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General Large-Scale Inverse Problem

Given (many) {X, Y}, �nd m.
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The Model F(m)

F is given; we just �nd m (e.g., PDEs).
OR

F is not known; m depends on F .
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The Model F(m)

F is given; we just �nd m (e.g., PDEs).

• Pro: We know the best (exact) forward problem!
• Con: The forward and inverse problems are so nonlinear!

OR
F is not known; we are free to choose (e.g., XXX-net).

• Pro: The freedom to modify it to a “better” map
(Over-Parametrization, ReLu)

• Con: Trial and error to build the model
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Seismic Inversion: Earthquake Source, Hydrocarbons, etc.

Seismic inversion is one of the inherently more di�cult families of
large-scale nonlinear inverse problems.
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Seismic Inversion

Waveform measurements from
receivers at the surface

Invert
====⇒

Subsurface properties (i.e. wave
velocity or material density)
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PDE-Constrained Optimization

Forward Problem
F : m→ u|Γ, Γ ⊆ ∂Ω or Ω

Inverse Problem
G : u|Γ → m

F and G are o�en nonlinear.

m∗ = argmin
m

J(f (m),g)

f (m) = u|Γ

J is an objective function
measuring the di�erence
between f and g.
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Seismic Inversion

Forward Wave Propagation


m(x)

∂2u(x, t)
∂t2 −4u(x, t) = s(x, t)

Zero i.c. in half-space Ω

Neumann b.c. on ∂Ω

m(x) = 1
c(x)2 , c(x) is the wave velocity

m
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Important Components in the deterministic approach
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The objective function
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A PDE-Constrained Optimization

Traditional Least-Squares (L2 norm) Objective Function

J(m) =
1
2
∑
r

∫
|f (xr, t;m)− g(xr, t)|2 dt, (1)

• observed data g,

• simulated data f (m) = u|Γ,

• receiver xr ,

• the model parameter m,

• Regularization is o�en added in (1).

Main Challenges

1. Local minima trapping

2. Sensitive to noise

10



Typical E�ects from Variations in Wave Speed

The shi� and dilation are typical e�ects from variations in
velocity parameter m(x) = m (constant). For example:

m∂2u
∂t2 = ∂2u

∂x2 , x > 0, t > 0,
u = 0, ∂u

∂t = 0, x > 0, t = 0,
u = f (t), x = 0, t > 0.

The solution to the equation is u(x, t;m) = f (t−
√
mx).

For �xed x, variation in m relates shi�s in the signal.

For �xed t, variation in m generates the dilation in data.

[Engquist, Froese & Y, 2016] 11



Motivation of Using the Wasserstein Distance (EMD)

[Engquist-Froese, 2014] [Engquist, Froese & Y, 2016] 12



The Quadratic Wasserstein Distance

The Quadratic Wasserstein Distance
For f ,g ∈ P(Ω) (f ,g ≥ 0 and

∫
f =

∫
g = 1), the quadratic

Wasserstein distance is formulated as

W2(f ,g) =

(
inf
T∈M

∫
|x− T(x)|p f (x)dx

) 1
2

(2)

M: the set of all maps that rearrange the distribution f into g.

[Monge, 1781] 13



Optimal Transport

Synthetic data f (le�) and observed data g (right)

[Monge, 1781] 14



Optimal Transport

Synthetic data f (le�) and observed data g (right)
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Optimal Transport

Synthetic data f (le�) and observed data g (right)
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Optimal Transport

Synthetic data f (le�) and observed data g (right)
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1. Inversion with Local Minima (Optimization Landscape)

Let {ek}dk=1 be standard basis of the Euclidean space Rd.
Assume sk ∈ R, λk ∈ R+, k = 1, . . . ,d and A = diag(1/λ1, . . . , 1/λd).
We de�ne fΘ as jointly the translation and dilation of g:

fΘ(x) = det(A)g(A(x−
d∑
k=1

skek)),Θ = {s1, . . . , sd, λ1, . . . , λd}.

Theorem (Convexity ofW2 in translation and dilation)

The optimal map between fΘ(x) and g(y) is y = TΘ(x) where
〈TΘ(x), ek〉 = 1

λk
(〈x, ek〉 − sk), k = 1, . . . ,d.

Moreover, I(Θ) = W2
2(fΘ(x),g) is a convex function of Θ.

[Y, 2019] 18



Tackling Nonconvexity

[Y-Engquist-Sun-Hamfeldt, 2016] 19



2. More Robust w.r.t. Noise (Perturbation)

Given strictly positive probability density f = dν, we can
de�ne a Laplace-type linear operator

L = −∆ +∇(− log f ) · ∇

which satis�es the fundamental integration by parts formula:∫
Rd

(Lh1)h2dν =

∫
Rd
h1(Lh2)dν =

∫
Rd
∇h1 · ∇h2dν.

‖h‖2
L2(f) =

∫
Rd
h2dν, ‖h‖2

Ḣ1(f) =

∫
Rd
|∇h|2dν,

‖h‖2
Ḣ−1(f) := sup

{∫
Rd
hϕdν

∣∣∣∣ ‖ϕ‖2
Ḣ1(f) ≤ 1

}
=

∫
Rd
h(L−1h)dν.

If f = 1, we reconstruct the unweighted Ḣ−1
(Rd)

seminorm.
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The Connection with Weak Norm

Asymptotic Connection
If µ is the probability measure and dπ is an in�nitesimal
perturbation that has zero total mass, then

W2(µ, µ+ dπ) = ‖dπ‖Ḣ−1
(dµ)

+ o(dπ). (3)

Non-Asymptotic Connection
If both f = dµ and g = dν are bounded from below and above
by constants c1 and c2, we have the following non-asymptotic
equivalence between W2 and Ḣ−1

(dµ):

1
c2
‖µ− ν‖Ḣ−1

(Rd)

≤ W2(µ, ν) ≤ 1
c1
‖µ− ν‖Ḣ−1

(Rd)

, (4)
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Hs-based inverse matching

A linear inverse problem of �nding m from noisy data gδ

Am = gδ. (5)

A is diagonal in the Fourier domain:

Â(ξ) ∼ 〈ξ〉−α. (6)

We seek the solution by minimizing the objective functional

OHs(m) ≡ 1
2‖f (m)−g‖2

Hs :=
1
2

∫
Rd
〈ξ〉2s |̂f (m)(ξ)− ĝ(ξ)|2dξ, (7)

[Engquist-Ren-Y, 2019] 22



2. Robust w.r.t. Noise

The solution at frequency ξ is therefore

m̂(ξ) =
(
Â∗(ξ)

(
〈ξ〉2sÂ

))−1
Â∗(ξ)

(
〈ξ〉2sĝδ(ξ)

)
.

We can then perform an inverse Fourier transform to �nd the
solution in physical space. The result is

m =
(
A∗PA

)−1
A∗Pgδ, P := (I −∆)s/2,

where the operator (I −∆)s/2 is de�ned through the relation

(I −∆)s/2m = F−1
(
〈ξ〉sm̂

)
,

s = 0, s > 0, s < 0.

[Engquist-Ren-Y, 2019] 23



Di�erences BetweenW2 and Ḣ−1

Top row: Geodesics in the Ḣ−1 space
Bottom row: Geodesics in the W2 space

[Papadakis-Peyré-Oudet, 2013] 24



Regularization
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Implicit Regularization

m∗ = argmin
m

J(m) + R(m)

Regularization does not have to be in the form of R(m).

• The choice of the objective function
• The choice of the data

e.g., low-frequency data recovers low-wavenumber model

• The choice of numerical discretization
• The optimization algorithm (�xed step size)
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Acceleration Methods
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Acceleration Methods

Treat Gradient Descent as a Fixed-Point Iteration

pk+1 = pk − η
∂J
∂p

∣∣∣∣
p=pk

= G(pk).

p∗ = G(p∗).

Steepest descent⇔ Picard Iteration applied to G

Can we do better?
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Anderson Acceleration (Also known as: Pulay Mixing, DIIS)

Input:Given p0 and m ≥ 1. G is a given �xed-point operator.
Set p1 = G(p0).
for k = 0, 1,2,. . . do
Step 1: Set mk = min(m, k) and Fk = (fk−mk , . . . , fk), where
fi = G(pi)− pi is the residual.
Step 2: Find α(k) = (α

(k)
0 , . . . , α

(k)
mk )T ,

∑mk
i=0 α

(k)
i = 1 to

minimize the sum of the weighted residual ‖Fkα(k)‖.
Step 3: Update pk+1 according to

pk+1 =

mk∑
i=0

α
(k)
i G(pk−mk+i).

end for

[D. G. Anderson, 1965] 29



Anderson Acceleration (Also known as: Pulay Mixing, DIIS)

Interesting connections with:

• GMRES (m =∞)
• Multi-secant methods
• Krylov-space methods
• Momentum method
• Superlinear w/o approximating inverse Hessian
• Noncontractive (nonlinear) operator convergence

[D. G. Anderson, 1965] 30



Anderson Acceleration for Seismic Inversion
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Important Components in the deterministic approach
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Important Components in the Bayesian approach
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Likelihood Function
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Likelihood Function

Likelihood function Noise model assumption∫
D ‖G(u)(x, ·)− y(x, ·)‖2

L2(T) λ(dx) y = G(u) + η, η ∼ N(0, I)∫
D ‖G(u)(x, ·)− y(x, ·)‖2

Ḣ−1(T)
λ(dx) y = G(u) + η, η ∼ N(0,−∆T)∫

DW
2
2

(
G̃(u)(x, ·), ỹ(x, ·)

)
λ(dx) ỹ = η · G̃(u), η|u ∼ N(1,L(u))∫

D

∥∥∥G(u)(x,·)−y(x,·)
(y)(x,·)

∥∥∥2

L2(T)
λ(dx) y = η · G(u), 1/η ∼ N(1, I)

The W2 metric can be regarded as asymptotically from the
state-dependent multiplicative noise data model:

measurement error is proportional to the size of the quantity,
and the distribution is a�ected by the model parameter.

[Dunlop-Y,2020] 35



Prior Distribution
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Level-Set Prior

Given ν0 = N(m1, C1)× N(m2, C2),

π0 = F]ν0, F(v,w)(x) = u+1v(x)>0 + w(x)1v(x)≤0.

We don’t have to know u+ a priori.

[Dunlop-Iglesias-Stuart, 2016], [Iglesias-Lu-Stuart, 2016] 37



Level-Set Prior for Waveform Inversion

[Dunlop-Y,2020] 38



Why Model Below Re�ector Is Hard to Recover by Re�ections?

Velocity of d=10
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Velocity of d=80
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Velocity of d=40
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Why Model Below Re�ector Is Hard to Recover by Re�ections?
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Level-Set Prior for Waveform Inversion

Reconstructions arising from deterministic inversion

[Dunlop-Y,2020] 41



Level-Set Prior for Waveform Inversion

[Dunlop-Y,2020] 42



Uncertainty Quanti�cation
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Deterministic & Bayesian

For Large-Scale inverse problems
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