
A Lyapunov analysis for accelerated gradient methods:
From deterministic to stochastic case

M. Laborde
joint work with Adam Oberman

McGill University

High Dimensional Hamilton-Jacobi PDEs
Workshop II: PDE and Inverse Problem Methods in Machine Learning,

IPAM, 20 April 2020

M. Laborde IPAM, April 2020 1 / 43

Motivation: Machine learning

• Label dataset: Sm = {(x1, y1), . . . , (xm, ym)}
• Hypothesis class of functions mapping data x to labels y :

H = {f (x ,w) : w ∈ Rn}

• Loss function defined on labels: L(f (xi ,w), yi)
• Empirical Loss Minimization problem:

min
w∈Rn

f (w) =
1
m

m∑
i=1

L(f (xi ,w), yi).

M. Laborde IPAM, April 2020 2 / 43

Optimization for machine learning: SGD

• Why is stochastic gradient important for machine learning? Evaluate full
Loss (and its gradient) on all m data points can be too costly.

• Define random minibatch I ⊂ {1, . . . ,m},

fI (w) =
1
|I |
∑
i∈I

L(f (xi ,w), yi).

• Stochastic Gradient Descent corresponds to

wk+1 = wk − hk∇w fIk (w
k), Ik random and hk learning rate

M. Laborde IPAM, April 2020 3 / 43

Optimization for machine learning: SGD

• Why is stochastic gradient important for machine learning? Evaluate full
Loss (and its gradient) on all m data points can be too costly.

• Define random minibatch I ⊂ {1, . . . ,m},

fI (w) =
1
|I |
∑
i∈I

L(f (xi ,w), yi).

• Stochastic Gradient Descent corresponds to

wk+1 = wk − hk∇w fIk (w
k), Ik random and hk learning rate

M. Laborde IPAM, April 2020 3 / 43

Optimization for machine learning: SGD

• Why is stochastic gradient important for machine learning? Evaluate full
Loss (and its gradient) on all m data points can be too costly.

• Define random minibatch I ⊂ {1, . . . ,m},

fI (w) =
1
|I |
∑
i∈I

L(f (xi ,w), yi).

• Stochastic Gradient Descent corresponds to

wk+1 = wk − hk∇w fIk (w
k), Ik random and hk learning rate

M. Laborde IPAM, April 2020 3 / 43

Stochastic Approximation

• The minibatch stochastic gradient is harder to analyze (future work)
• Instead make the standart Stochastic Approximation assumption: Let ĝ be
the stochastic gradient of f

ĝ(x , ξ) = ∇f (x) + e(x , ξ),

where the noise e satisfies

E[e] = 0 and Var(e) = σ2.

• In particular,

E[ĝ(x , ξ)] = ∇f (x) and E[|ĝ(x , ξ)|2] = |∇f (x)|2 + σ2.

M. Laborde IPAM, April 2020 4 / 43

Strong convexity and L-smoothness

Let f be proper convex function, x∗ = argminxf(x) and f ∗ = f (x∗).
• f is L-smooth: ∀x , y ∈ Rn

f (x)− f (y) +∇f (y) · (y − x) 6
L

2
|x − y |2

• f is µ-strongly convex: ∀x , y ∈ Rn

f (x)− f (y) +∇f (y) · (y − x) >
µ

2
|x − y |2

Cf :=
L
µ : condition number of f .

f quadratic: the constants are the smallest and largest eigenvalues of the Hessian
of f .

M. Laborde IPAM, April 2020 5 / 43

1 Background on Gradient Descent and Stochastic Gradient Descent
Gradient Descent and Stochastic Gradient Descent
Accelerated gradient descent

2 Accelerated Stochastic algorithm
Convex Case
Strongly convex Case

3 Proofs of the results
Convex case
Strongly convex case

4 Future work

M. Laborde IPAM, April 2020 6 / 43

Table of contents

1 Background on Gradient Descent and Stochastic Gradient Descent
Gradient Descent and Stochastic Gradient Descent
Accelerated gradient descent
Convex Case
Strongly convex Case
Convex case
Strongly convex case

M. Laborde IPAM, April 2020 7 / 43

Gradient descent

Goal: minimize convex function f with gradient oracle.

• Continuous interpretation:
ẋ = −∇f (x)

• Algorithm:
xk+1 = xk − h∇f (xk)

• Convergence: Lyapunov analysis, h = 1
L ,

f (xk)− f ∗ 6
L

2k
|x0 − x∗|2 (convex)

and

f (xk)− f ∗ 6
(
1− µ

L

)k
(f (x0)− f ∗) (strongly convex)

M. Laborde IPAM, April 2020 8 / 43

Stochastic Gradient descent

Goal: minimize convex function f with stochastic gradient oracle.

Algorithm: Stochastic Gradient descent

• Variable learning rate: e.g: hk = c
k+k0

• stochastic variance: σ2

xk+1 = xk − hk ĝ(xk),

where ĝ(x) = ∇f (x) + e(x , ξ) with

E[e] = 0 and Var(e) = σ2.

M. Laborde IPAM, April 2020 9 / 43

Convergence

From Bottou, Curtis, Nocedal (2016),

E[f (xk)− f ∗] 6 C1(1− µh)k + C2hσ
2

Need: h↘ 0 or σ2 ↘ 0.

• Noise reduction techniques:

I Variance reduction: SVRG (Jonhson, Zhang, 2013), SAG (Schmidt, Le Roux,
Bach, 2013), SAGA (Defazio, Bach, Lacoste-Julien, 2014),...

Does not seem to help in deep learning.

I Strong Growth Condition: Assume
E[|ĝ(x , ξ)|2] 6 ρ|∇f (x)|2

Strong assumption: can exactly fit the data!

• Variable learning rate:

I Convergence in average: Polyak, Juditsky (1992), Rakhlin, Shamir, Sridharan
(2011), Lacoste-Julien, Schmidt, Bach (2012), Shamir, Zhang (2013),...

Optimal rates: O
(

1√
k

)
(convex), O

(1
k

)
(strongly convex)

M. Laborde IPAM, April 2020 10 / 43

Convergence

From Bottou, Curtis, Nocedal (2016),

E[f (xk)− f ∗] 6 C1(1− µh)k + C2hσ
2

Need: h↘ 0 or σ2 ↘ 0.

• Noise reduction techniques:

I Variance reduction: SVRG (Jonhson, Zhang, 2013), SAG (Schmidt, Le Roux,
Bach, 2013), SAGA (Defazio, Bach, Lacoste-Julien, 2014),...

Does not seem to help in deep learning.

I Strong Growth Condition: Assume
E[|ĝ(x , ξ)|2] 6 ρ|∇f (x)|2

Strong assumption: can exactly fit the data!

• Variable learning rate:

I Convergence in average: Polyak, Juditsky (1992), Rakhlin, Shamir, Sridharan
(2011), Lacoste-Julien, Schmidt, Bach (2012), Shamir, Zhang (2013),...

Optimal rates: O
(

1√
k

)
(convex), O

(1
k

)
(strongly convex)

M. Laborde IPAM, April 2020 10 / 43

Convergence

From Bottou, Curtis, Nocedal (2016),

E[f (xk)− f ∗] 6 C1(1− µh)k + C2hσ
2

Need: h↘ 0 or σ2 ↘ 0.

• Noise reduction techniques:

I Variance reduction: SVRG (Jonhson, Zhang, 2013), SAG (Schmidt, Le Roux,
Bach, 2013), SAGA (Defazio, Bach, Lacoste-Julien, 2014),...

Does not seem to help in deep learning.

I Strong Growth Condition: Assume
E[|ĝ(x , ξ)|2] 6 ρ|∇f (x)|2

Strong assumption: can exactly fit the data!

• Variable learning rate:

I Convergence in average: Polyak, Juditsky (1992), Rakhlin, Shamir, Sridharan
(2011), Lacoste-Julien, Schmidt, Bach (2012), Shamir, Zhang (2013),...

Optimal rates: O
(

1√
k

)
(convex), O

(1
k

)
(strongly convex)

M. Laborde IPAM, April 2020 10 / 43

Convergence

From Bottou, Curtis, Nocedal (2016),

E[f (xk)− f ∗] 6 C1(1− µh)k + C2hσ
2

Need: h↘ 0 or σ2 ↘ 0.

• Noise reduction techniques:

I Variance reduction: SVRG (Jonhson, Zhang, 2013), SAG (Schmidt, Le Roux,
Bach, 2013), SAGA (Defazio, Bach, Lacoste-Julien, 2014),...

Does not seem to help in deep learning.

I Strong Growth Condition: Assume
E[|ĝ(x , ξ)|2] 6 ρ|∇f (x)|2

Strong assumption: can exactly fit the data!

• Variable learning rate:
I Convergence in average: Polyak, Juditsky (1992), Rakhlin, Shamir, Sridharan

(2011), Lacoste-Julien, Schmidt, Bach (2012), Shamir, Zhang (2013),...

Optimal rates: O
(

1√
k

)
(convex), O

(1
k

)
(strongly convex)

M. Laborde IPAM, April 2020 10 / 43

Variable learning rate: Convergence for the last iterate

Define G 2 bound on stochastic gradient: E[ĝ2] ≤ G 2

Remark: G 2 = L2D2 + σ2 where D is the diameter of the domain

• Strongly convex case: Learning rate hk = O
(1
k

)
I Previous results: Nemirovski, Juditsky, Lan, and Shapiro (2009), Shamir,

Zhang (2013), Jain, Kakade, Netrapalli, Sidford (2018): optimal rate O
(1
k

)
with constants depending on G 2, D and µ.

I Our result: O
(1
k

)
rate with constants independent of the L-smoothness bound

of the gradient (depends only on σ2 and µ).
• Convex case:

I Shamir, Zhang (2013): optimal rate order: log(k)√
k

with a rate constant that

depends on G 2 and D. Learning rate: hk = O
(

1√
k

)
.

I Jain, Nagaraj, Netrapalli (2019) remove the log factor assuming that the
number of iterations is decided in advance.

I Our result: O(log(k)/
√
k) rate for the last iterate, with a constant which

depends on σ2, but independent of the L-smoothness. New learning rate
schedule

M. Laborde IPAM, April 2020 11 / 43

Variable learning rate: Convergence for the last iterate

Define G 2 bound on stochastic gradient: E[ĝ2] ≤ G 2

Remark: G 2 = L2D2 + σ2 where D is the diameter of the domain

• Strongly convex case: Learning rate hk = O
(1
k

)
I Previous results: Nemirovski, Juditsky, Lan, and Shapiro (2009), Shamir,

Zhang (2013), Jain, Kakade, Netrapalli, Sidford (2018): optimal rate O
(1
k

)
with constants depending on G 2, D and µ.

I Our result: O
(1
k

)
rate with constants independent of the L-smoothness bound

of the gradient (depends only on σ2 and µ).

• Convex case:

I Shamir, Zhang (2013): optimal rate order: log(k)√
k

with a rate constant that

depends on G 2 and D. Learning rate: hk = O
(

1√
k

)
.

I Jain, Nagaraj, Netrapalli (2019) remove the log factor assuming that the
number of iterations is decided in advance.

I Our result: O(log(k)/
√
k) rate for the last iterate, with a constant which

depends on σ2, but independent of the L-smoothness. New learning rate
schedule

M. Laborde IPAM, April 2020 11 / 43

Variable learning rate: Convergence for the last iterate

Define G 2 bound on stochastic gradient: E[ĝ2] ≤ G 2

Remark: G 2 = L2D2 + σ2 where D is the diameter of the domain

• Strongly convex case: Learning rate hk = O
(1
k

)
I Previous results: Nemirovski, Juditsky, Lan, and Shapiro (2009), Shamir,

Zhang (2013), Jain, Kakade, Netrapalli, Sidford (2018): optimal rate O
(1
k

)
with constants depending on G 2, D and µ.

I Our result: O
(1
k

)
rate with constants independent of the L-smoothness bound

of the gradient (depends only on σ2 and µ).
• Convex case:

I Shamir, Zhang (2013): optimal rate order: log(k)√
k

with a rate constant that

depends on G 2 and D. Learning rate: hk = O
(

1√
k

)
.

I Jain, Nagaraj, Netrapalli (2019) remove the log factor assuming that the
number of iterations is decided in advance.

I Our result: O(log(k)/
√
k) rate for the last iterate, with a constant which

depends on σ2, but independent of the L-smoothness. New learning rate
schedule

M. Laborde IPAM, April 2020 11 / 43

Variable learning rate: Convergence for the last iterate

Define G 2 bound on stochastic gradient: E[ĝ2] ≤ G 2

Remark: G 2 = L2D2 + σ2 where D is the diameter of the domain

• Strongly convex case: Learning rate hk = O
(1
k

)
I Previous results: Nemirovski, Juditsky, Lan, and Shapiro (2009), Shamir,

Zhang (2013), Jain, Kakade, Netrapalli, Sidford (2018): optimal rate O
(1
k

)
with constants depending on G 2, D and µ.

I Our result: O
(1
k

)
rate with constants independent of the L-smoothness bound

of the gradient (depends only on σ2 and µ).
• Convex case:

I Shamir, Zhang (2013): optimal rate order: log(k)√
k

with a rate constant that

depends on G 2 and D. Learning rate: hk = O
(

1√
k

)
.

I Jain, Nagaraj, Netrapalli (2019) remove the log factor assuming that the
number of iterations is decided in advance.

I Our result: O(log(k)/
√
k) rate for the last iterate, with a constant which

depends on σ2, but independent of the L-smoothness. New learning rate
schedule

M. Laborde IPAM, April 2020 11 / 43

Nesterov’s accelerated gradient descent
Nesterov’s accelerated gradient descent

https://distill.pub/2017/momentum/

Accelerated gradient descent: same budget, faster convergence.

Gradient descent.

xk+1 = xk � hrf(xk)
<latexit sha1_base64="nISIooKD8vOJ72lwbR05SPNnr5c=">AAACCHicbVC7SgNBFJ2Nrxhfq5YWjgYhIobdWGgjBG0sI5gHZMMyO5lNhp2dXWZmJWFJaWPjh9hYKGKbT7DzQ+ydPApNPHDhcM693HuPFzMqlWV9GZmFxaXllexqbm19Y3PL3N6pySgRmFRxxCLR8JAkjHJSVVQx0ogFQaHHSN0Lrkd+/Z4ISSN+p/oxaYWow6lPMVJacs39npsGJ/YAXsKeG8BT2IUORx5D0C9o4dg181bRGgPOE3tK8uUDp/A9fHIqrvnptCOchIQrzJCUTbsUq1aKhKKYkUHOSSSJEQ5QhzQ15SgkspWOHxnAI620oR8JXVzBsfp7IkWhlP3Q050hUl05643E/7xmovyLVkp5nCjC8WSRnzCoIjhKBbapIFixviYIC6pvhbiLBMJKZ5fTIdizL8+TWqlonxVLtzqNKzBBFuyBQ1AANjgHZXADKqAKMHgAz+AVvBmPxovxbnxMWjPGdGYX/IEx/AEWyJsn</latexit>

Remark: two main A-GD algorithms, correspond to convex and strongly convex case.
We focus on one, convex case, to simplify presentation. Strongly convex case is also covered.

Heuristic: momentum term remembers old gradients,
overshoots instead of getting stuck.

Momentum term remembers old gradients, overshoots instead of getting stuck.

Remark: two main A-GD algorithms, correspond to convex and strongly convex
case. We focus on convex case, to simplify presentation. Strongly convex case is
also covered.

M. Laborde IPAM, April 2020 12 / 43

ODE interpretation of Nesterov’s method

• Nesterov’s method for a convex, L-smooth function, f , [Nesterov, 2013]
xk+1 = yk −

1
L
∇f (yk)

yk+1 = xk+1 +
k

k + 3
(xk+1 − xk)

(C-Nest)

• Connection between (C-Nest) and

ẍ +
3
t
ẋ +∇f (x) = 0, (A-ODE)

[Su, Boyd, Candés, 2014].
• (A-ODE) can be written as the first order system

ẋ =
2
t
(v − x)

v̇ = − t

2
∇f (x).

(S-A-ODE)

Connection: finite differences in time, and evaluate gradient at y convex
combination between x and v .

M. Laborde IPAM, April 2020 13 / 43

ODE interpretation of Nesterov’s method

• Nesterov’s method for a convex, L-smooth function, f , [Nesterov, 2013]
xk+1 = yk −

1
L
∇f (yk)

yk+1 = xk+1 +
k

k + 3
(xk+1 − xk)

(C-Nest)

• Connection between (C-Nest) and

ẍ +
3
t
ẋ +∇f (x) = 0, (A-ODE)

[Su, Boyd, Candés, 2014].

• (A-ODE) can be written as the first order system
ẋ =

2
t
(v − x)

v̇ = − t

2
∇f (x).

(S-A-ODE)

Connection: finite differences in time, and evaluate gradient at y convex
combination between x and v .

M. Laborde IPAM, April 2020 13 / 43

ODE interpretation of Nesterov’s method

• Nesterov’s method for a convex, L-smooth function, f , [Nesterov, 2013]
xk+1 = yk −

1
L
∇f (yk)

yk+1 = xk+1 +
k

k + 3
(xk+1 − xk)

(C-Nest)

• Connection between (C-Nest) and

ẍ +
3
t
ẋ +∇f (x) = 0, (A-ODE)

[Su, Boyd, Candés, 2014].
• (A-ODE) can be written as the first order system

ẋ =
2
t
(v − x)

v̇ = − t

2
∇f (x).

(S-A-ODE)

Connection: finite differences in time, and evaluate gradient at y convex
combination between x and v .

M. Laborde IPAM, April 2020 13 / 43

Convergence of Nesterov’s algorithm

• Lyapunov analysis: Su, Boyd, Candès (2014), Wibisono, Wilson, Jordan
(2016), Wilson, Recht, Jordan (2016), Wilson, Mackey, Wibisono (2019),...

• Define
E ac,c(t, x , v) = t2(f (x)− f ∗) + 2|v − x∗|2

Then,

f (x)− f ∗ 6
2
t2
|v0 − x∗|2,

and for h = 1√
L
, tk = k+2√

L
,

f (xk)− f ∗ 6
2L

(k + 1)2
|v0 − x∗|2

M. Laborde IPAM, April 2020 14 / 43

Heuristic accelerated SGD

Use standard Nesterov algorithm for
Neural Network, with
• Stochastic gradient,
• constant learning rate α = 1

L ,
• momentum β = 0.9

Scheduled learning rate for SGD,
converges at 1/k rate.

• Works well in practice: fast initial drop, then noise takes over.
• What could you prove? Vanilla SGD converges at rate 1/k . Have lower
bounds. Only room for improvement is the rate constant.
Our goal: better understand this algorithm to build an effective stochastic

version

M. Laborde IPAM, April 2020 15 / 43

Accelerated SGD?

• Go back to ODE for Nesterov (there is more than one)

• Redo convergence rate, first in continuous, then in discrete time (Lyapunov
analysis).

• Find the dissipation of the Lyapunov analysis for stochastic version

• Prove the convergence rate

• Use proof to tune the learning rate schedule, for optimal convergence rate

• Determine if we get a practical algorithm.

• There are two algorithms: convex version, and strongly convex version.

M. Laborde IPAM, April 2020 16 / 43

Table of contents
Gradient Descent and Stochastic Gradient Descent
Accelerated gradient descent

2 Accelerated Stochastic algorithm
Convex Case
Strongly convex Case
Convex case
Strongly convex case

M. Laborde IPAM, April 2020 17 / 43

Another ODE for Nesterov’s Method

Our starting point is a perturbation of (S-A-ODE)
ẋ =

2
t
(v − x)− 1√

L
∇f (x)

v̇ = − t

2
∇f (x),

(1st-ODE)

The system (1st-ODE) is equivalent to the following ODE

ẍ +
3
t
ẋ +∇f (x) = − 1√

L

(
D2f (x) · ẋ +

1
t
∇f (x)

)
(H-ODE)

which has an additional Hessian damping term with coefficient 1/
√
L.

• 2nd order ODE with Hessian damping: Alvarez, Attouch, Bolte, Redont
(2002), Attouch, Peyrouquet, Redont (2016)

• Shi, Du, Jordan, Su (2018) introduced a family of high resolution second
order ODEs which also lead to Nesterov’s method: (H-ODE), special case
s = 1√

L

M. Laborde IPAM, April 2020 18 / 43

Another ODE for Nesterov’s Method

Our starting point is a perturbation of (S-A-ODE)
ẋ =

2
t
(v − x)− 1√

L
∇f (x)

v̇ = − t

2
∇f (x),

(1st-ODE)

The system (1st-ODE) is equivalent to the following ODE

ẍ +
3
t
ẋ +∇f (x) = − 1√

L

(
D2f (x) · ẋ +

1
t
∇f (x)

)
(H-ODE)

which has an additional Hessian damping term with coefficient 1/
√
L.

• 2nd order ODE with Hessian damping: Alvarez, Attouch, Bolte, Redont
(2002), Attouch, Peyrouquet, Redont (2016)

• Shi, Du, Jordan, Su (2018) introduced a family of high resolution second
order ODEs which also lead to Nesterov’s method: (H-ODE), special case
s = 1√

L

M. Laborde IPAM, April 2020 18 / 43

Another ODE for Nesterov’s Method

Our starting point is a perturbation of (S-A-ODE)
ẋ =

2
t
(v − x)− 1√

L
∇f (x)

v̇ = − t

2
∇f (x),

(1st-ODE)

The system (1st-ODE) is equivalent to the following ODE

ẍ +
3
t
ẋ +∇f (x) = − 1√

L

(
D2f (x) · ẋ +

1
t
∇f (x)

)
(H-ODE)

which has an additional Hessian damping term with coefficient 1/
√
L.

• 2nd order ODE with Hessian damping: Alvarez, Attouch, Bolte, Redont
(2002), Attouch, Peyrouquet, Redont (2016)

• Shi, Du, Jordan, Su (2018) introduced a family of high resolution second
order ODEs which also lead to Nesterov’s method: (H-ODE), special case
s = 1√

L

M. Laborde IPAM, April 2020 18 / 43

Advantages of (1st-ODE)

• First order system (no Hessian)

• The system (1st-ODE) can be discretized to recover Nesterov’s method using
an explicit discretization with a constant time step h = 1√

L

• Decrease the same Lyapunov function as (S-A-ODE) but faster (gap).
⇒ Faster convergence for h < 1√

L

M. Laborde IPAM, April 2020 19 / 43

From (1st-ODE) to Nesterov

Define the learning rate hk > 0 and a discretization of the total time tk .
The time discretization of (1st-ODE) with gradients evaluated at

yk =

(
1− 2hk

tk

)
xk +

2hk
tk

vk .

is given by 
xk+1 − xk =

2hk
tk

(vk − xk)−
hk√
L
∇f (yk),

vk+1 − vk = −hktk
2
∇f (yk),

(FE-C)

Proposition
The discretization of (1st-ODE) given by (FE-C) with hk = h = 1√

L
and

tk = h(k + 2) is equivalent to the standard Nesterov’s method (C-Nest).

Fix learning rate, get Nesterov’s algorithm

M. Laborde IPAM, April 2020 20 / 43

From (1st-ODE) to Nesterov

Define the learning rate hk > 0 and a discretization of the total time tk .
The time discretization of (1st-ODE) with gradients evaluated at

yk =

(
1− 2hk

tk

)
xk +

2hk
tk

vk .

is given by 
xk+1 − xk =

2hk
tk

(vk − xk)−
hk√
L
∇f (yk),

vk+1 − vk = −hktk
2
∇f (yk),

(FE-C)

Proposition
The discretization of (1st-ODE) given by (FE-C) with hk = h = 1√

L
and

tk = h(k + 2) is equivalent to the standard Nesterov’s method (C-Nest).

Fix learning rate, get Nesterov’s algorithm

M. Laborde IPAM, April 2020 20 / 43

Stochastic gradient version


xk+1 − xk =

2hk
tk

(vk − xk)−
hk√
L
(∇f (yk) + ek),

vk+1 − vk = −hktk
2

(∇f (yk) + ek),

(1)

with

hk =
c

kα
6

1√
L
, tk =

k∑
i=1

hi , and α ∈
[
3
4
, 1
)

Same algorithm as before, but now
• Variable learning rate
• Stochastic gradient
• Optimal exponent for learning rate: α = 3

4

• Determined by convergence rate analysis, below

M. Laborde IPAM, April 2020 21 / 43

Convergence result (convex case)

Define the continuous time Lyapunov function

E ac,c(t, x , v) := t2(f (x)− f ∗) + 2|v − x∗|2

Define the discrete time Lyapunov function E c
k by

E ac,c
k = E ac,c(tk−1, xk , vk)

Proposition (L., Oberman, 2020)

Assume hk := c
kα ≤ 1√

L
and tk =

∑k
i=1 hi , then for α = 3

4 ,

E[f (xk)]− f ∗ 6
1

16c2E0 + c2σ2(1+ log(k))

(k1/4 − 1)2

M. Laborde IPAM, April 2020 22 / 43

Comparison with previous results

Shamir, Zhang (2013) Acc. SGD

hk
c2
√
k

c

k3/4

Rate
(
D2

c2 + c2G 2
)

(2+ log(k))√
k

E0
16c2 + c2σ2(1+ log(k))

(k1/4 − 1)2

Table: Convergence rate E[f (xk)− f ∗] after k steps. G 2 is a bound on E[ĝ2]. E0 is the
initial value of the Lyapunov function.

Interpreting Improved rate: remove dependence on L-smoothness from the rate

This is a nice theoretical result, and nice example of continuous time method. In
order for it to be of practical use, desire
• practical algorithm, faster in practice (saw this for simple examples)
• remains faster when theory no longer applies (work in progress/future work)

I e.g. nonconvex examples
I e.g. training DNNs

M. Laborde IPAM, April 2020 23 / 43

Comparison with previous results

Shamir, Zhang (2013) Acc. SGD

hk
c2
√
k

c

k3/4

Rate
(
D2

c2 + c2G 2
)

(2+ log(k))√
k

E0
16c2 + c2σ2(1+ log(k))

(k1/4 − 1)2

Table: Convergence rate E[f (xk)− f ∗] after k steps. G 2 is a bound on E[ĝ2]. E0 is the
initial value of the Lyapunov function.

Interpreting Improved rate: remove dependence on L-smoothness from the rate

This is a nice theoretical result, and nice example of continuous time method. In
order for it to be of practical use, desire
• practical algorithm, faster in practice (saw this for simple examples)
• remains faster when theory no longer applies (work in progress/future work)

I e.g. nonconvex examples
I e.g. training DNNs

M. Laborde IPAM, April 2020 23 / 43

Acc-SGD results: synthetic noise

• Simple quadratic example, synthetic noise
• Tuned version just means optimize the learning rate

• SGD (with 1/k schedule):
I guess/tune learning rate
I Results at k = 300: 10−1, 5 ·10−2

• A-SGD (α = 3
4):

I guess/tune parameter, c
I Results at k = 300: 10−4, 10−6

M. Laborde IPAM, April 2020 24 / 43

Acc-SGD results: minibatch SGD (1)

• Faster convergence than SGD
• Improved performance on poorly conditioned examples

Acc-SGD results:
mini-batch SGD

• Faster convergence than SGD
• Improved performance on poorly conditioned examples

0 20 40 60 80 100 120 140 160 180 200
10-5

10-4

10-3

10-2

10-1

100

SGD
SGD tuned
Acc SGD
Acc SGD Tuned

Condition number C = 100
 approximately 100 x accuracy

0 50 100 150 200
10-3

10-2

10-1

100

101

102

SGD
SGD tuned
Acc SGD
Acc SGD Tuned

Condition number C = 1
approximately 10 x accuracy

M. Laborde IPAM, April 2020 25 / 43

Acc-SGD results: minibatch SGD (2)

Robustness to the change of parameters

M. Laborde IPAM, April 2020 26 / 43

logistic regression

M. Laborde IPAM, April 2020 27 / 43

Strongly convex case: Nesterov’s method

• Nesterov’s method for a µ-strongly convex, L-smooth function, f , [Nesterov,
2013] 

xk+1 = yk −
1
L
∇f (yk)

yk+1 = xk+1 +

√
L−√µ√
L+
√
µ
(xk+1 − xk)

(SC-Nest)

• Connection between (SC-Nest) and Heavy Ball’s method

ẍ + 2
√
µẋ +∇f (x) = 0, (CS-A-ODE)

[Polyak, 1964].
• (CS-A-ODE) can be written as the first order system{

ẋ =
√
µ(v − x),

v̇ =
√
µ(x − v)− 1√

µ∇f (x).
(2)

M. Laborde IPAM, April 2020 28 / 43

Strongly convex case: Nesterov’s method

• Nesterov’s method for a µ-strongly convex, L-smooth function, f , [Nesterov,
2013] 

xk+1 = yk −
1
L
∇f (yk)

yk+1 = xk+1 +

√
L−√µ√
L+
√
µ
(xk+1 − xk)

(SC-Nest)

• Connection between (SC-Nest) and Heavy Ball’s method

ẍ + 2
√
µẋ +∇f (x) = 0, (CS-A-ODE)

[Polyak, 1964].

• (CS-A-ODE) can be written as the first order system{
ẋ =
√
µ(v − x),

v̇ =
√
µ(x − v)− 1√

µ∇f (x).
(2)

M. Laborde IPAM, April 2020 28 / 43

Strongly convex case: Nesterov’s method

• Nesterov’s method for a µ-strongly convex, L-smooth function, f , [Nesterov,
2013] 

xk+1 = yk −
1
L
∇f (yk)

yk+1 = xk+1 +

√
L−√µ√
L+
√
µ
(xk+1 − xk)

(SC-Nest)

• Connection between (SC-Nest) and Heavy Ball’s method

ẍ + 2
√
µẋ +∇f (x) = 0, (CS-A-ODE)

[Polyak, 1964].
• (CS-A-ODE) can be written as the first order system{

ẋ =
√
µ(v − x),

v̇ =
√
µ(x − v)− 1√

µ∇f (x).
(2)

M. Laborde IPAM, April 2020 28 / 43

Another ODE for Nesterov’s Method

Again, Our starting point is a perturbation of (2){
ẋ =
√
µ(v − x)− 1√

L
∇f (x),

v̇ =
√
µ(x − v)− 1√

µ∇f (x),
(1st-ODE-SC)

The system (1st-ODE) is equivalent to the following ODE

ẍ + 2
√
µẋ +∇f (x) = − 1√

L

(
D2f (x) · ẋ +

√
µ∇f (x)

)
, (H-ODE-SC)

which has an additional Hessian damping term with coefficient 1/
√
L.

• Special case of high resolution second order ODEs (Shi and al., 2018) which
also lead to Nesterov’s method

• Decrease faster the same Lyapunov function as (2).

M. Laborde IPAM, April 2020 29 / 43

Stochastic gradient version

Learning rate: hk > 0 . Define
xk+1 − xk = λk(vk − xk)− hk√

L
(∇f (yk) + ek),

vk+1 − vk = λk(xk − vk)− hk√
µ (∇f (yk) + ek),

yk = (1− λk)xk + λkvk , λk =
hk
√
µ

1+hk
√
µ .

(FE-SC)

Same algorithm as before, but now
• Variable learning rate
• Stochastic gradient

• To simplify: replace
√
µ by

√
µ

1+hk
√
µ

M. Laborde IPAM, April 2020 30 / 43

Convergence result (strongly convex case)

Define the continuous time Lyapunov function

E ac,sc(x , v) := f (x)− f ∗ +
µ

2
|v − x∗|2

Discrete time Lyapunov function E ac,sc
k := E ac,sc(xk , vk).

Proposition (L., Oberman, 2020)

Assume E ac,sc
0 6 1√

L
. If hk :=

2
√
µ

µk+4σ2E ac,sc
0

−1 ,

E[f (xk)]− f ∗ 6
4σ2

µk + 4σ2E ac,sc
0

−1 .

M. Laborde IPAM, April 2020 31 / 43

Comparison with previous results

Learning rate: hk = O
(1
k

)

Convergence Results

convex case

strongly convex case

Interpreting Improved rate: For both algorithms, simply an improvement to the rate constant. This is
a nice theoretical result, and nice example of continuous time method. In order for it to be of practical use,
desire

- practical algorithm, faster in practice (saw this for simple examples)
- remains faster when theory no longer applies

- e.g. nonconvex examples,
- e.g. training DNNs

Convergence rate E[f (xk)− f ∗] after k steps: G 2 is a bound on E[ĝ(x)2], and σ2

variance. E0 is the initial value of the Lyapunov function

Improvement to the rate constant: independent of L

M. Laborde IPAM, April 2020 32 / 43

Table of contents
Gradient Descent and Stochastic Gradient Descent
Accelerated gradient descent
Convex Case
Strongly convex Case

3 Proofs of the results
Convex case
Strongly convex case

M. Laborde IPAM, April 2020 33 / 43

Proof Outline

• Starting from ODE, and rate-generating Lyapunov function

• Prove rate of decrease of Lyapunov function in time

• Then discretize ODE, constant time, to get a gradient algorithm

• Prove rate in k (consistent with time, e.g t = hk),

• Dissipation of the Lyapunov function for stochastic gradients: additional error
term

• Now use variable learning rate, to sum errors

• Determine learning rate (parameters) from the sum

• Obtain unified analysis for both stochastic and gradient case

M. Laborde IPAM, April 2020 34 / 43

Convex case

• Define tk =
∑k

i=1 hi , with hi =
c
kα and α < 1,

xk+1 − xk =
2hk
tk

(vk − xk)−
hk√
L
(∇f (yk) + ek),

vk+1 − vk = −hktk
2

(∇f (yk) + ek),

yk =

(
1− 2hk

tk

)
xk +

2hk
tk

vk .

• Take the same Lyapunov function as for Nesterov’s method:

E ac,c
k = t2k−1(f (xk)− f ∗) + 2|vk − x∗|2.

• Result: For α = 3
4 ,

E[f (xk)]− f ∗ 6
1

16c2E0 + c2σ2(1+ log(k))

(k1/4 − 1)2

M. Laborde IPAM, April 2020 35 / 43

Dissipation estimate

• Same analysis as in Su, Boyd and Candés but with ∇f (yk) + ek instead of
∇f (yk): For hk 6 1√

L

E ac,c
k+1 − E ac,c

k ≤ hkβk ,

where βk := −tk〈2(vk − x∗)− tk√
L
∇f (yk), ek〉+ 2hkt2k

〈
∇f (yk) + ek

2 , ek
〉
.

• Expectation: E[βk] = hkt
2
kσ

2, so

E[E ac,c
k+1]− E ac,c

k ≤ h2
kt

2
kσ

2,

and
E[E ac,c

k] ≥ t2k−1(E[f (xk)]− f ∗).

M. Laborde IPAM, April 2020 36 / 43

Proof of the result

• Summing over k ,

t2k−1(E[f (xk)]− f ∗) 6 E0 + σ2
k−1∑
i=1

h2
i t

2
i

• By comparison series-integral

t2k−1 > 16c2(k1/4 − 1)2,

and
k−1∑
i=1

h2
i t

2
i 6 16c4σ2(1+ log(k))

• Conclusion:

E[f (xk)]− f ∗ 6
1

t2k−1

(
E0 + σ2

k−1∑
i=1

h2
i t

2
i

)
6

1
16c2E0 + c2σ2(1+ log(k))

(k1/4 − 1)2

M. Laborde IPAM, April 2020 37 / 43

Strongly convex case

• Define, 
xk+1 − xk = λk(vk − xk)− hk√

L
(∇f (yk) + ek),

vk+1 − vk = λk(xk − vk)− hk√
µ (∇f (yk) + ek),

yk = (1− λk)xk + λkvk , λk =
hk
√
µ

1+hk
√
µ .

• Take the same Lyapunov function as for Nesterov’s method:

E ac,sc(x , v) = f (x)− f ∗ +
µ

2
|v − x∗|2, E ac,sc

k := E ac,sc(xk , vk)

• Result: For
hk :=

2√
µ(k + (αE ac,sc

0)−1)
, α :=

µ

4σ2 ,

then,

E[E ac,sc
k] 6

4σ2

µk + 4σ2E ac,sc
0

−1 .

M. Laborde IPAM, April 2020 38 / 43

Dissipation estimate

• Same analysis as for Heavy ball’s method but with ∇f (yk) + ek instead of
∇f (yk): For hk 6 1√

L

E ac,sc
k+1 6 (1− hk

√
µ)E ac,sc

k + hkβk ,

where
βk := 2hk

〈
∇f (yk) + ek

2 , ek
〉
−
〈√

µ(xk − yk + vk − x∗)− 1√
L
∇f (yk), ek

〉
.

• Expectation: E[βk] = hkσ
2, so

E[E ac,sc
k+1] 6 (1− hk

√
µ)E ac,sc

k + h2
kσ

2

M. Laborde IPAM, April 2020 39 / 43

Proof of the result

By induction, show that

E[E ac,sc
k] 6

1
α(k + α−1E−1

0)
, α =

µ

4σ2 .

• Initialization, k = 0: trivial
• For all k > 1,

E[E ac,sc
k+1] 6 (1− hk

√
µ)E ac,sc

k + h2
kσ

2

and by definition of hk , α, and using the induction assumption,

E[E ac,sc
k+1] 6

(
1− 2

k + α−1E−1
0

)
1

α(k + α−1E−1
0)

+
1

α(k + α−1E ac,sc
0

−1
)2

6
1

α(k + α−1E ac,sc
0

−1
)
− 1

α(k + α−1E ac,sc
0

−1
)2

6
1

α(k + 1+ α−1E ac,sc
0

−1
)
,

which concludes the proof.
M. Laborde IPAM, April 2020 40 / 43

Table of contents
Gradient Descent and Stochastic Gradient Descent
Accelerated gradient descent
Convex Case
Strongly convex Case
Convex case
Strongly convex case

4 Future work

M. Laborde IPAM, April 2020 41 / 43

Possible extensions and future works

• General abstract Lyapunov analysis: Can be applied to other problems as
saddle point, for example.

• Extension to more general error: Deal with variance which depends on x

• Extension to non convex setting: For example assuming Polyak-Lojasiewicz
condition

• Numerical simulations: Test on Deep Neural Networks

M. Laborde IPAM, April 2020 42 / 43

Thank you for your attention

M. Laborde IPAM, April 2020 43 / 43

	Background on Gradient Descent and Stochastic Gradient Descent
	Gradient Descent and Stochastic Gradient Descent
	Accelerated gradient descent

	Accelerated Stochastic algorithm
	Convex Case
	Strongly convex Case

	Proofs of the results
	Convex case
	Strongly convex case

	Future work

