|
/
A Multi-Pronged Approach to
Computational Challenges in HJ

Reachability (ml
Mo Chen | mochen@cs.sfu.ca
NUWARSTAE

Multi-Agent Robotic Systems Lab | sfumars.com

School of Computing Science, Simon Fraser University

l““nn

Introduction

* Assistant Professor, School of Computing Science, Simon Fraser University
* SFU Multi-Agent Robotics Lab ,; ~ _
e SFU Visual Computing Group ;

* | love multidisciplinary research and
collaborations
e Postdoc in Stanford AA with Marco Pavone
* PhD in Berkeley EECS with Claire Tomlin
* Bachelors in UBC Engineering Physics

* Dimensionality reduction e Optimized software
* System decomposition * Memory locality and parallelism

Outline

* The challenge: curse of dimensionality
* Finite difference: a numerically convergent approach

* Dimensionality reduction
* “Chained” systems and projections

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

Outline

* The challenge: curse of dimensionality
* Finite difference: a numerically convergent approach

* Dimensionality reduction
* “Chained” systems and projections

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

Challenges in Safety-Critical Systems

e Account for all possible system behaviors
* Formal verification is needed

* Complex environment
* Weather conditions Wikipedia
e Unpredictable

i Wikipedia
e Adversarial agents

* Complex dynamics

» High-dimensional system dynamics E ‘Sff’

The Hamilton-Jacobi PDE

* One version of the equation

)%)%
FYe max min () fx,u,d)] =0, t<0, V(0,x)=1(x)
u

e Solved on a grid

* Numerically convergent

* As state space and time discretization go to zero, we approach the exact
solution

Advantages

* Globally optimal solution

* Flexibility: variants of value/cost functions

oV 1%
V(t x(t)) = rr[rllj?) rlrtl(axl(x(O)) = FT + maxmén <6) f(x,u, d)] =0
V(t,x(t)) = min max min [(s,x(s)) o mind? max min av fFoo,ud)|,1(t,x) —V(t,x)b=
Flu]() u() s€lt,0] ot d) , =

» Several other variants for different reachability problems

Advantages

e Disturbances

.
V(t x(t)) = mﬁl(l) m(a)xl(x(T)) = Z—Z + max mc%n [(gv) f(x,u, d)] =0

* Nonlinear dynamics

* Can represent sets of arbitrary shapes

Challenges in Safety-Critical Systems

e Account for all possible system behaviors
* Formal verification is needed

* Complex environment
* Weather conditions
e Unpredictable
e Adversarial agents

* Continuous-time system dynamics

* High-dimensional system dynamics

6D:

Main Challenge: intractable!
. . . 5D:
Exponential Computational Complexity doys
gigabytes

Computation time
and RAM usage

4D:
hours
hundreds of megabytes

O(Nd) time and space complexity!

3D:
- minutes
2D: q tens of megabytes
1D: seconds

<0.1s negligible RAM
.negligible RAM

1

@
2

number of system dimensions 10

y.

"'«F.S' g
/ 2 4

Drone Intruder Avoidance

.

Doat,

o R
NN

- ,*{-""’f
"r_‘x‘é’f?ﬁ'&r%
N
2 o odaiis)
-

5

|
i
!
.
.
1

1 :

L
]

A
P

Bt y
4 g
3 > 3
e X o M aywara
P 40 fic Y e
S\ S "5?
*|LANMateo v
P| lead .
b & S " ’ s A
atoon leader PR TP
S s * y
autonomous)
\
LR A R 3
VE N

".\.

Chen et al., JGCD 2015

Roncold s
.

Car Experiment

* More complex model (7D)
* Intractable = simplify model

* Modelling errors resulted in positional
errors of up to ~15cm

* Rate of change in turn rate and
acceleration is important!

Leung et al., IJRR 2018

12

Outline

* Dimensionality reduction
* “Chained” systems and projections

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

13

Outline

* Dimensionality reduction
* “Chained” systems and projections

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

14

State Dependency-Based Decomposition

Option 1: Three 2D subsystems Option 2: Two 3D subsystems
Example: 4D Quadruple Integrator— - - = - -~ ST T oTTorTS rTT oo TS Tt o T T
: 21 zo +d ! Z1 2o+ d
. S]_ : 1,'1 = . = | | .
Z1 =2, +d 72| | %3 Lo S1id = 2| = | 23
. - - | |
ZZ — Z3 g, - _[”2] _ |=3 ! I _Z'?’_ u <4 -
. 2 -T2 = — I - ~]
Z3 = Zg4 :ZB: :34: L 29 z3
; = Z Z Lo Syt = |23 = |z
Zg = U Sy ixz= |2 =" Lo T2 3 4
24 _U_ | I _Z4_ _U_
| |
| |
| |
I

A 4
a @ @ @ <Trade off Efficiency vs. Accuracy>
|

Li, Chen. ACC ‘20

I
I
|
|
I
|
|
|
I
I
|
|

State Dependency Graph: |
|
|
|
I
I
|
|
I
|
|

Missing States

* (z3,z,) is self-contained

* Induces a bound for z,, given z;

Zy
* Evolution of (z,, z3) depends on z,, which is :
unknown

* Use worst-case z, given all available information, in
this case value of z;

* This induces a bound for z5, given z,

* Evolution of (z4, z,) depends on z3, which is B Y @
unknown W
|

* Use worst-case z; given all available information, in
this case value of z,

16

Result: Over-approximation

reachable sets onto each subspace

* Coloured shapes represent projections of

Z4 A

e Over-approximation of true reachable set is - - -
obtained by back-projection and intersection -

 Safety is guaranteed

17

Computational Complexity

* Memory: A ‘

* Need to store value functions for each subsystem
* So maximum dimension of subsystems 24 1 |
 (Black nodes, 2 in this case) !

* Time:
* Need to compute value function for each
subsystem
* Need to search over missing variables Zy |

* So maximum dimension of subsystems, including By | @
missing states W,

* (Black + blue nodes, 3 in this case) !

18

Missing States

* (z,, 23, 24) is self-contained

* Induces a bound for z,, given (z,, z3)

* Evolution of (z4, z,, z3) system depends on z,, which is unknown
 Use worst-case z, given all available information, in this case value of (z,, z3)

19

Approximation vs Groundtruth

I Approximation 10 I Approximation
I Groundtruth I Groundtruth
4D Quadruple Integrator A ° °
3’51 — . ® -5 $ O
- . A — — Z2 x
Zl ZZ + d -] - 5
22 23 » . |2 20
. ro — . ~ -10 -10 .
<3 Z4 Z23 10 » & 10
: - - 0 0 oo - 5
Z4 u 5 0
L L - . zZ3 x1 -10 5 x2 x2 -10 i
T3 — .
3 24

- - 0 Approximation
10 . | Groundtruth

5

Groundtruth (blue)

Time comparison: x 0 Our over-approximation (green)
Groundtruth: 420s 1
Ours: 2.5s G0

x1

Over-approximation = guaranteed to avoid unsafe states .

6D Bicycle Model

e Commonly used to model autonomous vehicles

Vg COSTY — Uy Sin Y
Vg SINY + vy COS P
w
WUy + Qg
—wv, + 2 (F, fcosés + F.,)
F(pF =1L F.,)

4
* Decomposed form: ~ ‘
e 3D value functions @ @ \@

* 4D computations
O-® OO
» % 4 » = 4 @

:g.@e. § <. . ;;{
|

21

6D Bicycle Model: Decomposition

 Parking lot scenario ? Y rw r Mi“ o
| Parking lot .) . :
3 3
One way road , 2-
0 oy) | il |
Open area /////{/////%/% Only allow: & 0, 0 0 FX;J | | 00 El
72 / 7 o /é\ Forward speed N t=-0.700 ?
Forward orientation m%\% Sete Sato
=4 o4
3- ' 3
10I olY -10 :o IU XW IY 1:oo X10

22

Other Examples

System configuration System dynamics State Dependency Graph Decomposed State Dependency Graph Time and space

5D Car
(z, y)-position Ground truth:

x (v cos 0] -' 7
0 - heading] vsin 6 ° o @—@ both O(k?)
0 %
v
w

v - speed = w

w - turn rate Uq vo o @_@ Decomposition:
uq - accel. control LW | ua ‘ " O(k*) and O(k3)
Uq - ang. accel. control

23

Other Examples

System configuration

System dynamics

State Dependency Graph

Decomposed State Dependency Graph

Time and space

u+ - ang.accel.control

5D Car

(z, y)-position Ed v cos 0] v < Ground truth:

0 - head(ilng Y vsin @ °v° ®—® both O(k®)
v - spee | = w
w - turn rate v Ugq o‘o o @_.@ Decomposition:
uq - accel. control LW | ua N " O(k%*) and O(k3)
Uq - ang. accel. control

6D Planar Quadrotor & _ y N B Ny NG AN A :

(x, y)-position 5 UT’ @ Ground truth:

_ . z I 6

(o) vclocity ||| both O

w - pitch rate Ug ur COZQ -9 o Decomposition:
wp - thrust control o " e O(k*) and O(k3)

24

Future Work and Limitations

* Leaking corners

e Reconstructing the full-dimensional reachable set involves
taking intersections or union of subsystem reachable sets

* For collision avoidance, one must take the intersection, not

union
* Well-known problem in optimal control and differential

A A

games
. . ZZ | Zz !
* Sets must exist in other subspaces
* For example, reachable set cannot be emptyin (z,,2z3) | ':' y @
| I

25

Future Work and Limitations

* Automatic decomposition based on directed graph

©6 O §e

26

Outline

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

27

Outline

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

28

Optimizing Numerical Methods for PDEs

* Much of the progress in deep learning depends on being able
to utilize a large amount of compute resources

* PDE solvers are most often run locally

* Can we alleviate computational challenges via software
optimization?
* Different hardware such as CPU, GPU, FPGA and cloud compute
* Enables analysis of higher-dimensional subsystems
* Enables real-time applications

29

Time-Dependent HJ PDE

* Consider the time-dependent HJ PDE
e Similar observations can be made for other variants

v o' N
EEE e
\ Y J

(VL

EEE B
(2w, dt
oA
ov . d

dx ' dt

30

Optimization

* Memory locality and loop order
* Parallelism

* HeteroCL

* Tiling

* Dynamics-dependent loop order

31

Computer Memory Pyramid

Relative access latency comparison:
* Register memory : (1 x)
* Cache : (~ 16 x)

Register

e « Main memory: (~ 60 X)
P i e » Disk: (~ 100 x - 1000 x)
Main Memory Primary Memory
Cache

Magnetic Disks Susciiory

vemory® KEEPS & copy of a neighbourhood of
accessed memory
* Flushed and replaced if data is unused
after a while .

Magnetic Tapes

Grid

Memory Locality and Loop order

* Memory is linear

* When a memory location is accessed, “neighbours” are loaded into
the CPU cache to improve access times

* Therefore, in the example it is faster to iterate over rows

J/allocate V 0[160][106][1600]

00101102 - //allocate Hamiltonian[100][100][100]
for (1 =0 ... 100)
10111112 memory for (j =0 ... 100)
for (k = 0 .. 100)
00 01 02 . 10 s 20 . Jr"lr" Calculate d\u'l_dx
‘ ! ! ! ’ dv_dx = ...

// Calculate time dynamiCSI

v dx dt = ...
Hamiltonian[i][j]1[k] = ...

CPU cache .

Grid

Memory Locality and Loop order

* Memory is linear

* When a memory location is accessed, “neighbours” are loaded into
the CPU cache to improve access times

* Therefore, in the example it is faster to iterate over rows

J/allocate V 0[160][106][1600]

00101102 - //allocate Hamiltonian[160][100][160]
for (1 =0 ... 100)
1,0 1,1 1,2 memory for (] =0 ... 100)
for (k = 0 .. 100)
oolo1lo2!l - 10| - |20 -- // Calculate dv_dx
¢ ’ ¢ ¢ ! dv dx = ...

// Calculate time dynamiCSI

dx dt = ...
Hamiltonian[i][j]1[k] = ...

CPU cache

34

Grid

Memory Locality and Loop order

* Memory is linear

* When a memory location is accessed, “neighbours” are loaded into
the CPU cache to improve access times

* Therefore, in the example it is faster to iterate over rows

J/allocate V 0[160][106][1600]

0010102} - //allocate Hamiltonian[160][100][160]
for (1 =0 ... 100)
1,0 1,1 1,2 memory for (] =0 ... 100)
for (k = 0 .. 100)
oolo1lo2! - 10| - |20 -- // Calculate dv_dx
¢ ’ ¢ ¢ ! dv dx = ...

// Calculate time dynamiCSI

dx dt = ...
Hamiltonian[i][j]1[k] = ...

CPU cache .

Grid

Parallelism

* Memory is linear

* When a memory location is accessed, “neighbours” are loaded into
the CPU cache to improve access times

* Therefore, in the example it is faster to iterate over rows

J/allocate V 0[160][106][1600]

00101102 - //allocate Hamiltonian[160][100][160]
for (1 =0 ... 100)
1,0 1,1 1,2 memory for (] =0 ... 100)
for (k = 0 .. 100)
oolo1lo2! - [10]| - | 201 - // Calculate dv_dx
’ ’ ¢ ¢ ’ dv dx = ...

// Calculate time dynamiCSI

dx dt = ...
Hamiltonian[i][j]1[k] = ...

CPU cache .

HeteroCL

e HeteroCL is a programming infrastructure composed of a Python-based
domain-specific language (DSL) and a compilation flow

* http://heterocl.csl.cornell.edu/web/

Front-End Frameworks HeteroCL Infrastructure Back-End Heterogeneous Devices
\N
PYTOLRCH Algorithm
Specification D)
s

@xnet ‘

Compute Customization I Jalzl'l azon
Ke ras Data Type Customization » webgervices Errbeiddad

Memory Customization Cloud FPGAs FPGAs

37

http://heterocl.csl.cornell.edu/web/

HeteroCL

e Start with a naive version of the code (e.g. simple nested for loops)

* Transformations of code for optimization purposes automatically done with
HeteroCL

* No need to manually re-implement anything
* Guarantees algorithmic correctness

* Main algorithm written in Python (user friendly)
» HeteroCL-specific syntax translates Python code to to high performance C code

* Easy to re-use and optimize code for different hardware platforms in
mind (e.g. CPUs, GPUs, FPGAS)

38

Results: Dubins Car

X =vcosb
y =vsinf
0 =w

* Memory locality and loop order + parallelism
* Implemented with HeteroCL
* Times reported in seconds, per integration time step

Intel iI9-9900K CPU at 3.8 GHz (Desktop)

_______ Gridsize] 80° | 90° | 100°

MATLAB level set toolbox 0.047 0.0726 0.10

39

Results: Dubins Car

X =vcosb
y =vsinf
0 =w

* Memory locality and loop order + parallelism
* Implemented with HeteroCL
* Times reported in seconds, per integration time step

Intel iI9-9900K CPU at 3.8 GHz (Desktop) AMD A10-8700P CPU at 3.2 GHz (Laptop)
_ Gridsize] 80° | 90° | 100° § Gridsize] 80° | 90° | 100°
MATLAB level set toolbox 0.047 0.0726 0.10 MATLAB level set toolbox 0.58 0.83 1.05
heteroCL 0.0018 0.0022 0.0025 heteroCL 0.011 0.015 0.018

Speed-up 26times 30times 38 times Speed-up 54 times 57 times 58 times

Results: 6D Underwater Vehicle

L=205, u_r=-0.250000, w_r = 0350000, x, = -2.500000, io=4 600000 = 20s, u_r=-0.250000, w_r = 0.350000, ¥, = -2,500000, 211=210.DGUUE !

10.4

Xy = Uy + G1(2) cos(a(x, t)) +d, — b,
Zq =Wy + G1(2)(—sin(o(x,t))) + d, — b,

(P11 (b — X uy + -+ : .

9.6

a.e

WU =
T m—Xu

26

Wy = m— 7, (Po2(b — Zy)wy + -

Xx=u,+ G{(2) cos(a(x, t)) +d, i — — i e —
z=w, + G,(2)(~sin(a(x, 1)) + d, o
* Tracking error bounds under
plane-progressive waves
* Grid size: 25°
* 5.1 seconds per step
* Previously intractable

=205, u_t=-0.250000, w_r = 0350000, X, = 2.500000, 211=25.DDC|GDE L= 205 u_r=-0250000, w_r= 02350000, X, = 2.500000, z:LT 10.00000

10

]

Siriya et al., CDC ‘20 (submitted)

Results: 6D Simplitfied Humanoid Model

satt = 2s, x_dot = -0.06, 2_dot = 875, th=-0.44, thetadnt—nlﬂ s &t t=2s, ¥ dot =-0.06, z_dot = 8.73, th = -0.44, thetadnt 0.40
xl — xZ 24 24
. g + uz 20 20
Xy = (x1 ~+ ul) ~+ Uz
X " T
3
y —_ ¥ 12
X3 = Xg
. — B B
X4 = Uy 4 4
X5 = Xg , .
X3
x6 - - u3 =0, 100-0.075-0.050— a}azsnmu 0025 0050 0.075 0160 h =0, 100-0.075-0.050— Mzsamu 0,025 0050 G075 0100 h

s att =25, % _dot = -0.06, z_dot = B.75, th = 0.61, theta dot_-u.m s att =25, % dot = -0.06, z_dot = 8.75, th = 0.61, theta dnt:ﬂm

e Backward reachable set
e Grid size: 25° (
e 2 seconds per step . .
* Previously intractable [

=0.100-0.075-0.050-0.025 0 IZI@D 0025 0050 0.075 0100 =0.100-0.0750.050-0.025 I:IICIGD 0025 0.050 0.075 0100

Future work

* Optimizations
* Tiling
* Dynamics-dependent loop order

43

Tiling

* Load a part of memory into CPU cache
e Perform all computations that require this data
* Nested loops that iterate only over this data

e Load another part of memory into CPU cache
* This replaces old data, which is no longer needed
e Perform all computations that require this data

* Minimize data movement

0,0

0,1

0,2 | -

1,0

1,1

1,2 | -

44

Dynamics-Dependent Loop Order

* Dubins Car dynamics: X =vcos¥d
y =vsinf
6=w

* 0 does not depend on x and y

* So it would make sense to iterate over different 8 values in the outer loop
* Values of x and y would change less often in the inner loops

* Combine this with tiling

45

Future work

* Optimizations
* Tiling
* Dynamics-dependent loop order

e Applications
* Real-time reachability computations
* Model fidelity study

* Easy-to-use toolbox

46

Outline

* Novel applications of HJ PDE solutions in machine learning

47

Outline

* Novel applications of HJ PDE solutions in machine learning

48

Novel Applications in Machine Learning

* Reinforcement Learning
* Using HJ PDE solutions for reward shaping

* Visual Navigation
* Using HJ PDE solutions as training data

49

Model-Free Reinforcement Learning

e Given: simulator of a system (or real system) and reward function
e Determine (locally) optimal policy without knowing a model of the system
* Try control policies that involve exploration and exploitation
* Use control policies that acquire more reward more often

* Advantages
* Does not require system dynamics
e Flexible in terms of input data (eg. sensor data)
e Scalable to large system state spaces when using function approximators

* Disadvantages
* Poor sample efficiency and generalizability

* Difficult to incorporate knowledge of system behaviour .

Reward Shaping

* Tasks are sometimes specified by a sparse reward
e Goal: high reward (e.g. +1000)
e Obstacles: very negative reward (e.g. -5000)
* Other states: 0 reward

* Very little reward signal!

* A couple of heuristics for reward shaping to achieve better signal
during training
» Distance to goal (closer is better)
* |Inverse reinforcement learning (requires expert demonstration)

51

TTR-Based Reward Shaping

* TTR: “time-to-reach” e
 Minimum time required to reach the goal from any
state s, T(s)

* Requires system dynamics s = f(s,u) | L
* Intractable to compute for complex systems s
L 3s) -2_\\
* |dea: compute the TTR approxmately using a (gl m
simplified system model § = (3,1 [el

* Approximately account for system dynamics

- WS

« Approximate TTR: T(8) = reward: R(s) = =T(8)

* “Good” states are those that require less time to reach

the target, given system dynamics
5 & y y Lyu, Chen, IROS ‘20 (submitted) .

Planar Quadrotor With LIDAR Example

Quadrotor simulation

Success From Start State: Value-Based RL

10 reward type
— TIR
—— SPARSE
—— DISTANCE
—— DISTANCE _LAMBDA 10
0.8 —— DISTANCE _LAMBDA 1
’ —— DISTANCE_LAMBDA 0.1
o 0.6
]
b
U
o
["2]
Vi
@
(W]
(=
3
v
= 0.4
=
v
0.2

0 2 4 6 8 >4

timesteps(*30k)

Success From Start State: Actor-Critic RL

1.0 reward_type
— TIR
—— SPARSE
—— DISTANCE
—— DISTANCE_LAMBDA 10
—— DISTANCE_LAMBDA 1
0.8 —— DISTANCE LAMBDA 0.1

e
o

e
s

eval success percent

0.2

—

0.0

0.0 2.5 5.0 15 10.0 12.5 15.0 17.5 20.0 55

timesteps(*30k)

Visual Navigation

* Navigate through an environment using
camera only

e Cameras are cheap
* End-to-end: pixels = actions

» Control-inspired: pixels = waypoint

Use control theory to plan trajectory to the
waypoint

No need to learn what we already know
Train in simulation (Stanford indoor data set)
Results are transferrable to real life

Robot Prective

Bansal et al. CoRL 2019
Li et al. LADC 2020

56

Visual Navigation

* Challenge:
* How to generate training data?

* Need to know what is a “good” waypoint

* Waypoints are chosen based on simple heuristics involving
distances to goal and obstacles may not be sufficient

Visual Navigation

e Supervision by HJ PDE solution

 Time-to-reach and time-to-
collision functions can be used as
a metric for the quality of a

waypoint B =N

100,37 . . =1
| 9
vy 100
g 10
20
1 8 R T
— %o—w
— 1 N 7100 —
20 = 9 20
10
- 1 -
. 20
=% 100 - — 100 ~”
— 100 — N80 4 N
S S 100 I - 20 f
100 _— 100 /
b W\“*‘w’ﬁ.
- ,/) 2 B N
0 100
1 1 1 1 1 1
n . . 1 0

* Data generation is time-
consuming

Li et al. LADC 2020

Visual Navigation: Training Data

Distance heuristic

Visual Navigation — Test Performance

Agent Success (%) Time taken (s) Acceleration (m/s?) Jerk (m/s>)
WayPtNav-ReachabilityCost 63.82 21.00 £8.00 0.06 £0.01 0.94 £0.13
WayPtNav-HeuristicsCost 52.26 18.82 £5.66 0.07 £0.02 1.06 £0.15
WayPtNav-ReachabilityCost-NoDstb 49.24 16.19 +4.8 0.07 £0.01 0.98 £0.16
E2E-ReachabilityCost 3.04 19.55 £4.72 0.07 £0.01 2.16 £0.30

E2E-HeuristicsCost 31.66 25.56 £9.85 0.26 £0.06 9.06 £1.94

Success rate at different difficulty levels

Il WayPtNav-ReachabilityCost
m WayPtNav-HeuristicsCost
75 4
8
]
-
© 50
)
0
()
(9
)
>
wnv
254
04
d t Hard (<0.2m) Medium (0.2m-0.3m) Easy (>0.3m) 60
H S 1 242 tasks 155 tasks 102 tasks
3" person view 15 person view

Difficult levels

Thank you! Mo Chen

mochen@cs.sfu.ca
https://sfumars.com

* The challenge: curse of dimensionality
* Finite difference: a numerically convergent approach

* Dimensionality reduction
* “Chained” systems and projections

* Optimizing software
* Maximizing brute-force computation capabilities

* Novel applications of HJ PDE solutions in machine learning

61

mailto:mochen@cs.sfu.ca
https://sfumars.com/

