
'

&

$

%

Accelerated Optimization in the PDE
Framework

Anthony Yezzi

Georgia Institute of Technology

School of ECE

Presenting joint work with:

Minas Beyamin, Jeff Calder, Ganesh Sundaramoorthi

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 1



'

&

$

%

• Infinite dimensional flat spacesa b

– Denoising

– Inpainting

– Deblurring

– Obstacle Problem

• More general infinite dimensional manifoldsc d

– Active Contours (visual tracking and image segmenation)

– Active Surfaces (multiview stereo and radar reconstruction)

– Diffeomorphisms (nonrigid image registration)
a

“Accelerated variational PDE’s for efficient solution of regularized inversion problems,” (M. Benyamin,

J. Calder, G. Sundaramoorthi, A. Yezzi), J. Mathematical Imaging and Vision, vol. 62, Jan. 2020, pp. 10–36.
b

“PDE Acceleration: A convergence rate analysis and applications to obstacle problems,” (J. Calder

and A. Yezzi), Research in Mathematical Sciences, vol. 6, Dec. 2019, pp. 1–35.
c
“PDE Acceleration for Active Contours,” (A. Yezzi, G. Sundaramoorthi, and M. Benyamin), IEEE

Conf. Computer Vision and Pattern Recognition, June 2019, pp. 12318–12329, Long Beach, CA.
d

“Variational PDEs for Acceleration on Manifolds and Application to Diffeomorphisms,” (G. Sun-

daramoorthi and A. Yezzi), IEEE Conf. Neural Information Processsing Systems Dec. 2018, pp. 3797–3807.
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Early motivation: myocardial segmentation with trained 3D shapes

Initialization via training shape averages

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 3
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Nonconvex optimization model

Image Fitting Cost = wLV

∫
LV

(I−µLV )2dx+wRV

∫
RV

(I−µRV )2dx

+wmyo

∫
myo

(I − µmyo)2dx+ wBG

∫
BG

min
(
(I − µlo)2, (I − µhi)2

)
dx

Subject to inequality constraints: µlo ≤ µmyo ≤ µRV ≤ µLV ≤ µhi

Region Overlap Penalty =

∫
LV ∩RV

dx+

∫
LV ∩BG

dx+

∫
RV ∩BG

dx
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Optimization result

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 5



'

&

$

%

Manual versus Automatic

Cardiologist manual-traced result Automated algorithm result

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 6
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Challenges faced by gradient descent

• Unwanted local minimizers

• Bouncing within narrow descent valleys.

Myocardial segmentation example

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 7
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Gradient descent with momentum

When gradient descent iterations start bouncing back and forth

across a descending narrow valley in the energy function, then the

“average” of consecutive parameter increments will better

approximate the descent direction (for the same step size).

search direction = λ (prior search direction)

+ (1− λ) (gradient direction)

Myocardial segmentation example

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 8
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Effect in myocardial segmentation scheme

Converged 3D shape-trained myocardial segmentation results (2D

cross-sections shown) both with and without gradient momentum.

Without momentum Compared energy descent With momentum (0.875)

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 9
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Nesterov’s Accelerated Gradient Descent

Strategic, dynamically changing weights on the momentum term

can further boost the descent process. In the case of a smooth,

convex function E(x), Nesterov put forth the following scheme

which attains a rate of order 1
t2

: E(yk)− E(x∗) ≤ 2β‖x1−x∗‖2
t2

yk+1 = xk −
1

β
∇E(xk)

xk+1 = (1− γk)︸ ︷︷ ︸
overshoot

yk+1 + γkyk

where

γk =
1− λk
λk + 1

[
always ≤ 0]

λk =
1 +

√
1 + 4λ2

k−1

2

[
λ0 = 0

]
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Variational framework for accelerated gradient

Wibisono, Wilson, Jordan [NAS 2016] generalize Nesterov’s and

other momentum based gradient descent schemes in Rn based on

the Bregman divergence of a convex distance generating function h

D(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉

(when h(x) = 1
2‖x‖

2 this becomes the Euclidean distance 1
2‖y − x‖2)

and the Euler-Lagrange equation for the action integral associated

with the following Bregman Lagrangian

L(X, V, t) = ea(t)+γ(t)
[
D(X + e−a(t)V,X)− eb(t)U(X)

]
where the potential energy U represents the cost to be minimized.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 11
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In the Euclidean case this simplifies to

generalized action = eγ(t)

e−a(t) 1

2
‖V ‖2︸ ︷︷ ︸
T

−ea(t)+b(t)U(X)


where T models the kinetic energy of a unit mass particle in Rn.

Nesterov’s methods belong to a subfamily of Bregman Lagrangians

with the following choice of parameters, indexed by k > 0.

a = log k − log t

b = k log t+ log λ

γ = k log t

• k = 2: Nesterov’s accelerated mirror descent

• k = 3: Nesterov’s cubic-regularized Newton method

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 12
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Nesterov Generalized Action Integral

∫
tk+1

k

(
T− λk2tk−2U

)
dt

Note that the explicit time dependence in the Lagrangian means

that we do not have conservation of energy (the Hamiltonian is not

conserved). The resulting Euler-Lagrange equation will yield,

among other terms, frictional forces that monotonically dissipate

energy, thereby guaranteeing convergence.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 13
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Motivation from Physics (classical action)

• Newton’s law for conservative forces

F = d
dt

(
mv(t)

)
, F = −∇U

• Critical path for Action Integral∫
1
2
mv2 −U

• As the ball accelerates it

– reaches a minimum faster

– gains momentum to travel over

shallow dips in the potential

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 14
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Generalization to PDE Framework

We consider the calculus of variations problem

min
u
E[u] :=

∫
Ω

Φ(x,∇u) + Ψ(x, u) dx.

The Euler-Lagrange equation satisfied by minimizers is

∇E[u] := Ψz(x, u)−∇ · (∇Ψ(x,∇u)) = 0, (1)

where Φ = Φ(x, p), ∇Φ = ∇pΦ and Ψ = Ψ(x, z). We note that the

L2-gradient ∇E[u] satisfies

d

dε

∣∣∣
ε=0

E[u+ εv] =

∫
Ω

∇E[u] v dx (2)

for all v smooth with compact support.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 15
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Kinetic Energy and Action Integral

We define the action integral

J [u] =

∫ t1

t0

k(t)

(
1

2

∫
Ω

ρu2
t dx− b(t)E[u]

)
dt, (3)

where k(t) and b(t) are time dependent weights, ρ = ρ(x)

represents a mass density, and u = u(x, t).

Therefore, the PDE accelerated descent equations are

∂

∂t
(k(t)ρut) = −k(t)b(t)∇E[u].

It is more convenient to define a(t) = k′(t)/k(t) are rewrite

utt + a(t)ut = −b(t)ρ(x)−1∇E[u]. (4)

Gradient Descent = Infinite friction limit

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 16
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Numerical Schemes for Accelerated PDE’s

If we consider the explicit forward Euler discretization of the

continuous gradient descent PDE we obtain

u(x, t+ ∆t)− u(x, t)

∆t
= −∇E

This leads to the following simple discrete iteration

∆un(x) = −∆t∇En (5)

un+1(x) = un(x) + ∆un(x)

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 17



'

&

$

%

Gradient descent stability constraint

Applying Von Nuemann analysis to the linearized version yields

the update

Un+1(ω) = (1−∆t z(ω))︸ ︷︷ ︸
ξ(ω)

Un(ω)

z(ω)
.
=

DFT (linearized homogeneous part of (∇En))

DFT (un)
(6)

which will be stable as long as the overall update amplification

factor ξ(ω) does not have complex amplitude exceeding unity

∆t ≤ z(ω) + z∗(ω)

z(ω)z∗(ω)
=

1

z(ω)
+

1

z∗(ω)
= 2<

(
1

z(ω)

)

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 18
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It is common in regularized optimization for the gradient amplifier

to be real and non-negative: z(ω) ≥ 0, yielding the CFL condition

∆t ≤ 2

zmax

(7)

where zmax
.
= maxω z(ω).

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 19
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Accelerated descent stability constraint

Using central difference approximations for both time derivatives
gives a second order discretization in time

u(x, t + ∆t)− 2u(x, t) + u(x, t−∆t)

∆t2
+ a

u(x, t + ∆t)− u(x, t−∆t)

2∆t
= −∇E(x, t)

which leads to the following update.

un+1(x) =
2un(x)−

(
1− a∆t

2

)
un−1(x)−∆t2∇En(x)

1 + a∆t
2

In the case of real z(ω) we obtain the following CFL condition

∆t ≤ 2
√
zmax

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 20
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Application to regularized inversion

Here we consider a very general class of variational regularized

inversion problems in the accelerated PDE framework. In

particular, we assume energy functions with the form

E(u) =

∫
Ω

f (|Ku− g|)︸ ︷︷ ︸
fidelity

+ r(‖∇u‖)︸ ︷︷ ︸
regularity

dx, with ḟ , ṙ, r̈ > 0

where f is a monotonically increasing penalty on the residual error

between data measurements g and a forward in the form of linear

operator K applied to the reconstructed signal u, while r is a

monotonically increasing penalty on the gradient of the

reconstruction.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 21
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General case (nonlinear wave equation)

The continuum gradient of E has the form

∇E(u) =
ḟ (|Ku− g|)
|Ku− g|

K∗ (Ku− g)− ṙ(‖∇u‖)∇ ·
(
∇u
‖∇u‖

)
− r̈(‖∇u‖)

∇uT∇2u∇u
‖∇u‖2

=
ḟ (|Ku− g|)
|Ku− g|︸ ︷︷ ︸
λ(u,x)>0

K∗ (Ku− g)−
ṙ(‖∇u‖)
‖∇u‖︸ ︷︷ ︸
c(∇u)>0

(
∇ · ∇u− uηη

)
− r̈(‖∇u‖)︸ ︷︷ ︸
d(∇u)>0

uηη

This gives rise to the following class of accelerated flows which take

the form of a nonlinear wave equation.

utt− c(∇u) (∇ · ∇u− uηη)− d(∇u) uηη+aut = λ(u, x) K∗ (g −Ku)

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 22
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Optimal damping in the linear case

When we have a linear PDE acceleration equation

utt + aut + Lu+ λu = f in Ω× (0,∞)

where L is a second order elliptic operator, a Fourier analysis leads

to the optimal choice

a = 2
√
λ1 + λ

where λ1 is the first Dirichlet eigenvalue of L and the optimal

convergence rate

|u(x, yt)− u∗(x)| < C e−at

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 23
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Quadratic regularization

The easiest special case to consider would be that of quadratic

fidelity and regularity penalties without any forward model (more

precisely, with K as the identity operator).

E(u) =

∫
Ω

λ

2
(u− g)2 +

c

2
‖∇u‖2 dx

The accelerated descent PDE therefore takes the form of a damped

inhomogenous linear wave equation.

utt − c∇ · ∇u+ aut = λ(g − u) (8)

Click Here for Demo

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 24
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Beltrami regularization

E(u) =

∫
Ω

λ

2
(K ∗ u− g)2 +

1

β

√
1 + ‖β∇u‖2︸ ︷︷ ︸√

ε2+‖∇u‖2, ε= 1
β

dx (9)

In this case the variational gradient is non-linear and the

accelerated PDE takes the quasilinear form.

utt −∇ ·

(
β∇u√

1 + ‖β∇u‖2

)
+ aut = λKT ∗K ∗ (g − u)

Conservative optimal damping estimate:

a = 2
√
βπ2 + λ

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 25
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Total Variation regularization

If we consider the limit as β →∞, the Beltrami regularization

penalty converges to the total variation penalty.

E(u) =

∫
Ω

λ

2
(K ∗ u− g)2 + ‖∇u‖ dx

with a non-linear variational gradient that decomposes as follows.

∇E = λKT ∗K ∗ (u− g)−∇ ·
(
∇u
‖∇u‖

)
The accelerated PDE now takes the form

utt −∇ ·
(
∇u
‖∇u‖

)
+ aut = λKT ∗K ∗ (u− g)

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 26



'

&

$

%

TV denoising

Noisy Square Split Bregman PDE acceleration

Figure 1: Denoising of a synthetic image with total variation restora-

tion with λ = 1000 via (b) Split Bregman and (c) PDE acceleration.

In PDE acceleration we used ∆t = ∆x/2 and a = 6
√
λ.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 27



'

&

$

%

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 PDE Acceleration

Primal Dual

SplitBregman

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 PDE Acceleration

Primal Dual

SplitBregman

t = 1 t = 2

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 PDE Acceleration

Primal Dual

SplitBregman

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 PDE Acceleration

Primal Dual

SplitBregman

t = 3 t = 4

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 28



'

&

$

%

0 50 100 150 200 250 300 350 400 450 500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Iteration 50

Iteration 100

Iteration 150

Iteration 200

0 50 100 150 200 250 300 350 400 450 500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Iteration 5

Iteration 20

Iteration 40

Iteration 200

PDE Acceleration Primal Dual

Figure 2: Comparison of flows generated by (a) PDE Acceleration

and (b) Primal Dual for solving the TV restoration problem on the

noisy square image. Notice the edges are better preserved in PDE

acceleration earlier in the flow.
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Active Contours

. . . deformable curves which evolve to capture object boundaries

within images or other spatially distributed data.

Rc

R
C

Edge-Based Active Contours

evolve in response to image mea-

surements along the contour.

Region-Based Active Contours

evolve in response to image statis-

tics inside/outside the contour.

EXAMPLES

FanBone Cardiac Knee

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 30
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Level Set Implementations

Level set methods, introduced by Osher and Sethian, greatly

facilitate the numerical implementation of active contours.

ψ

C

Evolving graph

Evolving curve

• Embed the curve C as the zero level

set of a graph ψ:

ψ(C) = 0

• Evolve ψ such that its zero level set

follows the desired motion for C:

∂ψ

∂t
= −∇ψ · ∂C

∂t

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 31
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Splitting and Merging

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 32
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PDE Acceleration for Geometric Active Contours

T =
1

2
ρ

∫
C

∥∥∥∥∂C∂t
∥∥∥∥2

ds, where ρ = constant mass per unit length

U = E(C), chosen so δE =

∫
C

δC · fN︸︷︷︸
gradient

ds

The Euler-Lagrange equation of the generalized action yields

∂2C

∂t2︸︷︷︸
acceleration

=
λk2t(k−2)

ρ
fN︸︷︷︸

gradient

− k + 1

t

∂C

∂t︸ ︷︷ ︸
friction

−
(
∂2C

∂s∂t
· ∂C
∂s

)
∂C

∂t
− ∂

∂s

(
1

2

∥∥∥∥∂C∂t
∥∥∥∥2
∂C

∂s

)
︸ ︷︷ ︸

advection/reaction

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 33
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Accelerated Contour Evolution Model

Let α and β denote the tangential and normal evolution speeds

Ct = αT + βN

The Euler-Lagrange flow may be written as the coupled system

αt = −(α2)s + 2αβκ− 3

t
α

βt = − (αβ)s +

(
1

2
β2 − 3

2
α2

)
κ+

f

ρ
− 3

t
β

If we start with α = 0 then α remains zero and we obtain

βt =
1

2
β2κ+

f

ρ
− 3

t
β

Ct = βN

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 34
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Coupled First Order PDE system

If we start with zero initial velocity we can decompose this

nonlinear second-order PDE into a simpler coupled system of

nonlinear first order PDE’s as follows

∂C

∂t
= βN,

∂β

∂t
=
λk2t(k−2)

ρ
f +

1

2
β2κ− k + 1

t
β

Implicit level set implementation:

∂ψ

∂t
= −β̂‖∇ψ‖, ∂β̂

∂t
=
λk2t(k−2)

ρ
f̂ +∇·

(
1

2
β̂2 ∇ψ
‖∇ψ‖

)
− k + 1

t
β̂

where f̂(x, t) and β̂(x, t) denote spatial extensions of f and β.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 35
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Conserved flowable mass model

If we allow the density ρ to evolve (and flow along the curve):

v = internal flow speed, total mass velocity =
∂C

∂t
+ v

∂C

∂s

We could therefore consider a more general kinetic energy as

T =

∫
C

1

2
ρ

∥∥∥∥∂C∂t + v
∂C

∂s

∥∥∥∥2

ds

with the variable density evolution governed by the following

continuity equation (local mass conservation)

∂ρ

∂t
+

∂

∂s
(ρv)︸ ︷︷ ︸

mass change

+ρ

(
∂2C

∂s∂t
· ∂C
∂s

)
︸ ︷︷ ︸
length change

= 0

which can be imposed as a PDE Lagrange multiplier constraint.

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 36
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The Euler-Lagrange equation of the generalized action yields the

following coupled evolution of C, v, and ρ

acceleration︷︸︸︷
∂V

∂t
=
λk2tk−2

ρ

gradient︷︸︸︷
f N −

advection︷ ︸︸ ︷(
V · ∂C

∂s

)
∂V

∂s
−

friction︷ ︸︸ ︷
k + 1

t
V (10)

∂C

∂t
=(V ·N)N,

∂ρ

∂t
= −

(
V · ∂C

∂s

)
∂ρ

∂s
− ρ ∂V

∂s
· ∂C
∂s

where the velocity field V describes both the tangential flow of the

mass as well as the normal flow of the curve itself.

(Note connection to optimal mass transport)

The region based flowable mass for diffeomorphism evolution (joint

work led by Sundaramoorthi) is even more strongly connected!

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 37
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Adding spatial evolution regularity

Heuristic approach: added velocity diffusion term

acceleration︷︸︸︷
∂V

∂t
=
λk2tk−2

ρ

gradient︷︸︸︷
f N −

advection︷ ︸︸ ︷(
V · ∂C

∂s

)
∂V

∂s
−

friction︷ ︸︸ ︷
k + 1

t
V +

diffusion︷ ︸︸ ︷
τ
∂2V

∂s2

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 38
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More principled approach: mass potential energy

If we imaging that the flowable density function ρ represents the

“height” of an incompressible fluid contained within the evolving

interface, we may model the potential energy of the mass

configuration as

Umass = g L

∫
C

1

2
ρ2ds

where g represents a tunable gravitational constant and L

represents the total length of the evolving curve (this scaling makes

the minimum potential energy value independent of the curve).

This will favor (but not constrain) deformations that keep the

density constant (translations, rescalilngs, rotations, etc).

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 39
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Incorporating stochastic acceleration terms

Finally, the accelerated framework for active contours, surfaces,
and other PDE evolution schemes, offers a numerical opportunity
to introduce random noise into the evolution process without
destroying the continuity of the evolution or the evolving object.

acceleration︷︸︸︷
∂V

∂t
=
λk2tk−2

ρ

gradient︷︸︸︷
f N −

advection︷ ︸︸ ︷(
V ·

∂C

∂s

)
∂V

∂s
−

friction︷ ︸︸ ︷
k + 1

t
V +

noise︷︸︸︷
τW ,

∂C

∂t
= (V ·N)N

Since the noise is added to the acceleration, it gets twice

integrated in the construction of the evolving geometry and

therefore does not immediately interfere with its continuity nor its

first order differentiability (maintains a continous unit normal).

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 40
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Preliminary results

Three active contours getting stuck in different local minima

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 41
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Accelerated active contours all converging to same minimzer
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Demos: Let’s play a bit!

Accelerated Active Contour Demos

Accelerated Active Surface Demo

Tony Yezzi — School of Electrical and Computer Engineering — Georgia Institute of Technology 43


