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Introduction

• Dimensionality reduction
• System decomposition
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Outline

• The challenge: curse of dimensionality
• Finite difference: a numerically convergent approach

• Dimensionality reduction
• “Chained” systems and projections

• Optimizing software
• Maximizing brute-force computation capabilities

• Novel applications of HJ PDE solutions in machine learning
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Wikipedia

Challenges in Safety-Critical Systems

• Account for all possible system behaviors
• Formal verification is needed

• Complex environment
• Weather conditions
• Unpredictable
• Adversarial agents

• Complex dynamics

• High-dimensional system dynamics

Wikipedia

iStock Wikipedia
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The Hamilton-Jacobi PDE

• One version of the equation
𝜕𝑉

𝜕𝑡
+max

𝑢
min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0, 𝑡 ≤ 0, 𝑉 0, 𝑥 = 𝑙 𝑥

• Solved on a grid

• Numerically convergent
• As state space and time discretization go to zero, we approach the exact 

solution 
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Advantages

• Globally optimal solution

• Flexibility: variants of value/cost functions

• Several other variants for different reachability problems
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𝑉 𝑡, 𝑥 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

𝑙 𝑥 0 ⇒
𝜕𝑉

𝜕𝑡
+ max

𝑢
min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0

⇒ min
𝜕𝑉

𝜕𝑡
+max

𝑢
min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 , 𝑙 𝑡, 𝑥 − 𝑉 𝑡, 𝑥 = 0𝑉 𝑡, 𝑥 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

min
𝑠∈ 𝑡,0

𝑙 𝑠, 𝑥 𝑠



Advantages

• Disturbances

• Nonlinear dynamics 

• Can represent sets of arbitrary shapes
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𝑉 𝑡, 𝑥 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

𝑙 𝑥 𝑇 ⇒
𝜕𝑉

𝜕𝑡
+max

𝑢
min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0



Challenges in Safety-Critical Systems

• Account for all possible system behaviors
• Formal verification is needed

• Complex environment
• Weather conditions
• Unpredictable
• Adversarial agents

• Continuous-time system dynamics

• High-dimensional system dynamics
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1D: 
< 0.1s
negligible RAM

2D: 
seconds
negligible RAM

3D: 
minutes
tens of megabytes

4D:
hours
hundreds of megabytes

Main Challenge:
Exponential Computational Complexity

number of system dimensions

Computation time 
and RAM usage

5D:
days
gigabytes
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𝑂 𝑁𝑑 time and space complexity!

6D:
intractable!



Drone Intruder Avoidance
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Intruder
(human controlled)

Platoon leader
(autonomous)

Chen et al., JGCD 2015



Car Experiment 

• More complex model (7D)

• Intractable → simplify model

• Modelling errors resulted in positional 
errors of up to ~15cm

• Rate of change in turn rate and 
acceleration is important!
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Leung et al., IJRR 2018
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State Dependency-Based Decomposition

State Dependency Graph:

Example: 4D Quadruple Integrator
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Option 1: Three 2D subsystems Option 2: Two 3D subsystems

Li, Chen. ACC ‘20

ሶ𝑧1 = 𝑧2 + 𝑑
ሶ𝑧2 = 𝑧3
ሶ𝑧3 = 𝑧4
ሶ𝑧4 = 𝑢

Trade off Efficiency vs. Accuracy



Missing States

• 𝑧3, 𝑧4 is self-contained
• Induces a bound for 𝑧4, given 𝑧3

• Evolution of 𝑧2, 𝑧3 depends on 𝑧4, which is 
unknown
• Use worst-case 𝑧4 given all available information, in 

this case value of 𝑧3
• This induces a bound for 𝑧3, given 𝑧2

• Evolution of 𝑧1, 𝑧2 depends on 𝑧3, which is 
unknown
• Use worst-case 𝑧3 given all available information, in 

this case value of 𝑧2
16

𝑧3

𝑧4

𝑧3

𝑧2 𝑧2

𝑧1



Result: Over-approximation

• Coloured shapes represent projections of 
reachable sets onto each subspace

• Over-approximation of true reachable set is 
obtained by back-projection and intersection

• Safety is guaranteed
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𝑧3

𝑧4

𝑧3

𝑧2 𝑧2

𝑧1



Computational Complexity

• Memory: 
• Need to store value functions for each subsystem
• So maximum dimension of subsystems 
• (Black nodes, 2 in this case)

• Time: 
• Need to compute value function for each 

subsystem
• Need to search over missing variables
• So maximum dimension of subsystems, including 

missing states
• (Black + blue nodes, 3 in this case)
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𝑧3

𝑧4

𝑧3

𝑧2 𝑧2

𝑧1



Missing States

• 𝑧2, 𝑧3, 𝑧4 is self-contained
• Induces a bound for 𝑧4, given 𝑧2, 𝑧3

• Evolution of 𝑧1, 𝑧2, 𝑧3 system depends on 𝑧4, which is unknown
• Use worst-case 𝑧4 given all available information, in this case value of 𝑧2, 𝑧3

19



Approximation vs Groundtruth

Time comparison:
Groundtruth: 420s

Ours: 2.5s

Groundtruth (blue)
Our over-approximation (green)

4D Quadruple Integrator

20
Over-approximation ⇒ guaranteed to avoid unsafe states



• Commonly used to model autonomous vehicles

• Decomposed form:
• 3D value functions

• 4D computations

6D Bicycle Model
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6D Bicycle Model: Decomposition

• Parking lot scenario
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Other Examples
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Other Examples

24



Future Work and Limitations

• Leaking corners
• Reconstructing the full-dimensional reachable set involves 

taking intersections or union of subsystem reachable sets

• For collision avoidance, one must take the intersection, not 
union

• Well-known problem in optimal control and differential 
games

• Sets must exist in other subspaces
• For example, reachable set cannot be empty in 𝑧2, 𝑧3
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𝑧3

𝑧2 𝑧2

𝑧1



Future Work and Limitations

• Automatic decomposition based on directed graph
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𝑧1
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Optimizing Numerical Methods for PDEs

• Much of the progress in deep learning depends on being able 
to utilize a large amount of compute resources

• PDE solvers are most often run locally

• Can we alleviate computational challenges via software 
optimization?
• Different hardware such as CPU, GPU, FPGA and cloud compute

• Enables analysis of higher-dimensional subsystems

• Enables real-time applications

29



Time-Dependent HJ PDE

• Consider the time-dependent HJ PDE 
• Similar observations can be made for other variants
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𝜕𝑉

𝜕𝑡
+ max

𝑢
min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0

𝐻
𝜕𝑉

𝜕𝑥
, 𝑥, 𝑢∗, 𝑑∗

𝑑𝑥

𝑑𝑡
𝑢∗, 𝑑∗

𝜕𝑉

𝜕𝑥

𝑉

𝐻
𝜕𝑉

𝜕𝑥
, 𝑥, 𝑢∗, 𝑑∗



Optimization

• Memory locality and loop order

• Parallelism

• HeteroCL

• Tiling

• Dynamics-dependent loop order
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Computer Memory Pyramid
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Relative access latency comparison:

• Register memory : ( 1 x)

• Cache : (~ 16 x)

• Main memory: (~ 60 x)

• Disk: (~ 100 x - 1000 x)

Cache 

• keeps a copy of a neighbourhood of 

accessed memory 

• Flushed and replaced if data is unused 
after a while



0,0 0,1 0,2 ⋯ 1,0 ⋯ 2,0 ⋯

Memory Locality and Loop order

• Memory is linear

• When a memory location is accessed, “neighbours” are loaded into 
the CPU cache to improve access times

• Therefore, in the example it is faster to iterate over rows
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Grid
CPU cache

0,0 0,1 0,2 ⋯

1,0 1,1 1,2 ⋯

⋮ ⋮ ⋮ ⋱

memory
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Memory Locality and Loop order

• Memory is linear

• When a memory location is accessed, “neighbours” are loaded into 
the CPU cache to improve access times

• Therefore, in the example it is faster to iterate over rows
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Grid
CPU cache

0,0 0,1 0,2 ⋯

1,0 1,1 1,2 ⋯

⋮ ⋮ ⋮ ⋱ 0,0 0,1 0,2 ⋯ 1,0 ⋯ 2,0 ⋯

memory



0,0 0,1 0,2 ⋯ 1,0 ⋯ 2,0 ⋯

Parallelism

• Memory is linear

• When a memory location is accessed, “neighbours” are loaded into 
the CPU cache to improve access times

• Therefore, in the example it is faster to iterate over rows
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Grid
CPU cache

0,0 0,1 0,2 ⋯

1,0 1,1 1,2 ⋯

⋮ ⋮ ⋮ ⋱

memory



HeteroCL

• HeteroCL is a programming infrastructure composed of a Python-based 
domain-specific language (DSL) and a compilation flow
• http://heterocl.csl.cornell.edu/web/
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http://heterocl.csl.cornell.edu/web/


HeteroCL

• Start with a naive version of the code (e.g. simple nested for loops) 
• Transformations of code for optimization purposes automatically done with 

HeteroCL
• No need to manually re-implement anything 
• Guarantees algorithmic correctness

• Main algorithm written in Python (user friendly) 
• HeteroCL-specific syntax translates Python code to to high performance C code

• Easy to re-use and optimize code for different hardware platforms in 
mind (e.g. CPUs, GPUs, FPGAs)
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Results: Dubins Car

• Memory locality and loop order + parallelism
• Implemented with HeteroCL

• Times reported in seconds, per integration time step
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ሶ𝜃 = 𝜔

ሶ𝑥 = 𝑣 cos 𝜃

ሶ𝑦 = 𝑣 sin 𝜃

Grid size 𝟖𝟎𝟑 𝟗𝟎𝟑 𝟏𝟎𝟎𝟑

MATLAB level set toolbox 0.047 0.0726 0.10

heteroCL 0.0018 0.0022 0.0026

Speed-up 26 times 30 times 38 times

Intel i9-9900K CPU at 3.8 GHz (Desktop)



Results: Dubins Car

• Memory locality and loop order + parallelism
• Implemented with HeteroCL

• Times reported in seconds, per integration time step
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ሶ𝜃 = 𝜔

ሶ𝑥 = 𝑣 cos 𝜃

ሶ𝑦 = 𝑣 sin 𝜃

Grid size 𝟖𝟎𝟑 𝟗𝟎𝟑 𝟏𝟎𝟎𝟑

MATLAB level set toolbox 0.047 0.0726 0.10

heteroCL 0.0018 0.0022 0.0025

Speed-up 26 times 30 times 38 times

Intel i9-9900K CPU at 3.8 GHz (Desktop)

Grid size 𝟖𝟎𝟑 𝟗𝟎𝟑 𝟏𝟎𝟎𝟑

MATLAB level set toolbox 0.58 0.83 1.05

heteroCL 0.011 0.015 0.018

Speed-up 54 times 57 times 58 times

AMD A10-8700P CPU at 3.2 GHz (Laptop)



Results: 6D Underwater Vehicle

• Tracking error bounds under 
plane-progressive waves
• Grid size: 256

• 5.1 seconds per step

• Previously intractable
41

ሶ𝑥𝛼 = 𝑢𝑟 + 𝐺1 𝑧 cos 𝜎 𝑥, 𝑡 + 𝑑𝑥 − 𝑏𝑥
ሶ𝑧𝛼 = 𝑤𝑟 + 𝐺1 𝑧 − sin 𝜎 𝑥, 𝑡 + 𝑑𝑧 − 𝑏𝑧

ሶ𝑢𝑟 =
1

𝑚 − 𝑋 ሶ𝑢
Φ11(𝑏 − 𝑋 ሶ𝑢 𝑢𝑟 +⋯

ሶ𝑤𝑟 =
1

𝑚 − 𝑍 ሶ𝑤
Φ22(𝑏 − 𝑍 ሶ𝑤 𝑤𝑟 +⋯

ሶ𝑥 = 𝑢𝑟 + 𝐺1 𝑧 cos 𝜎 𝑥, 𝑡 + 𝑑𝑥
ሶ𝑧 = 𝑤𝑟 + 𝐺1 𝑧 − sin 𝜎 𝑥, 𝑡 + 𝑑𝑧

Siriya et al., CDC ‘20 (submitted)



Results: 6D Simplified Humanoid Model

• Backward reachable set
• Grid size: 256

• 2 seconds per step

• Previously intractable
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ሶ𝑥1 = 𝑥2

ሶ𝑥2 =
𝑔 + 𝑢2
𝑥3

𝑥1 + 𝑢1 + 𝑢3

ሶ𝑥3 = 𝑥4
ሶ𝑥4 = 𝑢2
ሶ𝑥5 = 𝑥6

ሶ𝑥6 =
𝑥3
𝐽
𝑢3



Future work

• Optimizations
• Tiling

• Dynamics-dependent loop order

• Applications
• Real-time reachability computations

• Model fidelity study

• Easy-to-use toolbox
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0,0 0,1 0,2 ⋯

1,0 1,1 1,2 ⋯

⋮ ⋮ ⋮ ⋱

Tiling
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• Load a part of memory into CPU cache
• Perform all computations that require this data

• Nested loops that iterate only over this data

• Load another part of memory into CPU cache
• This replaces old data, which is no longer needed

• Perform all computations that require this data

• Minimize data movement



Dynamics-Dependent Loop Order 

• Dubins Car dynamics:

• 𝜃 does not depend on 𝑥 and 𝑦

• So it would make sense to iterate over different 𝜃 values in the outer loop
• Values of ሶ𝑥 and ሶ𝑦 would change less often in the inner loops

• Combine this with tiling
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ሶ𝜃 = 𝜔

ሶ𝑥 = 𝑣 cos 𝜃

ሶ𝑦 = 𝑣 sin 𝜃



Future work

• Optimizations
• Tiling

• Dynamics-dependent loop order

• Applications
• Real-time reachability computations

• Model fidelity study

• Easy-to-use toolbox
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Novel Applications in Machine Learning

• Reinforcement Learning
• Using HJ PDE solutions for reward shaping

• Visual Navigation
• Using HJ PDE solutions as training data
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Model-Free Reinforcement Learning

• Given: simulator of a system (or real system) and reward function
• Determine (locally) optimal policy without knowing a model of the system
• Try control policies that involve exploration and exploitation
• Use control policies that acquire more reward more often

• Advantages
• Does not require system dynamics
• Flexible in terms of input data (eg. sensor data)
• Scalable to large system state spaces when using function approximators

• Disadvantages
• Poor sample efficiency and generalizability
• Difficult to incorporate knowledge of system behaviour
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Reward Shaping

• Tasks are sometimes specified by a sparse reward
• Goal: high reward (e.g. +1000)
• Obstacles: very negative reward (e.g. -5000)
• Other states: 0 reward 

• Very little reward signal!

• A couple of heuristics for reward shaping to achieve better signal 
during training
• Distance to goal (closer is better)
• Inverse reinforcement learning (requires expert demonstration)
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TTR-Based Reward Shaping

• TTR: “time-to-reach”
• Minimum time required to reach the goal from any 

state 𝑠, 𝑇 𝑠
• Requires system dynamics ሶ𝑠 = 𝑓 𝑠, 𝑢
• Intractable to compute for complex systems

• Idea: compute the TTR approximately using a 
simplified system model ሶƸ𝑠 = መ𝑓 Ƹ𝑠, ො𝑢
• Approximately account for system dynamics

• Approximate TTR: 𝑇 Ƹ𝑠 → reward: 𝑅 𝑠 = −𝑇 Ƹ𝑠
• “Good” states are those that require less time to reach 

the target, given system dynamics 52
Lyu, Chen, IROS ‘20 (submitted)



Planar Quadrotor With LIDAR Example
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Success From Start State: Value-Based RL
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Success From Start State: Actor-Critic RL
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Visual Navigation

• Navigate through an environment using 
camera only
• Cameras are cheap

• End-to-end: pixels → actions

• Control-inspired: pixels → waypoint
• Use control theory to plan trajectory to the 

waypoint
• No need to learn what we already know
• Train in simulation (Stanford indoor data set)
• Results are transferrable to real life

56

Bansal et al. CoRL 2019 
Li et al. L4DC 2020



Visual Navigation

• Challenge:
• How to generate training data?

• Need to know what is a “good” waypoint
• Waypoints are chosen based on simple heuristics involving 

distances to goal and obstacles may not be sufficient
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Visual Navigation

• Supervision by HJ PDE solution
• Time-to-reach and time-to-

collision functions can be used as 
a metric for the quality of a 
waypoint

• Data generation is time-
consuming

58Li et al. L4DC 2020

Goal



Visual Navigation: Training Data
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Distance heuristic Distance heuristic

Time-to-reach

Time-to-reach



Visual Navigation – Test Performance

603rd person view 1st person view



Thank you!

• The challenge: curse of dimensionality
• Finite difference: a numerically convergent approach

• Dimensionality reduction
• “Chained” systems and projections

• Optimizing software
• Maximizing brute-force computation capabilities

• Novel applications of HJ PDE solutions in machine learning
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