence rate analysis, below
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Convergence result (convex case)

Define the continuous time Lyapunov function

E ac,c(t, x , v) := t2(f (x)− f ∗) + 2|v − x∗|2

Define the discrete time Lyapunov function E c
k by

E ac,c
k = E ac,c(tk−1, xk , vk)

Proposition (L., Oberman, 2020)

Assume hk := c
kα ≤ 1√

L
and tk =

∑k
i=1 hi , then for α = 3

4 ,

E[f (xk)]− f ∗ 6
1

16c2E0 + c2σ2(1+ log(k))

(k1/4 − 1)2

M. Laborde IPAM, April 2020 22 / 43



Comparison with previous results

Shamir, Zhang (2013) Acc. SGD

hk
c2
√
k

c

k3/4

Rate
(
D2

c2 + c2G 2
)

(2+ log(k))√
k

E0
16c2 + c2σ2(1+ log(k))

(k1/4 − 1)2

Table: Convergence rate E[f (xk)− f ∗] after k steps. G 2 is a bound on E[ĝ2]. E0 is the
initial value of the Lyapunov function.

Interpreting Improved rate: remove dependence on L-smoothness from the rate

This is a nice theoretical result, and nice example of continuous time method. In
order for it to be of practical use, desire
• practical algorithm, faster in practice (saw this for simple examples)
• remains faster when theory no longer applies (work in progress/future work)

I e.g. nonconvex examples
I e.g. training DNNs
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Acc-SGD results: synthetic noise

• Simple quadratic example, synthetic noise
• Tuned version just means optimize the learning rate

• SGD (with 1/k schedule):
I guess/tune learning rate
I Results at k = 300: 10−1, 5 ·10−2

• A-SGD (α = 3
4 ):

I guess/tune parameter, c
I Results at k = 300: 10−4, 10−6
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Acc-SGD results: minibatch SGD (1)

• Faster convergence than SGD
• Improved performance on poorly conditioned examples

Acc-SGD results:
mini-batch SGD

• Faster convergence than SGD 
• Improved performance on poorly conditioned examples
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Condition number C = 100
 approximately 100 x accuracy
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Condition number C = 1
approximately 10 x accuracy
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Acc-SGD results: minibatch SGD (2)

Robustness to the change of parameters
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logistic regression
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Strongly convex case: Nesterov’s method

• Nesterov’s method for a µ-strongly convex, L-smooth function, f , [Nesterov,
2013] 

xk+1 = yk −
1
L
∇f (yk)

yk+1 = xk+1 +

√
L−√µ√
L+
√
µ
(xk+1 − xk)

(SC-Nest)

• Connection between (SC-Nest) and Heavy Ball’s method

ẍ + 2
√
µẋ +∇f (x) = 0, (CS-A-ODE)

[Polyak, 1964].
• (CS-A-ODE) can be written as the first order system{

ẋ =
√
µ(v − x),

v̇ =
√
µ(x − v)− 1√

µ∇f (x).
(2)
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Another ODE for Nesterov’s Method

Again, Our starting point is a perturbation of (2){
ẋ =
√
µ(v − x)− 1√

L
∇f (x),

v̇ =
√
µ(x − v)− 1√

µ∇f (x),
(1st-ODE-SC)

The system (1st-ODE) is equivalent to the following ODE

ẍ + 2
√
µẋ +∇f (x) = − 1√

L

(
D2f (x) · ẋ +

√
µ∇f (x)

)
, (H-ODE-SC)

which has an additional Hessian damping term with coefficient 1/
√
L.

• Special case of high resolution second order ODEs (Shi and al., 2018) which
also lead to Nesterov’s method

• Decrease faster the same Lyapunov function as (2).
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Stochastic gradient version

Learning rate: hk > 0 . Define
xk+1 − xk = λk(vk − xk)− hk√

L
(∇f (yk) + ek),

vk+1 − vk = λk(xk − vk)− hk√
µ (∇f (yk) + ek),

yk = (1− λk)xk + λkvk , λk =
hk
√
µ

1+hk
√
µ .

(FE-SC)

Same algorithm as before, but now
• Variable learning rate
• Stochastic gradient

• To simplify: replace
√
µ by

√
µ

1+hk
√
µ
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Convergence result (strongly convex case)

Define the continuous time Lyapunov function

E ac,sc(x , v) := f (x)− f ∗ +
µ

2
|v − x∗|2

Discrete time Lyapunov function E ac,sc
k := E ac,sc(xk , vk).

Proposition (L., Oberman, 2020)

Assume E ac,sc
0 6 1√

L
. If hk :=

2
√
µ

µk+4σ2E ac,sc
0

−1 ,

E[f (xk)]− f ∗ 6
4σ2

µk + 4σ2E ac,sc
0

−1 .
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Comparison with previous results

Learning rate: hk = O
( 1
k

)

Convergence Results

convex case

strongly convex case

Interpreting Improved rate: For both algorithms, simply an improvement to the rate constant.  This is 
a nice theoretical result, and nice example of continuous time method. In order for it to be of practical use, 
desire

- practical algorithm, faster in practice (saw this for simple examples)
- remains faster when theory no longer applies

- e.g. nonconvex examples, 
- e.g. training DNNs

Convergence rate E[f (xk)− f ∗] after k steps: G 2 is a bound on E[ĝ(x)2], and σ2

variance. E0 is the initial value of the Lyapunov function

Improvement to the rate constant: independent of L
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Table of contents
Gradient Descent and Stochastic Gradient Descent
Accelerated gradient descent
Convex Case
Strongly convex Case

3 Proofs of the results
Convex case
Strongly convex case
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Proof Outline

• Starting from ODE, and rate-generating Lyapunov function

• Prove rate of decrease of Lyapunov function in time

• Then discretize ODE, constant time, to get a gradient algorithm

• Prove rate in k (consistent with time, e.g t = hk),

• Dissipation of the Lyapunov function for stochastic gradients: additional error
term

• Now use variable learning rate, to sum errors

• Determine learning rate (parameters) from the sum

• Obtain unified analysis for both stochastic and gradient case
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Convex case

• Define tk =
∑k

i=1 hi , with hi =
c
kα and α < 1,

xk+1 − xk =
2hk
tk

(vk − xk)−
hk√
L
(∇f (yk) + ek),

vk+1 − vk = −hktk
2

(∇f (yk) + ek),

yk =

(
1− 2hk

tk

)
xk +

2hk
tk

vk .

• Take the same Lyapunov function as for Nesterov’s method:

E ac,c
k = t2k−1(f (xk)− f ∗) + 2|vk − x∗|2.

• Result: For α = 3
4 ,

E[f (xk)]− f ∗ 6
1

16c2E0 + c2σ2(1+ log(k))

(k1/4 − 1)2
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Dissipation estimate

• Same analysis as in Su, Boyd and Candés but with ∇f (yk) + ek instead of
∇f (yk): For hk 6 1√

L

E ac,c
k+1 − E ac,c

k ≤ hkβk ,

where βk := −tk〈2(vk − x∗)− tk√
L
∇f (yk), ek〉+ 2hkt2k

〈
∇f (yk) + ek

2 , ek
〉
.

• Expectation: E[βk ] = hkt
2
kσ

2, so

E[E ac,c
k+1 ]− E ac,c

k ≤ h2
kt

2
kσ

2,

and
E[E ac,c

k ] ≥ t2k−1(E[f (xk)]− f ∗).
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Proof of the result

• Summing over k ,

t2k−1(E[f (xk)]− f ∗) 6 E0 + σ2
k−1∑
i=1

h2
i t

2
i

• By comparison series-integral

t2k−1 > 16c2(k1/4 − 1)2,

and
k−1∑
i=1

h2
i t

2
i 6 16c4σ2(1+ log(k))

• Conclusion:

E[f (xk)]− f ∗ 6
1

t2k−1

(
E0 + σ2

k−1∑
i=1

h2
i t

2
i

)
6

1
16c2E0 + c2σ2(1+ log(k))

(k1/4 − 1)2
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Strongly convex case

• Define, 
xk+1 − xk = λk(vk − xk)− hk√

L
(∇f (yk) + ek),

vk+1 − vk = λk(xk − vk)− hk√
µ (∇f (yk) + ek),

yk = (1− λk)xk + λkvk , λk =
hk
√
µ

1+hk
√
µ .

• Take the same Lyapunov function as for Nesterov’s method:

E ac,sc(x , v) = f (x)− f ∗ +
µ

2
|v − x∗|2, E ac,sc

k := E ac,sc(xk , vk)

• Result: For
hk :=

2√
µ(k + (αE ac,sc

0 )−1)
, α :=

µ

4σ2 ,

then,

E[E ac,sc
k ] 6

4σ2

µk + 4σ2E ac,sc
0

−1 .
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Dissipation estimate

• Same analysis as for Heavy ball’s method but with ∇f (yk) + ek instead of
∇f (yk): For hk 6 1√

L

E ac,sc
k+1 6 (1− hk

√
µ)E ac,sc

k + hkβk ,

where
βk := 2hk

〈
∇f (yk) + ek

2 , ek
〉
−
〈√

µ(xk − yk + vk − x∗)− 1√
L
∇f (yk), ek

〉
.

• Expectation: E[βk ] = hkσ
2, so

E[E ac,sc
k+1 ] 6 (1− hk

√
µ)E ac,sc

k + h2
kσ

2
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Proof of the result

By induction, show that

E[E ac,sc
k ] 6

1
α(k + α−1E−1

0 )
, α =

µ

4σ2 .

• Initialization, k = 0: trivial
• For all k > 1,

E[E ac,sc
k+1 ] 6 (1− hk

√
µ)E ac,sc

k + h2
kσ

2

and by definition of hk , α, and using the induction assumption,

E[E ac,sc
k+1 ] 6

(
1− 2

k + α−1E−1
0

)
1

α(k + α−1E−1
0 )

+
1

α(k + α−1E ac,sc
0

−1
)2

6
1

α(k + α−1E ac,sc
0

−1
)
− 1

α(k + α−1E ac,sc
0

−1
)2

6
1

α(k + 1+ α−1E ac,sc
0

−1
)
,

which concludes the proof.
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Possible extensions and future works

• General abstract Lyapunov analysis: Can be applied to other problems as
saddle point, for example.

• Extension to more general error: Deal with variance which depends on x

• Extension to non convex setting: For example assuming Polyak-Lojasiewicz
condition

• Numerical simulations: Test on Deep Neural Networks
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Thank you for your attention
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