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Motivation

Feedback controls
The numerical solution of optimal control problems via the Dynamic
Programming (DP) approach is mainly motivated by the search for
feedback controls for general nonlinear optimal control problems with
Lipschitz continuous dynamics and costs.

Wide range of applications
This approach has been developed in the last 30 years in the
framework of viscosity solutions for Hamilton-Jacobi equations for all
the classical deterministic and stochastic optimal control problems.
A similar approach has been recently applied also to Mean Field
games.
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Motivation

High computational cost and complexity
For all these problems the solution of the corresponding Bellman
equation in high dimension is a computationally intensive task and this
bottleneck has limited the applications of this theory to industrial
cases, despite the many theoretical results available in any dimension
and the numerical schemes that have been developed so far.

Our goal
We want to reduce the computational costs still having a reliable
approximation of feedback controls and trajectories.
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Example 1: the deterministic infinite horizon problem

Controlled dynamical system{
ẏ(t) = f (y(t),u(t)) t > 0, y ∈ Rd

y(0) = x x ∈ Rd

Cost Functional

J(x ,u) :=

∫ ∞
0

L(yx (t ,u),u(t))e−λtdt .

We are interested in minimizing this cost functional, so we introduce

Value function

v(x) := inf
u∈U

J(x ,u),
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Infinite horizon problem for deterministic dynamics

Assumptions
u(·) ∈ U : control, where

U := {u(·) : [0,+∞[→ U measurable}

f : Rd × U → Rd is the dynamic, which satisfies:
f is continuous with respect to (y ,u)
f is locally bounded
f is Lipschitz continuous with respect to y

Carathèodory Theorem guarantees the existence and uniqueness of
the trajectory yx (t ,u) for every u ∈ U
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Example 2: Minimum time problem for SDE

Controlled Stochastic Differential Equation

(CSDE)

{
dY (t) = f (Y (t), α(t))dt + σ(Y (t), α(t))dW (t), t > 0
Y (0) = x ∈ Ω

Ω ⊂ Rd , Y (·) ∈ Ω is the state process, u(·) ∈ U is the control process,
with

U = {α(·) : [0,+∞)→ U,progressively measurable}

U ⊂ Rm is a compact set of admissible controls
f : Ω× U → Rd is the dynamics
σ : Ω× A→ L(Rk ;Rk ) is the diffusion (k ≤ d)
W is a k -dimensional Wiener process

Denote by Yx (t ;α(·)) the solution of (CSDE) and define tx (u(·)) as the
first time of arrival on ∂Ω starting at x using the strategy u(·):

tx (u(·)) = inf{t ≥ 0 : Yx (t ; u(·)) ∈ ∂Ω}
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Second order Hamilton-Jacobi-Bellman equation

Stochastic optimal control problem
Given a running cost ` : Ω× U → R+ and a final cost g : ∂Ω→ R+

find an optimal control u∗(·) minimizing

J
(
x ,u(·)

)
= E

{∫ tx (u(·))

0
L
(
Yx (s; u(·)),u(s)

)
ds + g

(
Yx (tx (u(·)); u(·))

)}

among all the trajectories starting from x .

2nd order Hamilton-Jacobi-Bellman equation
The value function v(x) = inf

u(·)∈U
J(x ,u(·)) is the viscosity solution of

 max
u∈U

{
−1

2
< σ(x , a)σT (x , a) : D2u(x) > −f (x , a) · ∇u(x)− L(x , a)

}
= 0 x ∈ Ω

v(x) = g(x) x ∈ ∂Ω
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Value and feedback for Zermelo navigation problem
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Our problem: the finite horizon problem

We focus on the following problem

Controlled Dynamics and Cost Functional{
ẏ(s,u) = f (y(s),u(s), s) s ∈ (t ,T ]

y(t) = x

u(t) ∈ U = {u : [t ,T ]→ U ⊂ Rm compact ,measurable},

Jx ,t (u) =

∫ T

t
L(y(s,u),u(s), s)e−λ(s−t) ds + g(y(T ))e−λ(T−t)

Value Function

v(x , t) := inf
u(·)∈U

Jx ,t (u)
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HJB equation for the finite horizon problem

Dynamic Programming Principle

v(x , t) = min
u∈U

{∫ τ

t
L(y(s),u(s), s)e−λ(s−t) ds + v(y(τ), τ)e−λ(τ−t)

}

HJB equation

−
∂v
∂t

(x , t) + λv(x , t) = min
u∈U
{L(x ,u, t) +∇v(x , t) · f (x ,u, t)}

v(x ,T ) = g(x) , x ∈ Rd

Optimal Feedback Map

u∗(x , t) = arg min
u∈U
{L(x ,u, t) +∇v(x , t) · f (x ,u, t)}
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Classical approach

Semi-Lagrangian scheme (λ = 0)


V n−1

i = min
u∈U

[∆t L(xi ,u, tn) + V n(xi + ∆t f (xi ,u, tn))], n = N, . . . ,1

V N
i = g(xi) , xi ∈ Ω∆x .

Cons of the approach
V n(xi + ∆t f (xi ,u, tn)) is computed by interpolation operator.
We need a numerical domain (not always given in the problem)
Selection of boundary conditions (not always given in the problem)
The curse of dimensionality makes the problem difficult to solve in
high dimension (need e.g. model order reduction).
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Other approaches and acceleration techniques

Several methods have been developed to accelerate the computation
and/or mitigate the curse of dimensionality

Domain decomposition (static or dynamic): F.-Lanucara-Seghini
(1994-...), Krener-Navasca (2007-...), Cacace-Cristiani-F.-Picarelli
(2012)
Iteration in policy space: Bellman (1957), Howard (1960),
Bokanowski- Maroso-Zidani (2009), Alla-F.-Kalise (2015),
Bokanowki–Desilles-Zidani (2018)
Max-plus algebra and Galerkin approximation: Akian-
Gaubert-Lakhoua (2008), McEneaney (2009-...), Dower (2017)
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Other approaches and acceleration techniques

Model Order Reduction: Kunisch-Volkwein-Xie (2004),
Alla-F-Volkwein (2017)
Sparse grids: Bokanowski-Garke-Griebel-Klompmaker (2013),
Garke-Kroner (2016)
Spectral Methods and Tensor Calculus: Kalise-Kundu-Kunisch
(2019), Dolgov-Kalise-Kunisch (2019)
Hopf formulas: Osher-Darbon (2016- ...), Yegorov-Dower-Grüne
(2018)
DNN/DGM: Pham-Warin (2019)
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Tree Structure Algorithm (Alla, F. , Saluzzi ’18)

We start with an initial condition x ∈ Rd forming the first level T 0.

x

Discretization: constant ∆t for time and Nu discrete controls.

Starting with x, we follow the dynamics given by the discrete controls

T 1 = {ζ1
i }i = {x + ∆t f (x ,ui , t0)}i , i = 1, ...,Nu

x

ζ1
Nu

ζ1
1
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Tree Structure Algorithm

Given the nodes in the previous level, we construct the following one

T n = {ζn−1
i + ∆t f (ζn−1

i ,uj , tn−1)}Nu
j=1 i = 1, . . . ,Nn

u .

x

ζ1
Nu

. . .

ζN
Nu N

ζ1
1

. .
.

ζN
1
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Approximation of the value function

Computation of the value function on the tree

The tree structure defines T = {T r}Nr=0, where we can compute the
numerical value function:V n(ζn

i ) = min
u∈U∆u

{V n+1(ζn
i + ∆t f (ζn

i ,u, tn)) + ∆t L(ζn
i ,u, tn)} ζn

i ∈ T n

V N(ζN
i ) = g(ζN

i ) ζN
i ∈ T N

Pros
No need for interpolation since the nodes xi + ∆t f (xi ,u, tn) belong
to the tree by construction.
Mitigation of the curse of dimensionality (e.g. , d � 10).

Cons
Dimensionality problem. In fact, given Nu controls and N time
steps, the cardinality of the tree is O(NN+1

u ) .
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Solution: Pruning the tree
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Solution: Pruning the tree

ζm-1

ζjm

ζin

ε T

ζm-1

ζjm

ζin

Pruning rule
Given a threshold εT , two nodes ζn

i and ζn
j will be merged if

‖ζn
i − ζn

j ‖ ≤ εT
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The case of an autonomous dynamics

The pruning rule and the computation of value function can be
simplified, since we can extend the computation to the all previous tree
levels

Pruning rule
Given a threshold εT , two nodes ζn

i and ζm
j will be merged if

‖ζn
i − ζm

j ‖ ≤ εT

Computation of the value function on the tree

V n(ζ) = min
u∈U∆u

{V n+1(ζ + ∆t f (ζ,u)) + ∆t L(ζ,u, tn)} ζ ∈ ∪n
k=0T k

V N(ζ) = g(ζ) ζ ∈ T

Important reduction of the cardinality, we can get more information on
V and this can be useful for the feedback reconstruction.
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Efficient pruning

Problem
The computation of the distances among all the nodes would be very
expensive, especially for high dimensional problems.

One possible solution
We project the data onto a lower dimensional linear space such that
the variance of the projected data is maximized. This can be done e.g.
computing the Singular Value Decomposition of the data matrix and
taking the first basis.

Reduced dynamics
The control problem can be solved in a reduced space, projecting the
dynamics via Proper Orthogonal Decomposition.
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Efficient pruning II

1 Construction of a rough full tree
2 Computation of the maximum variance direction and its

subdivision in buckets of length equal to the tolerance.
3 Construction of the pruned tree comparing the nodes in the same

bucket.
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Error estimates for the approximate value V

Theorem (F.-Giorgi, ’99)
Let f ,L and g be Lipschitz continuous and bounded, then

sup
(x ,t)∈Rd×[0,T ]

|v(t , x)− V (t , x)| ≤ C(T )
√

∆t .

Theorem (Error estimate: first part)
Let f ,L and g be Lipschitz continuous and bounded, then

sup
(x ,t)∈Rd×[0,T ]

(v(t , x)− V (t , x)) ≤ C(T )∆t .

The opposite inequality is based on the semiconcavity of the
approximation V , i .e.

V (x + z, t + s)− 2V (x , s) + V (x − z, t − s) ≤ C(|z|2 + s2) .
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Error estimates for the approximate value V

Proposition
Let f ,L and g be Lipschitz continuous, bounded. Moreover let L and g
be semiconcave and f ∈ C1. Then the approximate solution V is
semiconcave.

Lemma (Capuzzo-Ishii, ’84)
Let ξ be semiconcave such that ξ(0,0) = 0 and
lim sup(x ,t)→(0,0)

ξ(x ,t)
|x |+|t | ≤ 0, then

ξ(x , t) ≤
Cξ

6
(|x |2 + |t |2) ∀x ∈ Rn, t ∈ [0,T ].

Theorem (Error estimate: second part)
Under the above assumptions, the following estimate holds

sup
(x ,t)∈Rd×[0,T ]

(V (t , x)− v(t , x)) ≤ C(T )∆t .

26 / 42



Error estimates for the approximate value V

Proposition
Let f ,L and g be Lipschitz continuous, bounded. Moreover let L and g
be semiconcave and f ∈ C1. Then the approximate solution V is
semiconcave.

Lemma (Capuzzo-Ishii, ’84)
Let ξ be semiconcave such that ξ(0,0) = 0 and
lim sup(x ,t)→(0,0)

ξ(x ,t)
|x |+|t | ≤ 0, then

ξ(x , t) ≤
Cξ

6
(|x |2 + |t |2) ∀x ∈ Rn, t ∈ [0,T ].

Theorem (Error estimate: second part)
Under the above assumptions, the following estimate holds

sup
(x ,t)∈Rd×[0,T ]

(V (t , x)− v(t , x)) ≤ C(T )∆t .

26 / 42



Error estimates for the approximate value V

Proposition
Let f ,L and g be Lipschitz continuous, bounded. Moreover let L and g
be semiconcave and f ∈ C1. Then the approximate solution V is
semiconcave.

Lemma (Capuzzo-Ishii, ’84)
Let ξ be semiconcave such that ξ(0,0) = 0 and
lim sup(x ,t)→(0,0)

ξ(x ,t)
|x |+|t | ≤ 0, then

ξ(x , t) ≤
Cξ

6
(|x |2 + |t |2) ∀x ∈ Rn, t ∈ [0,T ].
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Error estimates with pruning

Let us define the pruned trajectory:

ηn+1
j = ηn + ∆t f (ηn,uj , tn) + EεT (ηn + ∆t f (ηn,uj , tn), {ηn+1

i }i),

where

EεT (x , {xn}n) =

{
xk − x if min

n
|x − xn| = |x − xk | ≤ εT ,

0 otherwise.

Proposition
Given the Euler approximation {yn}n and its perturbation {ηn}n , then

|yn − ηn| ≤ n εT eLf (tn−t).

To guarantee first order convergence, the tolerance must be chosen
such that

εT ≤ CεT ∆t2.
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Error estimates with pruning

Then we can define the pruned discrete cost functional and value
function

J∆t ,P
x ,tn (u) = ∆t

N−1∑
k=n

L(ηk ,u, tk )e−λ(tk−s) + g(ηN)e−λ(tN−s),

V P(x , t) := inf
u∈U∆

J∆t ,P
x ,t (u)

Proposition

Choosing εT ≤ CεT ∆t2, we have

|V (x , t)− V P(x , t)| ≤ C(T )∆t ,

and then
|v(x , t)− V P(x , t)| ≤ C(T )∆t .
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Test 1: Comparison with exact solution

We consider the following dynamics

f (x ,u) =

(
u
x2

1

)
, u ∈ U ≡ [−1,1].

where x = (x1, x2) ∈ R2, and the following cost functional:

Jx ,t (u) = −x2(T ; u) .

We compare the approximations according to `2 relative error

E2(tn) =

√√√√√√
∑

xi∈T n
|v(xi , tn)− V n(xi)|2∑

xi∈T n
|v(xi , tn)|2

.
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Test 1: Comparison with exact solution
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Figure: Full Tree (|T | = 2097151) (left) and Pruned Tree with εT = ∆t2 (|T | = 3151)
(right)
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Test 1: Comparison with exact solution

∆t Nodes CPU Err2,2 Err∞,2 Order2,2 Order∞,2

0.2 63 0.05s 6.7e-02 0.18
0.1 2047 0.35s 2.9e-02 0.09 1.16 0.98

0.05 2097151 1.1s 1.4e-02 0.05 1.08 0.99

Table: Table for Euler scheme for the Full Tree

∆t Nodes CPU Err2,2 Err∞,2 Order2,2 Order∞,2

0.2 42 0.05s 9.1e-02 0.122
0.1 324 0.08s 4.4e-02 0.062 1.05 0.98

0.05 3151 0.6s 2.1e-02 0.031 1.04 0.99
0.025 29248 2.5s 1.1e-02 0.016 1.005 0.994

0.0125 252620 150s 5.3e-03 0.008 1.004 0.997

Table: Table for Euler scheme with εT = ∆t2

32 / 42



Test 1: Comparison with exact solution
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Figure: Comparison of the order of convergence for the pruned TSA with
different tolerances (left) with Euler method and (right) with Heun’s method.
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Test 2: Heat Equation

We deal with the control of the heat equation with Dirichlet boundary
conditions.
This test is unfeasible via a direct semi-Lagrangian approach.

Dynamics 
yt = σyxx + y0(x)u(t) (x , t) ∈ (0,1)× (0,T ),

y(0, t) = y(1, t) = 0 t ∈ (0,T ),

y(x ,0) = y0(x) x ∈ [0,1],
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Semi-discretization in space

We set T = 1, σ = 0.15 and y0(x) = x − x2. and we apply a centered
finite difference method in space getting dynamics{

ẏ(t) = Ay(t) + Bu(t),
y(0) = y0

where A ∈ Rd×d is the stiffness matrix and B ∈ Rd is given by
Bi = y0(xi) for i = 1, . . . ,d , xi are the nodes.
We want to minimize the cost functional

Jy0,t (u) =

∫ T

t

(
‖y(s)‖22 +

1
100
|u(s)|2

)
ds + ‖y(T )‖22.
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Comparison with the exact solution (Riccati)

When the control is unconstrained, we can derive an exact solution
solving the Riccati differential equation.
We compute the errors in L2 and in L∞

Err2 :=

∑N
n=0 |V (yn

∗ , tn)− v(yn
R, tn)|2∑N

n=0 |v(yn
R, tn)|2

Err∞ :=

max
n=0,...,N

|V (yn
∗ , tn)− v(yn

R, tn)|

max
n=0,...,N

|v(yn
R, tn)|

where {yn
∗ }n is the optimal trajectory computed via TSA and {yn

R}n is
obtained solving the Riccati equation.
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TSA approximation

For ∆x = 10−2, we get a system of dimension d = 100.

∆t Nodes P/F ratio CPU Err2 Err∞ Order2 Order∞

0.1 134 4.7e-09 0.14s 0.279 0.241
0.05 863 1.2e-18 0.65s 0.144 0.118 0.95 1.03

0.025 15453 3.1e-38 12.88s 5.5e-2 5.3e-2 1.40 1.17
0.0125 849717 3.8e-78 1.1e+3s 1.6e-2 1.6e-2 1.77 1.42

Table: Test 2: Error analysis and order of convergence for forward Euler
scheme of the TSA with εT = ∆t2 and 11 discrete controls.
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TSA with and without pruning

∆t P/P ratio F/F ratio

0.05 6.44 2.6e10
0.025 17.9 6.7e20
0.0125 984 4.5e41

Table: Test 2: Comparison between the ratio of cardinality for the full and the
pruned tree for εT = ∆t2 and 11 discrete controls.
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TSA vs Riccati: 11 controls

We set ∆t = 10−4 for the Riccati equation to get an accurate solution.
For a fair comparison, we first computed the LQR problem and then
set the control space in the TSA, U = [−1,0]
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Figure: Test 2: Cost functional (left) and optimal control (right) with 11
discrete controls.
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TSA vs Riccati: 100 controls
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Figure: Test 2: Cost functional (left) and optimal control (right) with 100
discrete controls.
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Conclusions and future works

Conclusions
We presented a new algorithm to solve finite horizon optimal
control problems using a tree structure with first order
convergence.
The pruning rule will mitigate the "curse of dimension"
It can be easily extended to high-order methods
It can be applied to general non linear control problems over a
finite horizon.
We can couple this method with POD to obtain a more efficient
algorithms (e.g. PDEs in 2 or 3 dimensions)

Future works
Extension to stochastic control problems
Efficient Feedback reconstruction.
Algorithm improvements for the pruning
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