New deep neural networks solving non-linear inverse problems

Matti Lassas
and
Christopher Wong
Maarten de Hoop

University of Helsinki

April 20, 2020
Inverse problem in a 3-dimensional body

In the inverse problem for the wave equation we aim to find the unknown wave speeds \(c(x) \) from boundary measurements.

Let \(u(x, t) = u^h(x, t) \) solve the wave equation

\[
(\partial_t^2 - c(x)^2 \Delta) u(x, t) = 0 \quad \text{on} \quad (x, t) \in M \times \mathbb{R}_+,
\]

\[
\partial_n u(x, t)|_{\partial M \times \mathbb{R}_+} = h(x, t), \quad u|_{t=0} = 0, \quad \partial_t u|_{t=0} = 0,
\]

where \(h \) is boundary source, \(M \subset \mathbb{R}^3 \). The source-to-solution map is

\[
\Lambda_c h = u^h(x, t)|_{(x,t) \in \partial M \times \mathbb{R}_+}.
\]

Next we consider this problem in the 1-dimensional case and solve it using neural networks.
Overview of the talk

1. We consider the solution map $F : \Lambda_c \rightarrow c$ that solves the inverse problem in the 1-dimensional case.

2. We propose an architecture of neural networks, where the input is a linear operator Λ.

3. We show that the solution map F can be written as a neural network with the proposed architecture.

4. The performance of the trained neural network can be estimated using stability theorems for inverse problems.
Outline:

- **Solution of the inverse problem in 1-dimensional space**
- Standard neural networks
- Operator recurrent networks
Inverse problem in 1-dimensional space

Consider the wave equation in one-dimensional space, \(x \in \mathbb{R}_+ \). This corresponds to subsurface imaging when the wave speed depends only on the depth.

Let \(u(x, t) \) be the solution of the wave equation

\[
\left(\frac{\partial^2}{\partial t^2} - c(x)^2 \frac{\partial^2}{\partial x^2} \right) u(x, t) = 0, \quad x \in \mathbb{R}_+, \ t \in \mathbb{R}_+
\]

\[
\frac{\partial}{\partial x} u|_{x=0} = h(t), \quad u|_{t=0} = 0, \quad \frac{\partial}{\partial t} u|_{t=0} = 0,
\]

where the wave speed \(c(x) \) is unknown. Denote \(u(x, t) = u^h(x, t) \).

Let \(T > 0 \). Suppose we are given the source-to-solution map, \(\Lambda = \Lambda_c \),

\[
\Lambda_c h = u^h(x, t)|_{x=0}, \quad t \in (0, 2T).
\]

\(\Lambda_c \) is a linear operator or “a matrix”. Physically the above means that

\(\Lambda_c : \) boundary source \(h \) \(\rightarrow \) the boundary value of the wave \(u|_{x=0} \).
Travel time coordinate

The travel time for the wave from the boundary point 0 to the point x is

$$
\tau(x) = \int_0^x \frac{1}{c(x')} dx'.
$$

The domain of influence corresponding to time s is the set

$$
M(s) = \{ x \in \mathbb{R}_+ : \tau(x) \leq s \}
$$

It consists of the points x for which the travel time $\tau(x)$ to the boundary is at most s.
Inverse problem in travel time coordinates

We study the inverse problem of finding $c(x)$ when Λ_c is given. Let

$$F : \Lambda_c \rightarrow (c \circ \tau^{-1}, \tau^{-1})$$

be the map that solves the inverse problem. The map F is non-linear. We aim to construct a neural network that approximates $F(\Lambda)$.

![Graph showing incident, reflected, and transmitted waves](image-url)
Source-to-solution map determines inner products of waves

Denote
\[
\langle u^f(T), u^h(T) \rangle = \int_{\mathbb{R}_+} u^f(x, T)u^h(x, T)dV(x), \quad dV = \frac{1}{c(x)^2}dx,
\]
\[
\|u^f(T)\|_{L^2(M)} = \langle u^f(T), u^f(T) \rangle^{\frac{1}{2}}.
\]

By Blagovestchenskii formula,
\[
\langle u^f(T), u^h(T) \rangle = \int_0^{2T} (K_\Lambda f)(t)h(t) dt, \quad \langle u^f(T), 1 \rangle = \int_0^T f(t)(T - t) dt
\]
where \(\Lambda = \Lambda_c\) is the source-to-solution map,

\[
K_\Lambda = J\Lambda - R\Lambda RJ,
\]
\[
Rf(t) = f(2T - t) \quad \text{“time reversal operator”},
\]
\[
Jf(t) = \frac{1}{2} 1_{[0,T]}(t) \int_t^{2T-t} f(s)ds \quad \text{“low pass filter”}.
\]
An analytic solution algorithm for the inverse problem

By Bingham-Kurylev-L.-Siltanen 2008 and dH-L-W 2020, the inverse problem is solved as follows: Suppose we are given Λ.

Step 1: For the depth parameter $0 \leq s \leq T$, let $h_{\beta,s} \in L^2(0, 2T)$ solve

$$
\min_h \| u^h(T) - 1 \|^2_{L^2} + \beta \| Ah \|_{\ell^1} = \langle K_{\Lambda} h, h \rangle - 2\langle h, b \rangle + C + \beta \| Ah \|_{\ell^1},
$$

where $\text{supp}(h) \subset [T - s, T]$ and $A : L^2(0, 2T) \to \ell^2$ is an isometry. Then

$$
\lim_{\beta \to 0} u^{h_{\beta,s}}(x, T) = 1_{M(s)}(x).
$$

We call $h_{\beta,s}$ the optimized sources.

Thus, when β is small,

$$
u^{h_{\beta,s}}(x, T) \approx 1_{M(s)}(x) = \begin{cases}
1, & \text{if } \tau(x) \leq s \\
0, & \text{otherwise}.
\end{cases}
$$
An analytic solution algorithm for the inverse problem

Step 2. Using the the optimized sources $h_{\beta,s}$, we compute

$$V(s) = \lim_{\beta \to 0} \int_0^T h_{\beta,s}(t) (T - t) dt = \lim_{\beta \to 0} \langle u^{h_{\beta,s}}(T), 1 \rangle_{L^2(M)}$$

$$= \int_0^{\tau(s)^{-1}} \frac{1}{c(x)^2} dx,$$

$$w(s) = \partial_s V(s).$$

Then

$$c(\tau^{-1}(s)) = \frac{1}{w(s)}, \quad \tau^{-1}(s) = \int_0^s \frac{1}{w(t)} dt.$$
An analytic solution algorithm for the inverse problem

The above minimization problem can be solved using an iteration. Hence the inverse problem is solved as follows:

Step 1: For \(j = 1, \ldots, K \), let \(s_j = j \frac{T}{2K} \) and \(h^{(j)} = h^{(j)}_L \) be computed by doing \(L \) steps of the iterated soft thresholding,

\[
 h^{(j)}_{\ell+1} := \sigma_\beta(h^{(j)}_\ell) - AP_j(J\Lambda - R\Lambda RJ)P_jA^*h^{(j)}_\ell + AP_jb, \quad h^{(j)}_0 = 0.
\]

Here, \(\beta > 0 \) is the regularization parameter and

\[R \] is the time-reversal operator, \(J \) is a low-pass filter,
\[A : L^2(0, 2T) \to \ell^2 \] is an isometry, \(P_jh = 1_{(T-s_j, T)} \cdot h, \quad b = (T-t)_+ \).

Also, \(\sigma_\beta(x) = \text{relu}(x - \beta) - \text{relu}(-x - \beta) \) is the soft thresholding of \(x \).

Step 2. Compute \(c(\tau^{-1}(s_j)) \approx G_j(h^{(1)}, \ldots, h^{(K)}) \), where \(G_j \) are explicit functions.
Summary on the analytic solution of the inverse problem

Consider the map $F : \Lambda_c \rightarrow (c \circ \tau^{-1}, \tau^{-1})$ that reconstructs the wave speed $c(x)$ from the boundary measurements Λ_c. The discretized version of this map, $F : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2K}$ can be written as

$$F(\Lambda_c) = G(f^{(1)}(\Lambda_c), f^{(2)}(\Lambda_c), \ldots, f^{(K)}(\Lambda_c))$$

where $f^{(j)} : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^n$ map Λ_c to the optimized sources,

$$f^{(j)}(\Lambda_c) = h^{(j)}.$$

Next we define a family of neural networks than can approximate functions $f^{(j)} : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^n$. The explicit function G can be approximated by a standard neural network. Then, we can approximate F by a neural network.
Outline:

- Solution of the inverse problem in 1-dimensional space
- **Standard neural networks**
- Operator recurrent networks
In every node in the hidden layers, one operates with a non-linear activation function ϕ. In this talk, ϕ is the Rectified Linear Unit,

\[\phi(x) = \text{relu}(x) := \max(0, x) = \begin{cases}
 x, & x > 0, \\
 0, & x \leq 0,
\end{cases} \quad x \in \mathbb{R} \]
Definition of the standard deep neural network

A standard neural network is a function $f_\theta : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L}$ defined by

$$y_0 = x,$$
$$y_{\ell+1} = \phi \left(A_\ell^\theta y_\ell + b_\ell^\theta \right),$$
$$f_\theta(x) = y_L.$$

Architecture:

- ℓ: the layer index, max depth L.
- y_ℓ: intermediate output at layer ℓ.
- $b_\ell^\theta \in \mathbb{R}^{d_{\ell+1}}$, $A_\ell^\theta \in \mathbb{R}^{d_{\ell+1} \times d_\ell}$ are the biases and weight matrixes that depend on parameters $\theta = (\theta_1, \theta_2, \ldots, \theta_m)$.
- ϕ is the activation function, the Rectified Linear Unit (relu)

$$\phi : \mathbb{R}^d \to \mathbb{R}^d, \quad \phi(x_1, \ldots, x_d) = (\max(0, x_1), \ldots, \max(0, x_d))$$
A modification of a neural network

Recall: A standard deep neural network is a function \(f_\theta : \mathbb{R}^{d_0} \to \mathbb{R}^{d_L} \) that takes in a vector \(x \in \mathbb{R}^{d_0} \) and computes following operations

\[
\begin{align*}
y_0 &= x, \\
y_{\ell+1} &= \phi \left(A_\theta^\ell y_\ell + b_\theta^\ell \right), \\
f_\theta(x) &= y_L.
\end{align*}
\]

We will modify this: We define a function \(f_\theta : \mathbb{R}^{n \times n} \to \mathbb{R}^n \) that takes in a linear operator \(\Lambda \in \mathbb{R}^{n \times n} \) and computes following operations

\[
\begin{align*}
y_0 &= b^0, \\
y_{\ell+1} &= \phi \left(A_\theta^\ell \Lambda y_\ell + b_\theta^\ell \right), \\
f_\theta(\Lambda) &= y_L.
\end{align*}
\]
Outline:

- Solution of the inverse problem in 1-dimensional space
- Standard neural networks
- Operator recurrent networks
Definition

An operator recurrent network with depth L, width n and parameters $	heta \in [-1, 1]^D \subset \mathbb{R}^D$ is a function $f_\theta : \mathbb{R}^{n \times n} \to \mathbb{R}^n$ given by

$$f_\theta(\Lambda) = h_L,$$

$$h_\ell = b_{\theta,1}^{\ell,1} + A_{\theta}^{\ell,1} h_{\ell-1} + A_{\theta}^{\ell,2} \Lambda h_{\ell-1} + \phi \left[b_{\theta,2}^{\ell,2} + A_{\theta}^{\ell,3} h_{\ell-1} + A_{\theta}^{\ell,4} \Lambda h_{\ell-1} \right],$$

where the initial vector $h_0 = b_0^{0,1} \in \mathbb{R}^n$ is independent of the input Λ and $A_{\theta}^{\ell,i} \in \mathbb{R}^{n \times n}$, $b_{\theta,i}^{\ell,i} \in \mathbb{R}^n$. Activation functions ϕ are relu functions.
The weight matrixes $A_{\theta}^{\ell,i} \in \mathbb{R}^{n \times n}$ have the form

$$A_{\theta}^{\ell,i} = A_{\theta}^{\ell,i,(0)} + A_{\theta}^{\ell,i,(1)}$$

$$A_{\theta}^{\ell,k,i,(1)} = \sum_{p=1}^{n} \theta_{2p-1}^{\ell,i}(\theta_{2p}^{\ell,i})^T,$$

where $A_{\theta}^{\ell,i,(0)}$ are fixed matrixes that do not depend on θ, $A_{\theta}^{\ell,i,(1)}$ are sparse matrixes that are determined by parameters $\theta_{p}^{\ell,i} \in \mathbb{R}^{n}$. We replace the compact operators in the analytic method (e.g. the low pass filter J) by sparse matrixes and learn these matrixes $A_{\theta}^{\ell,i,(1)}$ from training data.

Non-compact operators in the analytic method (e.g. the identity operator I or the time reversal R) determine the fixed matrixes $A_{\theta}^{\ell,i,(0)}$.
Next, we consider a general target function $f : \mathbb{R}^{n \times n} \to \mathbb{R}^n$. We want to learn the parameters θ such that the neural network $f_\theta : \mathbb{R}^{n \times n} \to \mathbb{R}^n$ approximate the function $f : \mathbb{R}^{n \times n} \to \mathbb{R}^n$.

Definition

The regularized loss function \mathcal{L} with regularization parameter $\alpha > 0$ is given by

$$\mathcal{L}(\theta, \Lambda) = \|f_\theta(\Lambda) - f(\Lambda)\|_2^2 + \alpha \mathcal{R}(\theta)$$

To make the weight matrixes $A_{\theta}^{\ell,i,(1)}$ sparse, we use the ℓ^1-norm

$$\mathcal{R}(\theta) = \|\theta\|_1 = \sum_{\ell,k,p} \|\theta_{\ell,i}^p\|_{\mathbb{R}^n}.$$
Training a neural network with sampled data

Assume that Λ is random and has a priori distribution μ, that is, $\Lambda \sim \mu$.

Let $\Lambda_1, \Lambda_2, \ldots, \Lambda_N$ be independent samples from a priori distribution μ. Suppose we are given the training set

$$S = \{(\Lambda_1, f(\Lambda_1)), \ldots, (\Lambda_N, f(\Lambda_N))\}.$$

Training of the neural network means minimizing the empirical loss function,

$$\theta(S) = \arg\min_{\theta} \mathcal{L}(\theta, S),$$

$$\mathcal{L}(\theta, S) = \frac{1}{N} \sum_{i=1}^{N} \| f_{\theta}(\Lambda_i) - f(\Lambda_i) \|_{\mathbb{R}^n}^2 + \alpha \| \theta \|_1.$$
Definition of the optimal neural network

For a network f_θ with parameters θ, the expected loss is

$$L(\theta, \mu) := \mathbb{E}_{\Lambda \sim \mu} [L(\theta, \Lambda)] .$$

The parameters θ^* of the optimal neural network $f_{\theta^*} : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^n$ are

$$\theta^* = \arg\min_{\theta} L(\theta, \mu).$$
Neural network vs. analytic solution algorithm

Let \(f_{\theta_0}(\Lambda) \) be a deterministic approximation of an analytic solution algorithm (e.g. the analytic solution method for the inverse problem).

A trivial, but important result is that

\[
E_{\Lambda \sim \mu} [L(\theta^*, \Lambda)] \leq E_{\Lambda \sim \mu} [L(\theta_0, \Lambda)].
\]

This means that the optimal neural network \(f_{\theta^*}(\Lambda) \) has at least as good expected performance as \(f_{\theta_0}(\Lambda) \).
Approximation of the target function by a neural network

Definition

We say that the target function \(f : \mathbb{R}^{n \times n} \to \mathbb{R}^n \) can be approximated with accuracy \(\varepsilon_0 \) by a neural network with a depth \(L \) and a sparsity bound \(R_0 \), if there is \(\theta_0 \) such that

\[
\| \theta_0 \|_1 \leq R_0, \tag{1}
\]

and the network \(f_{\theta_0} \) satisfies

\[
\sup_{\| \Lambda \| \leq 1} \| f(\Lambda) - f_{\theta_0}(\Lambda) \|_{\mathbb{R}^n} \leq \varepsilon_0. \tag{2}
\]

Stability results for the inverse problem for the 1-dimensional wave equation [Korpela-L.-Oksanen 2018], show that (1)-(2) are valid with \(\varepsilon_0 > 0, \ L = C \log(1/\varepsilon_0), \ n = C\varepsilon_0^{-175}, \) and \(R_0 = C\varepsilon_0^{-16} \).
How well a trained network works?

Next we estimate the expected performance gap between the trained neural network $f_{\theta(S)}$ and the optimal neural network f_{θ^*}, that is,

$$G_{\text{per}}(S) = \left| \mathbb{E}_{\Lambda \sim \mu} \mathcal{L}(\theta(S), \Lambda) - \mathbb{E}_{\Lambda \sim \mu} \mathcal{L}(\theta^*, \Lambda) \right|$$

$G_{\text{per}}(S)$ is the difference of the expected loss of $f_{\theta(S)}$ and f_{θ^*}.

Also, we estimate the expected generalization error that is the difference of the empirical loss function and the true loss function for the neural network $f_{\theta(S)}$,

$$G_{\text{gen}}(S) = \left| \mathcal{L}(\theta(S), S) - \mathbb{E}_{\Lambda \sim \mu} \mathcal{L}(\theta(S), \Lambda) \right|.$$

$G_{\text{gen}}(S)$ measures how well we can estimate the performance of $f_{\theta(S)}$ with a general input Λ by using only the training data.
Theorem

Let $\alpha > 0$. Let $S = \{(\Lambda_1, f(\Lambda_1)), \ldots, (\Lambda_N, f(\Lambda_N))\}$ be the training set that consists of N independent samples from the distribution μ. Then,

$$
P_{S \sim \mu^N} [G_{gen}(S) \leq \delta] \geq 1 - C_1 \left(\frac{1}{\delta}\right)^{C_2} \exp\left(-\frac{1}{50n^2\|f\|_\infty^4}\delta^2 \cdot N\right)
$$

where

$$
C_1 = \exp\left(8^{L+4}n^{3/2}(1 + \|f\|_\infty)\exp(5\|f\|_\infty^2\alpha^{-1})\right),
$$

$$
C_2 = 8^{L+1}n \exp(4\|f\|_\infty^2\alpha^{-1}),
$$
Suppose the target function f can be approximated with accuracy ε_0 by a neural network with the depth L and the sparsity bound R_0.

Let $\alpha \geq \varepsilon_0^2 / R_0$.

Let $S = \{(\Lambda_1, f(\Lambda_1)), \ldots, (\Lambda_N, f(\Lambda_N))\}$ be the training set that consists of N independent samples from the distribution μ. Then,

$$\mathbb{P}_{S \sim \mu^N} [G_{gen}(S) \leq \delta] \geq 1 - C_1 \left(\frac{1}{\delta}\right)^{C_2} \exp\left(-\frac{1}{50n^2\|f\|_\infty^4} \delta^2 \cdot N\right)$$

where

$$C_1 = \exp \left(8^{L+3} n^\frac{3}{2} (R_0 + L + \|f\|_\infty) e^{6R_0\alpha^{-1/2}} \right),$$

$$C_2 = 8^{L+1} n e^{6R_0\alpha^{-1/2}}.$$
Theorem

Suppose the target function f can be approximated with accuracy ε_0 by a neural network with the depth L and the sparsity bound R_0. Let $\alpha \geq \varepsilon_0^2 / R_0$.

Let $S = \{(\Lambda_1, f(\Lambda_1)), \ldots, (\Lambda_N, f(\Lambda_N))\}$ be the training set that consists of N independent samples from the distribution μ. Then,

$$\mathbb{P}_{S \sim \mu^N} [G_{\text{per}}(S) \leq 2\delta] \geq 1 - 2C_1 \left(\frac{1}{\delta} \right)^{C_2} \exp\left(- \frac{1}{50n^2\|f\|_4^2} \delta^2 \cdot N \right)$$

where

$$C_1 = \exp \left(8^{L+3} n^3 (R_0 + L + \|f\|_\infty) e^{6R_0} \alpha^{1/2} \right),$$

$$C_2 = 8^{L+1} n e^{6R_0} \alpha^{-1/2}.$$
Learning travel depth in inverse problem for wave equation

Preliminary numerical tests on solving the inverse problem for a wave equation with a recurrent operator neural network (without sparsity):

Sample piecewise-constant wavespeed $c(x)$; True depth $\tau^{-1}(t)$ on how deep the waves propagate as a function of time t; Predicted depth as a function of time.

Numerical details: Training with piecewise-constant medium; 5000 data pairs, 20% withheld as testing data; Testing error: $6.3e^{-5}$; Networks with 16.5M parameters, sparsity regularization is not yet implemented.
Thank you for your attention!

References: