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General Large-Scale Inverse Problem

Model (m)

Xmmp  (PpE) wmp )
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Given (many) {X, Y}, find m.



The Model F(m)

Model (m)
(PDE)
(NNets)

F is given; we just find m (e.g., PDEs).
OR
F is not known; m depends on F .



The Model F(m)

F is given; we just find m (e.g., PDEs).

« Pro: We know the best (exact) forward problem!

« Con: The forward and inverse problems are so nonlinear!

OR
F is not known; we are free to choose (e.g., XXX-net).

+ Pro: The freedom to modify it to a “better” map
(Over-Parametrization, ReLu)

« Con: Trial and error to build the model



Seismic Inversion: Earthquake Source, Hydrocarbons, etc.

Seismic inversion is one of the inherently more difficult families of
large-scale nonlinear inverse problems.

Vibrator Truck

i} j s
G0 ol o
1 “ kY ’ ,/
. . . //
d ’
R g
L Y
! \ S Seismic Waves
: K /
\ \
\




Seismic Inversion
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PDE-Constrained Optimization

Forward Problem m* = argminJ(f(m), g)
F:m—=ul, T CoQorQ m

f(m) =ulr
Inverse Problem J is an objective function
G:ulr—m measuring the difference

between f and g.
F and G are often nonlinear.



Seismic Inversion

Marmousi model

0

Forward Wave Propagation

0.5

1

m(x)az"g;’n — Au(x,t) = s(x,t)

Zero i.c. in half-space Q
Neumann b.c. on 992

Depth (km)
{ES)

~

1 . .
m(x):c(x)z,c(x) is the wave velocity OB e e,

Receiver Position (km)

m



Important Components in the deterministic approach

Objective
function Regularization
(convexity)

How much do
we trust the
solution?




The objective function

Objective
function

(convexity)

Regularization

How much do
we trust the
solution?



A PDE-Constrained Optimization

Traditional Least-Squares (L2 norm) Objective Function

Jm) =33 [ 1.t m) — g P (")

+ observed data g,

- simulated data f(m) = u|r, Main Challenges

. receiver X, 1. Local minima trapping
- the model parameter m, 2. Sensitive to noise

+ Regularization is often added in (1).
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Typical Effects from Variations in Wave Speed

The shift and dilation are typical effects from variations in

velocity parameter m(x) = m (constant). For example:

m&i =&y X>0,t> 0,
u=o, %=0, x>o0,t=0,
u = f(t), X=0,t>o0.

The solution to the equation is u(x, t; m) = f(t — vmx).

For fixed x, variation in m relates shifts in the signal.

For fixed t, variation in m generates the dilation in data.

[Engquist, Froese &Y, 2016]
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Motivation of Using the Wasserstein Distance (EMD)

L2 difference between f and f(t-s)

W2 distince between f and f(t-s)
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[Engquist-Froese, 2014] [Engquist, Froese &Y, 2016]
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The Quadratic Wasserstein Distance

The Quadratic Wasserstein Distance

Forf,g e P(Q) (f,g >oand [f = [g=1),the quadratic
Wasserstein distance is formulated as

Ws(f,g) = ( inf /|x— dx)1 (2)

M: the set of all maps that rearrange the distribution f into g.

[Monge, 1781] -



Optimal Transport

||| *I

Synthetic data f (left) and observed data g (right)

[Monge, 1781] »



Optimal Transport

Synthetic data f (left) and observed data g (right)
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Optimal Transport

(amount moved)
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Synthetic data f (left) and observed data g (right)

16



Optimal Transport

(amount moved) * (distance moved)?
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Synthetic data f (left) and observed data g (right)

17



1. Inversion with Local Minima (Optimization Landscape)

Let {e,}9_, be standard basis of the Euclidean space RY.
Assume sy e R\, e RT R =1,...,dand A =diag(1/\,...,1/Aq)-
We define fg as jointly the translation and dilation of g:

d
fo(x) = det(A)g(A(x — > sker)),© = {S1,...,5¢, M, -, Ag}-
k=1

Theorem (Convexity of W/, in translation and dilation)

The optimal map between fo(x) and g(y) is y = Te(x) where
(To(x), er) = 1= ((x, ek) — s¢), Rk =1,....d.

Moreover, I(©) = W2(fo(X), g) is a convex function of ©.

[Y, 2019] .



Tackling Nonconvexity
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2. More Robust w.r.t. Noise (Perturbation)

Given strictly positive probability density f = dv, we can
define a Laplace-type linear operator

L=-A+V(-logf) V
which satisfies the fundamental integration by parts formula:

/(Lh hzdy_/ hi(Lhy)dv = Vh1 Vh,dv.
Rd

IhllEzry = [ h*dv, [IhIIE, IVhI dv,
= Joa "~

2 = h 2 < = h(L™"h
101 gy =sun{ [ hod HSDHH1(f)_1} [,y

If f = 1, we reconstruct the unweighted ”H&Qd

) seminorm.
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The Connection with Weak Norm

Asymptotic Connection
If v is the probability measure and dr is an infinitesimal
perturbation that has zero total mass, then

Wa(p, p+dm) = \|d7f||7'{(7;) + o(dn). (3)
Non-Asymptotic Connection
If both f = dp and g = dv are bounded from below and above

by constants ¢, and ¢,, we have the following non-asymptotic
equivalence between W, and ?'{(‘Cfu):
= vy, < Walu,v) < == v (4)
— — UVl|qy—1 V) S — — V0|
5" Haay = : o o)
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H°-based inverse matching

A linear inverse problem of finding m from noisy data gs

Am = g;. (5)

Ais diagonal in the Fourier domain:
A(g) ~ (&) (6)

We seek the solution by minimizing the objective functional

1

If(m)~gllhe =3 [ (©Fm)(©)-g(e)de. 0

OHs(m) = >

1
2

[Engquist-Ren-Y, 2019] 22



2. Robust w.r.t. Noise

The solution at frequency ¢ is therefore

m(e) = (A(©)((€A)) A @) ((€1*dx(€)).

We can then perform an inverse Fourier transform to find the
solution in physical space. The result is

m = (A*PA) TA*Pg;,  Pi=(T— AP,
where the operator (Z — A)%/? is defined through the relation
(T - 2)2m = F((©°F),
$=0,5>0,s<O0.

[Engquist-Ren-Y, 2019] 23



Differences Between W, and H~"

B=3/4 8=1/2 B=1/4 B=0

=1

B

t=0 t=1/8 t=1/4 t=3/8 t=1/2 t=5/8 t=3/4 t=7/8 t=1

Top row: Geodesics in the A~ space
Bottom row: Geodesics in the W, space

[Papadakis-Peyré-Oudet, 2013] 2%



Regularization

Objective
function

(convexity)

Regularization

How much do
we trust the
solution?
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Implicit Regularization

m* = argmin J(m) + R(m)

m

Regularization does not have to be in the form of R(m).

« The choice of the objective function
« The choice of the data

e.g., low-frequency data recovers low-wavenumber model
+ The choice of numerical discretization

« The optimization algorithm (fixed step size)
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Acceleration Methods

Objective
function Regularization

(convexity)

Optimization How much do

algorithm

we trust the
solution?
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Acceleration Methods

Treat Gradient Descent as a Fixed-Point Iteration

= G(Pr)-
P=Pk

0J
Pr+1 = Pr — Tap
p* = G(p7).
Steepest descent < Picard Iteration applied to G

Can we do better?
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Anderson Acceleration (Also known as: Pulay Mixing, DIIS)

Input:Given p, and m > 1. G is a given fixed-point operator.
Set p; = G(po).
fork=0,1,2,... do
Step 1: Set my = min(m, k) and F, = (fp_m,, - - -, fr), Where
fi = G(p;) — p; is the residual.
Step 2: Find o(f) = (agk) 045,:2) ) Do al(k) =1to
minimize the sum of the Welghted residual ||Fra(R)].

Step 3: Update py., according to

Pkt1 = Za (Pr—my+i)-

end for

[D. G. Anderson, 1965]
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Anderson Acceleration (Also known as: Pulay Mixing, DIIS)

Interesting connections with:

« GMRES (m = o0)

+ Multi-secant methods

+ Krylov-space methods

+ Momentum method

+ Superlinear w/o approximating inverse Hessian

- Noncontractive (nonlinear) operator convergence

[D. G. Anderson, 1965]
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Anderson Acceleration for Seismic Inversion
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Important Components in the deterministic approach

Objective
function Regularization
(convexity)

How much do
we trust the
solution?
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Important Components in the Bayesian approach

Likelihood
function Prior

(noise model distribution
assumption)

Uncertainty
guantification
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Likelihood Function

Likelihood
function Prior

(noise model distribution
assumption)

Uncertainty
guantification
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Likelihood Function

Likelihood function ‘ Noise model assumption
JolGu)(x, ) = y(x, )y Aldx) |y =G(u)+n, n~N(o,I)

Jo 1G()0, ) = Y06 I oy A@X) | ¥ = G(u) + 11, 1~ N(o, A7)

Jo W2 (900, ),70,)) AMdx) | ¥ =n-G(u), nlu ~ N(1, £(u))

hHJL—JﬁmeAwm y=n-G(u), 1/n~N(1,1)
The W, metric can be regarded as asymptotically from the
state-dependent multiplicative noise data model:
measurement error is proportional to the size of the quantity,
and the distribution is affected by the model parameter.

[Dunlop-Y,2020] 35



Prior Distribution

Likelihood
function

(noise model

assumption)

Prior
distribution

Uncertainty
guantification




Level-Set Prior

LN R
R T $ils

leen Vo = N(m1,C1) X N(m2, Cz),
To = Flug, F(v,w)(X) = U4 Tyxys0 + W(X)Ly(x)<o

We don’t have to know u™ a priori.

[Dunlop-Iglesias-Stuart, 2016], [Iglesias-Lu-Stuart, 2016] 37



Level-Set Prior for Waveform Inversion
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[Dunlop-Y,2020] 38




Why Model Below Reflector Is Hard to Recover by Reflections?
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Why Model Below Reflector Is Hard to Recover by Reflections?
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Level-Set Prior for Waveform Inversion

Deterministic inversion with L? loss

Deterministic inversion with W loss
- : l H |

Reconstructions arising from deterministic inversion

w

N}

[Dunlop-Y,2020] @



Level-Set Prior for Waveform Inversion

MAP Estimate

Standard Dev1at10n

[Dunlop-Y,2020] 42
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Uncertainty Quantification

Likelihood
function Prior

(noise model distribution
assumption)

Uncertainty
guantification
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Deterministic & Bayesian

Likelihood
function Prior

(noise model distribution
assumption)

Objective
function Regularization
(convexity)

How much do
we trust the
solution?

Uncertainty
quantification

For Large-Scale inverse problems
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