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Computation and Statistics

• A Grand Challenge of our era: tradeoffs between 
statistical inference and computation
– most data analysis problems have a time budget
– and often they’re embedded in a control problem

• Optimization has provided the computational model for
this effort (computer science, not so much)
– it’s provided the algorithms and the insight

• On the other hand, modern large-scale statistics has 
posed new challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel/distributed 
platforms, etc



Computation and Statistics (cont)

• Modern large-scale statistics has posed new challenges 
for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel/distributed 
platforms, etc

• Current algorithmic focus: what can we do with the 
following ingredients? 
– gradients
– stochastics
– acceleration

• Current theoretical focus: placing lower bounds from 
statistics and optimization in contact with each other



Outline

• Escaping saddle points efficiently
• Variational, Hamiltonian and symplectic perspectives on 

Nesterov acceleration
• Acceleration and saddle points
• Acceleration and Langevin diffusions
• Optimization and empirical processes



Part I: How to Escape Saddle Points 
Efficiently 

with Chi Jin, Praneeth Netrapalli, Rong Ge, 
and Sham Kakade



Nonconvex Optimization and Statisitics

• Many interesting statistical models yield nonconvex 
optimization problems (cf neural networks)

• Bad local minima used to be thought of as the main 
problem in fitting such models

• But in many convex problems there either are no 
local optima (provably), or stochastic gradient 
seems to have no trouble (eventually) finding global 
optima

• But saddle points abound in these architectures, 
and they cause the learning curve to flatten out, 
perhaps (nearly) indefinitely



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.
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Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Some Well-Behaved Nonconvex Problems 

•  PCA, CCA, Matrix Factorization 
•  Orthogonal Tensor Decomposition (Ge, Huang, Jin, 

Yang, 2015) 
•  Complete Dictionary Learning (Sun et al, 2015) 
•  Phase Retrieval (Sun et al, 2015) 
•  Matrix Sensing (Bhojanapalli et al, 2016; Park et al, 

2016) 
•  Symmetric Matrix Completion (Ge et al, 2016) 
•  Matrix Sensing/Completion, Robust PCA (Ge, Jin, 

Zheng, 2017) 

•  The problems have no spurious local minima and all 
saddle points are strict 

 



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.
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Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)
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Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)
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Next Questions

• Does acceleration help in escaping saddle points?
• What other kind of stochastic models can we use to 

escape saddle points?
• How do acceleration and stochastics interact?



Next Questions

• Does acceleration help in escaping saddle points?
• What other kind of stochastic models can we use to 

escape saddle points?
• How do acceleration and stochastics interact?

• To address these questions we need to understand 
develop a deeper understanding of acceleration than 
has been available in the literature to date



Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and 
Michael Betancourt 



Interplay between Differentiation and 
Integration

• The 300-yr-old fields: Physics, Statistics
– cf. Lagrange/Hamilton, Laplace expansions, saddlepoint 

expansions
• The numerical disciplines

– e.g.,. finite elements, Monte Carlo
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Interplay between Differentiation and 
Integration

• The 300-yr-old fields: Physics, Statistics
– cf. Lagrange/Hamilton, Laplace expansions, saddlepoint 

expansions
• The numerical disciplines

– e.g.,. finite elements, Monte Carlo
• Optimization?

– to date, almost entirely focused on differentiation



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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The acceleration phenomenon

Two classes of algorithms:

I Gradient methods
• Gradient descent, mirror descent, cubic-regularized Newton’s

method (Nesterov and Polyak ’06), etc.

• Greedy descent methods, relatively well-understood

I Accelerated methods
• Nesterov’s accelerated gradient descent, accelerated mirror

descent, accelerated cubic-regularized Newton’s method
(Nesterov ’08), etc.

• Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

• Not descent methods, faster than gradient methods, still
mysterious
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Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt
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Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0
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General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



Symplectic Integration 

•  Consider discretizing a system of differential 
equations obtained from physical principles 

•  Solutions of the differential equations generally 
conserve various quantities (energy, momentum, 
volumes in phase space) 

•  Is it possible to find discretizations whose solutions 
exactly conserve these same quantities? 

•  Yes! 
–  from a long line of research initiated by Jacobi, Hamilton, 

Poincare’ and others 

 



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Symplectic vs Nesterov
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Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Problem Setup

Smooth Assumption: f (·) is smooth:

I `-gradient Lipschitz, i.e.

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

I ρ-Hessian Lipschitz, i.e.

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Goal: find second-order stationary point (SOSP):

∇f (x) = 0, λmin(∇2f (x)) ≥ 0.

Relaxed version: ε-second-order stationary point (ε-SOSP):

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε



Analysis of AGD in the Nonconvex Setting

I Challenge: AGD is not a descent algorithm

I Solution: Lift the problem to a phase space, and make use of a

Hamiltonian

I Consequence: AGD is nearly a descent algorithm in the Hamiltonian, with

a simple “negative curvature exploitation” (NCE; cf. Carmon et al., 2017)

step handling the case when descent isn’t guaranteed

12 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD



Hamiltonian Perspective on AGD

• AGD is a discretization of the following ODE

"̈ + $%"̇ + '( " = 0

• Multiplying by "̇ and integrating from +, to +- gives us

( "./ + 1
2 "̇./

- = ( ".2 + 1
2 "̇.2

- − $% 4
.2

./
"̇. -5+

• In convex case, Hamiltonian ( ". + ,
- "̇. - decreases monotonically



Algorithm

Algorithm Perturbed Accelerated Gradient Descent (PAGD)

1. for t = 0, 1, . . . do

2. if ‖∇f (xt)‖ ≤ ε and no perturbation in last T steps then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. yt ← xt + (1− θ)vt

5. xt+1 ← yt − η∇f (yt); vt+1 ← xt+1 − xt

6. if f (xt) ≤ f (yt) + 〈∇f (yt), xt − yt〉 − γ
2 ‖xt − yt‖2 then

7. xt+1 ← NCE(xt , vt , s); vt+1 ← 0

I Perturbation (line 2-3);

I Standard AGD (line 4-5);

I Negative Curvature Exploitation (NCE, line 6-7)
I 1) simple (two steps), 2) auxiliary. [inspired by Carmon et al. 2017]



Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ ( decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease 
in a single step

Do an 
amortized 

analysis



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ
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Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results...
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Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !( + 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm 
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)



Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If  % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If  % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If  % ≥ ' (
)* then, KL(. / , .∗) ≤ 4



Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and ( is the drag coefficient



Discretization

We can discretize; and at each step evolve according to

! "#$ = "&$!'
! "&$ = −) "&$!' − *∇, "# $/. . !' + 2)* !1$

we evolve this for time 2 to get an MCMC algorithm

Notice this is a second-order method. Can we get faster rates?



Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7



On Dissipative Symplectic Integration with
Applications to Gradient-Based Optimization

Guiherme França, Michael I. Jordan, and René Vidal

based on arXiv:2004.06840 [math.OC]
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Motivation

Suppose we have a dissipative Hamiltonian system:

dqj

dt
=
∂H

∂pj
,

dpj
dt

= −∂H
∂qj

, H = H(t, q, p),

where q ∈Mn (smooth manifold) and (q, p) ∈ T ∗M (cotangent bundle)
(j = 1, . . . , n). Assume that its trajectories can be viewed as solving

min
q∈M

f (q),

and that we understand the dynamics; i.e. stability, convergence rates, etc.
A fundamental question is the following:

Which discretizations are able to preserve the stability and
rates of convergence of such a continuous-time system?

The answer would give us a systematic way to derive efficient
optimization algorithms (“acceleration”) . . .

. . . without the need for a discrete-time convergence analysis.

G. França, M. I. Jordan, R. Vidal Dissipative Symplectic Optimization arXiv:2004.06840 [math.OC] 2 / 21



Motivation

Conservative Hamiltonian systems are ubiquitous — H(q, p) is
independent of time. But the conservation of energy precludes
convergence to a point; consider the harmonic oscillator.

This is not what we want in optimization.
We need “dissipation” — where H(t, q, p) is explicitly time-dependent —
which leads us to another important question:

Can we map optimization algorithms into dissipative
continuous-time dynamical systems that provide analytical
insight into the behavior of the algorithm?

The answer would allow us to infer stability and convergence rates of
such algorithms with a broader mathematical machinery than
traditionally available.

G. França, M. I. Jordan, R. Vidal Dissipative Symplectic Optimization arXiv:2004.06840 [math.OC] 3 / 21



Our approach

Those two questions are related. The ability to preserve convergence
rates can be seen as some kind of “invariance.”

But a dissipative system presumably has no conservation law.

Using symplectic geometry, we will show that a dissipative
Hamiltonian system can be seen as a conservative Hamiltonian
system in higher dimensions (symplectification + gauge fixing).

Together with backward-error analysis we can bring these ideas to
discrete-time to obtain a framework (presymplectic integrators) where
the stability and convergence rates of the continuous system are
preserved (up to a small and controlled error).

G. França, M. I. Jordan, R. Vidal Dissipative Symplectic Optimization arXiv:2004.06840 [math.OC] 4 / 21



Backward-error analysis

Consider a dynamical system over a smooth manifold M:

ẋ(t) = X (x(t)),

where X is the vector field and ϕt = etX is its flow map.

A numerical map φh, of order r ≥ 1, is an approximation (h > 0):

‖φh(x)− ϕh(x)‖ = O(hr+1) for any x ∈M.

Theorem

Every numerical method, φh, can be seen as the “exact flow” of a
perturbed dynamical system:

ẋ(t) = X̃ (x(t)), X̃ = X + ∆X1h + ∆X2h
2 + · · · .

These ideas have been developed since the late 90’s in numerical analysis
(Benettin, Giorgilli, Hairer, Reich, Lubich, . . . ).
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Backward-error analysis

The perturbed vector field X̃ has to be truncated. Denoting by
ϕt,X̃ = etX̃ the associated flow, one has:

Theorem (Benettin, Giorgilli, Hairer, Reich, . . . )

There exists a family of (truncated) perturbed vector fields,
‖X (x)− X̃ (x)‖ = O(hr ), such that ‖φh(x)− ϕh,X̃ (x)‖ ≤ Che−re−h0/h.

This tells us that the numerical flow is very close to the “perturbed
flow” (exponentially small error).

For typical numerical integrators this result is not very useful. One is
rather interested in comparing φh to ϕh (not ϕh,X̃ ).

However, this result becomes extremely useful if one can show that
X̃ has the “same structure” as X . This is why structure-preserving
methods are special; e.g., symplectic integrators.
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Symplectic manifolds and conservative Hamiltonians

Definition

An even-dimensional smooth manifold M endowed with a closed
nondegenerate 2-form ω is a symplectic manifold.a

aω maps two vectors into a number and it is a totally skew-symmetric
object, ω(X ,Y ) = −ω(Y ,X ), thus it imposes a special geometry on M.

As an analogy, in going from the real to complex numbers one introduces
i2 = −1. Here, in a matrix representation, one introduces ω2 = −I over
M.

Symplectic geometry arises in several areas: classical mechanics,
complex geometry, Lie groups and algebras, representation varieties,
geometric quantization, and so on. They are worth studying in their
own right and have a beautiful mathematical structure.
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Symplectic manifolds and conservative Hamiltonians

The universality of symplectic manifolds and Hamiltonian systems follow
from the following facts.

Theorem

The tangent bundlea T ∗M of any differentiable manifold M, with
coordinates q1, . . . , qn, p1, . . . , pn, is a symplectic manifold. The
symplectic 2-form is given by ω =

∑
j dpj ∧ dqj .

aThe tangent bundle is just the collection of all cotangent spaces, i.e. the
collection of all (tensor products of) dual vector spaces.

Theorem

A dynamical system with phase space T ∗M preserves the simplectic
structure ω if and only if it is a conservative Hamiltonian system.a

aOne with a time-independent Hamiltonian H = H(q, p).

G. França, M. I. Jordan, R. Vidal Dissipative Symplectic Optimization arXiv:2004.06840 [math.OC] 8 / 21



Symplectic manifolds and conservative Hamiltonians

1 By “preserving” we mean that the Lie derivative of the Hamiltonian
vector field obeys LXHω = 0. This is the first fundamental property.

2 The second fundamental property is energy conservation: dH
dt = 0.

Definition

It is possible to construct a class of numerical integrators, φh, that exactly
preserve ω: φ∗h ◦ ω ◦ φh = ω. They are called symplectic integrators.

1 This implies that the perturbed dynamical system associated to φh
obeys LX̃ω = 0.1 Thus, XH and X̃ have the same structure!

2 The last theorem above implies that the perturbed system must be a

Hamiltonian system, with a perturbed H̃, and for which dH̃
dt = 0.

1Recall that X̃ is the vector field of the perturbed system, associated to φh.
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Why symplectic integrators are so successful?

We can now use the previous general backward-error analysis theorem:

Theorem (Benettin, Giorgilli)

Let φh be a symplectic integrator of order r . Assume H is Lipschitz. Then
for large simulation times t` = h` = O(hrereh0/h), ` = 0, 1, . . . , we have

H ◦ φt`︸ ︷︷ ︸
discrete

= H ◦ ϕt`︸ ︷︷ ︸
continuous

+ O(hr )︸ ︷︷ ︸
bounded error

1 A symplectic integrator preserves the symplectic form, ω, exactly;

2 It “almost” preserves the energy, H (up to a bounded error).

however . . . things break down in a dissipative setting!

There is one crucial assumption behind all of this: the Hamiltonian is a
constant of motion H = const. Therefore, these arguments break down
when H varies over time, i.e., in the absence of a conservation law.
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Dissipative Hamiltonian systems

Since H(t, q, p) depends on time, the Hamiltonian is not conserved:

dH

dt
=
∂H

∂t
6= 0.

One can also show that the symplectic form is no longer preserved,
LXH

ω 6= 0. Thus, the phase space is no longer a symplectic manifold.

One can “naively” apply a symplectic integrator to a dissipative
system, but there is no existing result that extends that “main
theorem”—close preservation of H and long term stability—into a
dissipative setting . . .

. . . What is the geometry of the phase space? Does the numerical
method reproduces the Hamiltonian? Does it has long time stability?
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Symplectification

There is a generalization of symplectic manifolds:

Definition

A presymplectic manifoldM has dimension 2n+ n̄ (n̄ ≥ 0), and a 2-form
ω of rank 2n everywhere. (The presymplectic form ω is degenerate.)a

aIn our case, n̄ = 1.

It is possible to construct a conservative Hamiltonian system, H , on a
higher-dimensional symplectic manifold T ∗M̂, of dimension 2n + 2. Let
its coordinates be (qµ, pµ), for µ = 0, 1, . . . , n:

dqµ

ds
=
∂H

∂pµ
,

dpµ
ds

= −∂H

∂qµ
,

dH

ds
= 0 (energy conservation).

Here s is a “new time parameter.” Then it is possible to embed the
original dissipative system into this symplectic manifold.
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Symplectification

By removing the spurious degrees of freedom—gauge fixing—i.e., setting
q0 = t = s and p0 = H(s) ≡ H(q(s), p(s))—this is a function of
time—the dissipative system lies on a hypersurface H = const. defined by:

H (q0, . . . , qn, p0, . . . , pn) = p0(s) + H(q0, q1, . . . , qn, p1, . . . , pn).

Under this correspondence, the symplectic structure of the higher
dimensional conservative system, Ω, recovers the “presymplectic structure”
of the dissipative system, ω.

G. França, M. I. Jordan, R. Vidal Dissipative Symplectic Optimization arXiv:2004.06840 [math.OC] 13 / 21



Presymplectic integrators

We define the following class of numerical methods:

Definition

φh is a presymplectic integrator for the dissipative Hamiltonian system
if it is a reduction of a symplectic integrator for its symplectification.

Theorem

Due to this correspondence, we can extend the range of standard theorems
into a dissipative setting, where there is no conservation law. In particular,
we can prove that the decaying Hamiltonian is “preserved:”

H ◦ φt`︸ ︷︷ ︸
numerical

= H ◦ ϕt`︸ ︷︷ ︸
continuous

+ O(hr )︸ ︷︷ ︸
small error

for t` ≡ h` = O(hrereh0/h)
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Implications for optimization

We consider dissipative systems arising from the general class of
Hamiltonians:

H ≡ e−η1(t)T (t, q, p) + eη2(t)f (q).

η1, η2 ≥ 0 are increasing with t. In specific cases, we know how to obtain
a continuous-time convergence rate: f (q(t))− f ? ≤ R(t).

Corollary

A presymplectic integrator φh, of order r ≥ 1, is a “rate-matching”
discretization:

f (q`)− f ?︸ ︷︷ ︸
discrete rate

= f (q(t`))− f ?︸ ︷︷ ︸
continuous rate

+O
(
hre−η2(t`)

)
︸ ︷︷ ︸

tiny error

,

provided eLφt`−η1(t`) <∞ and for large t` ≡ h` = O(hrereh0/h).
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Implications for optimization

Under appropriate damping, presymplectic integrators can provide
“rate-matching” discretizations.

The error decreases with the order, ∼ hr , but is dominated by
∼ e−η2(t). Thus high-order integrators may not be necessary.

If η2 grows sufficiently fast, the error can be negligible; e.g.
exponentially small.

` ∼ hr−1ereh0/h is astonishingly large; e.g., h = 0.01, ` ∼ 1043.

The strongest requirement is eLφt−η1(t`) <∞, which “fixes” η1.
In particular, the “heavy ball damping”, η1 = γt, or “Nesterov’s
damping”, η1 = γ log t, can be seen as arising from this condition.

Other choices may be possible, such as η1 = γ1 log t + γ2t
δ.
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Example: the Bregman dynamics

The Bregman Hamiltonian provides a general approach to optimization
(Wibisono, Wilson, MJ, PNAS 2016):

H = eα+γ
{
Dh?
(
∇h(q) + e−γp,∇h(q)

)
+ eβf (q)

}
,

where Dh is the Bregman divergence, obtained in terms of a convex
function h(x), and h? is its convex dual. Under appropriate “scaling
conditions” on α, β, γ, Hamilton’s equations are equivalent to

q̈ +
(
eα − α̇

)
q̇ + e2α+β

[
∇2h

(
q + e−αq̇

)]−1∇f (q) = 0.

For a convex function f , one can show that this system has a convergence
rate given by:

f (q(t))− f ? = O
(
e−β(t)

)
.
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Bregman dynamics: separable case

Choosing h(x) = 1
2x ·Mx , the kinetic energy simplifies and we have

H = 1
2e
−η1(t) p ·M−1p + eη2(t)f (q), η1 ≡ γ − α, η2 ≡ α + β + γ.

One can now apply any presymplectic integrator (many possible choices are
available). For instance, one based on the popular leapfrog method yields

t`+1/2 = t` + h/2,

q`+1/2 = q` + (h/2)e−η1(t`+1/2)M−1p`,

p`+1 = p` − heη2(t`+1/2)∇f (q`+1/2),

t`+1 = t`+1/2 + h/2,

q`+1 = q`+1/2 + (h/2)e−η1(t`+1/2)M−1p`+1.

One can now make several choices for M, α, β, and γ to obtain a specific
optimization algorithm that will respect the continuous convergence rate.
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Bregman dynamics: nonseparable case

It is possible to construct explicit methods even though the general
Bregman Hamiltonian is nonseparable. This is done by duplicating the
degrees of freedom:

H̄(t, q, p, t̄, q̄, p̄) ≡ H(t, q, p̄) + H(t̄, q̄, p) + ξ
2

(
‖q − q̄‖2 + ‖p − p̄‖2

)
.

We thus propose the following numerical maps:

φ
A
h


t
q
p
t̄
q̄
p̄

 =


t
q

p − h∇qH(t, q, p̄)
t̄ + h

q̄ + h∇p̄H(t, q, p̄)
p̄

 , φ
B
h


t
q
p
t̄
q̄
p̄

 =


t + h

q + h∇pH(t̄, q̄, p)
p
t̄
q̄

p̄ − h∇q̄H(t̄, q̄, p)

 ,

φ
C
h


t
q
p
t̄
q̄
p̄

 =
1

2


2t

q + q̄ + cos(2ξh)(q − q̄) + sin(2ξh)(p − p̄)
p + p̄ − sin(2ξh)(q − q̄) + cos(2ξh)(p − p̄)

2t̄
q + q̄ − cos(2ξh)(q − q̄)− sin(2ξh)(p − p̄)
p + p̄ + sin(2ξh)(q − q̄)− cos(2ξh)(p − p̄)

 .

A presymplectic integrator can then be constructed by composing these
maps. For instance, with the Strang composition (r = 2):

φAh/2 ◦ φ
B
h/2 ◦ φ

C
h ◦ φBh/2 ◦ φ

A
h/2.
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Conclusions

We introduced “presymplectic integrators” which are suitable to
simulating dissipative Hamiltonian systems.

We showed how the important properties of symplectic integrators,
which only apply for conservative systems, can be extended to
dissipative systems for which there is no underlying conservation law.

This has implications for optimization; e.g., it allows us to show that
presymplectic integrators can yield “rate-matching” optimization
algorithms.

No discrete-time convergence analysis was necessary; it can be
guaranteed directly from this framework.

There is an entire class of algorithms that can be systematically
constructed within this framework, and will be guaranteed to preserve
the stability and continuous-time rates of convergence.
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