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Feedback Control of Dynamical System 

There are many choices available for feedback control including 

 

• PID control 

• Lyapunov control 

• Sliding mode control 

• Model predictive control 

 

However, none of these are optimal feedback controllers, i.e. they do not cause 
the system trajectory to minimize/maximize some quantity of interest. 

 

Feasible controllers follow references. Proper optimal controllers follow extremal 
fields. 
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Optimal Nonlinear Feedback Control 

There are three approaches for optimal nonlinear feedback control: 

 

I. Find the open-loop optimal trajectory and control; derive the 

 neighboring optimal feedback controller (NOC). 

 

ii.  Kriging-based extremal field method (recent) 

 

iii.  Solve the Hamilton-Jacobi-Bellman equation for the value (cost) function. 

  Then minimize the associated Hamiltonian w.r.t.  control u to find optimal u*  

  (at current x). Dynamic Programming. 
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  The Optimal Control Problem 
 

 

 

 

System:  

Problem: Find control u(t) to minimize   

Calculus of Variations necessary conditions:  (Euler-Lagrange equations), 
 
       Hamiltonian 
 
 
       Co-state ODEs 
 
 
 
       Pontryagin 



Extremal Field Method 

The Extremal Field method consists on generating a set of optimal trajectories with given 
initial and terminal conditions. If the HJB value function is differentiable, this approach 
implements the method of characteristics (Bryson and Ho, 1975). 

 

There is only one optimal trajectory starting at the nominal initial conditions (IC). However, 
it is assumed that there is an uncertainty box about the IC, which is sampled to define a 
number of perturbed IC to generate the extremal field. 

 

For a flight vehicle, 
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h 
h0 = 60,000 ± 1,200 ft  
ϕ0 = 0 ± 5x10-3 deg 
v0 = 4,589.2 ± 40 ft/s 
Υ0 = 20 ± 2 deg 
ψ0 = 0 ± 2 deg 
θ0 = 0 ± 5x10-3 deg 
m0 = 46.746 ± 0 slug 



     Extremal Field States (Input)  
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Since each extremal is computed as a point-wise trajectory, the extremal field yields a point 
cloud, where at each state point the optimal control is known. 

 

 



     Extremal Field Controls (Output)  
 8 

For an arbitrary state inside the convex hull defined by the point cloud, the optimal nonlinear 
feedback control can be determined via interpolation. 

 

 



Extremal Field Interpolation 

The optimal feedback control can be determined by interpolating the extremal field optimal 
control at the current state. Extremal field interpolation can be implemented using linear 
interpolation (Jardin and Bryson, 2012) or neural networks (Edwards and Goh, 1995). 

 

Gosh and Conway (2013) proposed the use of kriging (stochastic process regression) for this 
purpose. Kriging (Krige, 1951) was developed to obtain the best prediction of gold 
concentrations at arbitrary locations in a field based on actual concentration data from 
sampled sites. 

 

Kriging is a spatial statistical predictor comprised of a collection of linear regression 
techniques that produces the least mean-squared prediction error. 
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Extremal Field Kriging 

Mathematical theory developed at L’École des Mines, Fontainebleau, France by Georges 
Mathéron in 1960s. 

 

Traditional applications: Earth Sciences (agriculture, fisheries, hydrology, meteorology, 
petroleum, remote sensing, etc.). 

 

Newer application areas: DACE (Design and Analysis of Computer Experiments, Sacks et al. 
1989), Machine Learning (Rasmussen and Williams, 2006). 

 

Prior to work of Gosh and Conway (2013), no known application in dynamical systems and 
control theory. In this work, kriging is implemented using the MATLAB DACE Toolbox. 
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Extremal Field Kriging 

A kriging model is composed of two terms: the first is a (polynomial) regression function  
F(.) that captures the global trend of the unknown function. The second term z(.) is a 
multivariate white-noise process that accounts for local residuals so that the model 
interpolates the sampled observations, 

 

 

where β is an unknown coefficient vector for the regression functions. There are several 
models available for deterministic regression and stochastic correlation. In this work, we use 
quadratic regression polynomials for F(.) and generalized exponential correlation functions 
for z(.) because of their accuracy and generality. 

 

If the system dimensionality were three, the trend model F(.) would be the following, 
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     Solution Trajectories 

 The OL control trajectory with nominal info. deviates significantly from the terminal conditions. 

 FB control does account for perturbed initial conditions. Wind disturbances are managed implicitly 
through feedback. 

 FB+FF control takes into account the perturbed initial conditions and wind disturbances. 
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          Control Histories 
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 Since the wind components are beneficial and the final time is free, the FB+FF controller allows 
approximating the terminal conditions earlier than the FB controller. 



NOC and Extremal Field Method 

NOC and Extremal Field are effective methods for optimal nonlinear feedback control. 
However, the methods have disadvantages and limitations. 

 

NOC implementation is complex and requires significant knowledge of optimal control. The 
NOC controller is only valid in the state space corresponding to the linearized system about 
the nominal optimal trajectory. 

 

Extremal Field method implementation is simpler. The size of the state space of application 
is only limited by the computing resources available. The optimal control synthesis is in the 
order of milliseconds. The generation of the extremal field and the kriging model can take 
several hours. 

 

NOC and the Extremal Field method can only implement locally optimal feedback 
controllers because they are based on the Pontryagin Minimum Principle (PMP). 
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HJB Equation 

The “value function” J depends only on the initial condition, i.e. 

 

 

 

The HJB equation (for the Bolza problem) can be written in the following form: 
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subject to the terminal condition:  

For every initial condition       in the state domain, the resulting value function 
is the minimum cost-to-go, so      can be replaced by x.           is the solution 
of the HJB equation. 

x
0

J (x
0
)

x
0 J (x)



HJB Equation 

When solved over the state domain of interest, the HJB equation is a necessary and 
sufficient condition for an optimal trajectory. It also provides the global minimum 
proceeding forward from initial condition x0. 

 

The optimal control can be found using the Pontryagin Minimum Principle: 

 

 

 

The HJB (PDE) equation is customarily solved numerically over a grid in the d-dimensional 
state space with some type of interpolation used to evaluate J at off-grid points. Usually one 
works backward from the known value of J(x,T). 

 

“Curse of dimensionality” → only modest problems are tractable. 
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Challenges 

As desirable as a globally optimal nonlinear feedback controller would be for many 
applications, the HJB equation approach has been limited to systems with d ≤ 4 states and a 
correspondingly number of controls. 

 

The reasons are principally: 

i) The “curse of dimensionality”, i.e. number of grid nodes increases exponentially with d. 

ii) Interpolation is necessary to evaluate the solution function vh at x+hf(x,u) but simple 
schemes can be inaccurate and require higher grid resolution. 

iii) Conventional approaches to minimizing  

 

 

 can be time consuming and inaccurate. 
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Our Contribution 

i) The “curse of dimensionality”, i.e. number of nodes in a uniform rectangular grid increases 
exponentially with the system dimensionality. 

 The application of quasi-Monte Carlo grids may reduce the space complexity of the HJB integration 
problem from exponential to polynomial. 

ii) Interpolation is necessary to evaluate the solution function vh at                   but simple schemes 
 can yield inaccurate results. 

   Introduce universal kriging for accurate interpolation of the solution function 

iii) Conventional approaches to minimizing  

 

 

 can be time consuming and inaccurate 

 Use nonlinear programming (NLP) 

iv) Solution uses fixed point iterations on the grid. At a particular iteration, evaluation of a grid node 
 is independent from evaluation at other nodes. 

 Use parallel computing for faster computation. 
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x+hf(x,u) 



HJB Integration Problem 

The “curse of dimensionality” has generally been understood to imply that the HJB 
integration problem has exponential space complexity with respect to the number of 
dimensions of the system. 

 

However, this is only true if uniform rectangular grids are used to integrate the HJB 
equation. 

 

Recent methods can solve high-dimensional HJB problems with quadrature-based sparse 
grids of small size. However, the methods assume that the value function is differentiable 
(Kang and Wilcox, 2017) or that the system is affine (Adurthi et al., 2017). 
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HJB Integration Problem 

Historically, Monte Carlo (MC) grids have been used in high dimensional problems. They are 
simpler than quadrature-based node placement and can ameliorate the exponential 
complexity at the expense of accuracy and convergence rate. 

 

Recently, quasi-Monte Carlo (QMC) sequences have been developed that are superior than 
MC sequences in the sense that they have low discrepancy. This allows QMC grids to 
achieve similar accuracy than MC with fewer grid nodes, which reduces computation time 
(Morokoff and Caflisch, 1995). 

 

QMC grids may allow polynomial tractability with respect to the number of dimensions for 
integration problems (Wang, 2002). 
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Quasi-Monte Carlo Grid  

Quasi-Monte Carlo sequences are based on quasi-random (deterministic) sequences with correlations 
between points to eliminate the clumping present in random Monte Carlo sequences, thus achieving 
higher uniformity. Quasi MC generated here using the MATLAB Statistics and Machine Learning Toolbox  
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 Non-Differentiable HJB Value Function 

The classical derivation of the HJB equation assumes that the value function is differentiable 
everywhere (Bryson and Ho, 1975). This assumption is not realistic is most cases. To address 
this issue, the definition of viscosity solutions of PDEs was introduced based on 
superdifferentials D+v(.) and subdifferentials D-v(.) (Crandall and Lions, 1983), 

 

 

 

 

 

 

If both D+v(.) and D-v(.) are nonempty at x, then the value function v(.) is differentiable at x, 
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 Non-Differentiable HJB Value Function 

Consider now the following nonlinear PDE,  

 

 

 

The function v(.) is a viscosity subsolution of the PDE if it satisfies, 

 

 

The function v(.) is a viscosity supersolution of the PDE if it satisfies, 

 

 

The function v(.) that satisfies these two conditions is a viscosity solution of the PDE. The 
HJB equation can be derived using these definitions such that the value function is a 
solution in the viscosity sense (Bardi and Capuzzo-Dolcetta, 1997). 

 23 



Finite Horizon Bolza Problem 

The nonlinear Bolza control problem is described as follows, 

 

 

subject to 

 

 

where                                                                  . The final time tf may be fixed in the problem 
definition or it may be a function of the initial state x0 for time-free problems. 

 

We employ the Kružkov transform v(x) of the value function J(x):  
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The Kružkov transform v(x) of the value function J(x) is the unique viscosity solution of the 
following HJB equation (Bardi and Capuzzo-Dolcetta, 1997), 

 

 

 

 

where 

 

 

The transform allows a convenient definition of spatial boundary conditions in cases where 
initial conditions are unreachable via backward integration from the terminal conditions, i.e. 
the value function J(.) becomes infinite, whereas the viscosity solution v(.) becomes one. 

 

Finite Horizon Bolza Problem 
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Finite Horizon Bolza Problem 

The numerical solution of this equation requires the definition of a discrete grid in the 
computation domain            . The discrete HJB equation becomes (Cristiani and Martinon, 
2010), 

 

 

where  

 

and h is the discrete time step. The minimization indicated must be performed with respect 
to the control u at every grid node. 

We use MATLAB fmincon for the minimization because it can solve problems where the 
control space U has high dimensionality. 

The solution function vh(.) at x+hf(x,u) is determined via kriging regression because the 
point is normally not collocated with a grid node. 
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Finite Horizon Bolza Problem 

The numerical viscosity solution vh(.) can be obtained using fixed point iterations on the 
grid, 

 

 

The initial solution guess at the grid nodes can be the following, 

 

 

 

Once the fixed point iterations have converged, the feedback control synthesis for an 
arbitrary state x is implemented by finding the control u that minimizes the following 
equation, 
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Consider the following problem with quadratic cost (Bryson and Ho, 1975), 
 
 
 
 
 
where c and tf are given. The computation domain Ω is [0, 4]2.  
 
The analytical solution is the following, 

Example: Bolza Problem with Fixed Final Time 
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Example: Bolza Problem with Fixed Final Time 

A numerical solution for the HJB equation is found for this problem with c = 0.5 
using 400 grid nodes and a time step of 0.01 TU. The solution was found using 500 
iterations.  

 

Problems with Mayer terms require the cost definition in the terminal manifold, 
i.e. where the time-to-go is zero. Such cost definition is implemented by 
generating 40 grid nodes in the terminal manifold and constraining each node to 
be equal to the Kružkov transform of the actual terminal cost.  
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Example: Bolza Problem with Fixed Final Time 
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Example: Bolza Problem with Fixed Final Time 
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Example: Bolza Problem with Fixed Final Time 

Optimal state and control histories for x1(0) = 2.5 DU and x2(0) = 1.5 TU. 

 

 

 

 

 

 

 

 

 

 

The error of the numerical cost is 1.30×10-5 .  
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Example: Bolza Problem with Fixed Final Time 

Optimal state and control histories for x1(0) = 1.5 DU and x2(0) = 2.5 TU. 

 

 

 

 

 

 

 

 

 

 

The error of the numerical cost is 5.42×10-6 .  
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Consider the following minimum-time problem (Cristiani and Martinon, 2010), 

 

subject to 

 

 

 

 

 

With 

 

 

The computation domain is Ω = [-6,6]2. The discrete HJB equation is solved using a grid of 
1100 nodes and a time step of 0.02 TU for 5000 iterations (13.9 h, 12 parallel workers). 

Example: Free Final Time Problem with 
Nondifferentiable Value Function  
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Example: Free Final Time Problem with 
Nondifferentiable Value Function  
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The problem has 2 locally optimal 
solutions for the given IC and TC 
(straight line J = 5.50 TU and arch 
J = 4.87 TU). 
 
Either locally optimal solution could be 
found using the GPOPS-II depending on 
initial guess. Only way to verify global 
optimality is using HJB equation. 
 
HJB feedback simulation is 
implemented with time step of 0.001 
TU. 

 



Example: Free Final Time Problem with 
Nondifferentiable Value Function  
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Optimal feedback control  u*



A second class of optimal control problems corresponds to the infinite horizon discounted 
regulator. It is used in cases where a plant is to kept operating at a setpoint optimally for an 
indefinite time period in the presence of disturbances and uncertainty. 

 

The nonlinear problem includes an exponentially decaying factor with a rate dependent on 
the parameter λ, 

 

subject to 

 

 

No terminal conditions → Kružkov transform is not necessary. 

 

 

 

 

 

Infinite Horizon Discounted Regulator 
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Infinite Horizon Discounted Regulator 

The value function J(.) is the unique viscosity solution of the following HJB equation (Bardi 
and Capuzzo-Dolcetta, 1997), 

 

 

 

The discrete form of this HJB equation (Falcone, 1997), 

 

 

 

is solved numerically on a grid in the computation domain Ω. 

 

MATLAB fmincon is used for the control minimization, and universal kriging is used to 
determine the solution function Jh(.) at x+hf(x,u) since the point is not collocated with a grid 
node. 
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Example: Nondifferentiable Infinite Horizon Discounted Regulator  

Consider the following optimal control problem (Falcone, 1997), 

 

 

subject to 

 

where Ω = [-2, 2]2 and is λ = 1 TU-1. The HJB equation for this problem becomes, 

 

 

 

The bang-bang optimal control is given by 

 

This simplifies the computation of the numerical solution. 
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Example: Nondifferentiable Infinite Horizon Discounted Regulator  
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     Value function            Optimal feedback control 

 Grid has 2000 nodes; time step = 0.01 , 2000 iterations require 14.4 hours. 



Example: High Dimensional Infinite Horizon Discounted Regulator  

Consider the following spacecraft attitude regulation problem (Adurthi et al., 2017 ), 

 

 

subject to 

 

 

 

 

where 
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Example: High Dimensional Infinite Horizon Discounted Regulator  

We assume: I1 = 14 kg m2, I2 = 10 kg m2, I1 = 8 kg m2 

   Q = 40 I, R = I  
    Ω = [-1, 1]6, λ = 0.01 s-1 

 

The initial conditions are 

 

The discrete HJB equation is solved using 5000 grid nodes and a time step of 0.01 s for 600 
iterations. 

 

The initial guess for the value function J(.) is the 2-norm of each grid node position. 

 

The computational time was 11.8 days using MATLAB with 12 parallel workers. 

 

 42 



Example: High Dimensional Infinite Horizon Discounted Regulator  
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Optimal histories of the Rodrigues parameters       Optimal histories of the angular velocities 



Example: High Dimensional Infinite Horizon Discounted Regulator  
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  Optimal histories of the controls (torques) 

The spacecraft is brought virtually to rest 
and the controls go to zero after approx. 
10 s, which agrees with previous work 
(Adurthi et al., 2017) 
 
The use of a global kriging model to 
implement the optimal feedback 
controller allows the control to be 
determined in milliseconds using 
MATLAB. 



Conclusions  

• The space complexity of the HJB problem is reduced by using quasi-Monte Carlo grids.  

• Viscosity solution of the HJB PDE is used to address nondifferentiability of the value 
function. 

• The HJB equation is solved using fixed point iterations on a discrete grid; this process 
has parallel scalability. 

• When interpolation of the value function or viscosity solution is needed, universal 
kriging is used. This gives a result of greater accuracy than simpler interpolation 
formulas with fewer grid nodes. 

• Once the HJB value function is obtained on the discrete grid, a kriging model using x as 
input, can yield the optimal control u*. This feedback control synthesis requires only 
milliseconds using MATLAB. 

• The presented methodology for the solution of the HJB equation should allow more 
sophisticated problems to be solved. 
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