Statistical learning theory,
deep neural networks,
and regularization

March 10,2020
IPAM tutorials
H] PDE
Adam Oberman
Math and Stats, McGill

Traditional Machine Learning

Supervised learning (classification, regression)
® Spam detection using Bayes’ Theorem
Clustering (e.g. k-means)

Dimensionality reduction Pr(W|S) - Pr(S)
Pr(S|W)

. ~ Pr(W|S) - Px(S) + Pr(W|H) - Pr(H)
Rigorous theory:

® |earning guarantees, error bounds

® interpretable (which factors influenced decision)

Py b t k-Means Clusters Iris Species
robus : + +
+ 0 . + oo
- N N 0 - * N 0
- ¥ oy R ¥ oy o
37 R o o + + X o
X e o W og ° - x B og ©
: x Xy # &KE © ? + Fy F x‘%§ ®. 9
33 x X O&) OQ@ O O [e) ++ X*s(% O o [e)
32 X X% X 0 o& o + +‘#‘ + Ox 6& o
a X o®3 S O o + x%3 5 X o
3 xX IxxX o 06 oo ++ T * X x oo
. x o 906 o ° * o o @ ©
27 Dmr,3T xx g9 Dim. % ;Qz(
26 . (o) 26 . X .
i /5/ X oOo Cluster1 4+ . 5/ x * Ox 7 iris setosa +
- // X o Cluster2 X .. 3:/‘“ % Iris versicolor X

T Dim. 1

Cluster 30 /_ - Iris virginica O

Deep Learning

® |mage Classification

® Natural Language Classification
® c.g. Google Translate

® Reinforcement Learning

® c.g. Chess, Go o |

® Generative Models o

® c.g. Deep Fakes

Deep learning is way cooler than traditional ML.
More accurate, harder problems, etc.

Now used in many applications (medical, banking, commerce, etc)

But basically no theory. no guarantees. not interpretable.

i know how to speak french

Croissants

00Qle Deepivind

N KA

O «

/7 ¥ ¥

Deep Learning, e.g. Banking

Maturity Of Uses Of Artificial Intelligence In Banking And

A
Securing digital Reducing
identity - payments
banking fraud
d" Automating
_E existing
— Anti- processes Reducing false
© money positives
(¢b) laundering
m Auto-saving and
recommendations Aiding CSRs
(back end)
Pre-empting Aiding CSRs
Improving ~ Problems (front end)
interactions Conversational
across channels payments
Banking front-end Banking back-end Payments

Size of bubble = Five-year potential ROI
Source: Estimated qualitatively by Bl Intelligence analysts

Image Classification by CNNs

Fitting a map from images sampled from a distribution to labels

Approximation Theory + Random sampling:
= Statistical Learning Theory

egg white
printer housing 4imal Weight .

| drop
offspring teacher (()l]]pllt(l l“)lllil]1(l‘dl(lk]lfl“ttls television

eralléry court key structure {i ght date {Pisid,
kmg, fueplace church P%F},ﬁﬁ market lighter

restaurant counter cup yac
hote] I'O&d paptl(}-fllt Slde Slte dOO(I(,nI“ ;

(II]II) I'\] bathre

\I)mtl Screen d mean@t,,, hill &l l
Lplant h] 1 railcar
k p wine fox Ouse SC stoc |\ flll’n

bread

weapon ta e Cdl bird
cloud COVer tOp I I lanmt 11§€EH all% l)lll(t()n

m

¢

Ty}

1 ass

SP] ln& rdnge leash \ in m e mirror seat
S1 n
& goal

descent fruit dop
'. bed ShOp
kitchen “irain “ bar\/\’dt(.h
engine ‘ “”“ . m(mm\ \lc\c ce
te kid CeIterstep

OVE llll sleeve

‘t;:;;i“;,tpn,e h d ¢ase studet
"3 Home room offiéen

radio support]eve] line street ot

e | 3

3
b

| o
o
|
-
N
15

:r'-‘

beach

baselibrary stage video food buildirig"

shirt o
toolmaterlal Pldyel machine SeCurity cal] clock

football I]()Spll(ll eqmpment cell phone mmmt in . telephone
short circuit bridge ras pedal microphone recordir

The MNIST dataset consists of m
= 70,000, d = 28X28 greyscale
images of handwritten digits.
CNNs achieve an error of less

than 1% on MNIST.

On this simple data set, support
vector machines (SVM) achieve
accuracy almost as high.

Fashion MNIST

R fy

i =)

v /)
g
- Il
-
81
@
1
inm
¥

T

;

N
i
i
-~

ImageNet

® |mageNet: Total number of
classes: m =2184|

® TJotal number of images: n
=14,197,122

® Color images d= 3*256*256=
196,608

Last year: Facebook used 256 GPUs, working in parallel, to train
ImageNet.

This year: using more efficient code, we can train using 4GPUs in
about |5 hours.

Vulnerable to adversarial attacks

gradient vector from a particular
panda to the nearest gibbon boundary

+ 007 x =
x
“panda” “nematOde” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Small (visually imperceptible) perturbations of an image lead to

misclassification
Source: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, Goodfellow

Machine Learning Problem:
Supervised Classification

Let z € X C [0,1]¢ and the dimension is large, d > 1.
Labels Y ={1,...,K},
The dataset

(21) Sm :{(xlayl)w":(xmaym)}

consists of m samples, z;, drawn i.i.d. from a data distribution, p(x), with support X
The labels y; €) are also given.

L:Y x)Y — R isaloss function if it is zero iff y; = y».

Our objective is to find a function f : X —) which minimizes the expected loss

(2.2) Lo(f) = Ean lC(f (@), y(x))] = /X L(f(2), y(2))dp(z)

Intractable. Instead minimize the empirical loss

(EL) Ls,,|f] =

L osses

2.1. Classification losses. A method for classification with K classes, Y = {1,..., K},

Is to output a a scoring function for each class, f = (f1,..., fx) and choose the index
of the maximum component as the classification
(2.4) C(f(x)) = argmax f,(x)

J

The relevant loss is the 0-1 classification loss,

0 ifO(f) =k
1 otherwise

Loi(f, k) =4

\

However, this loss is both discontinuous and nonconvex, so a surrogate convex loss is
used in practice. The margin of the function f(x) is given by

(25) Emax(f, k’) == miax fz — flc

which is convex upper bound to the classification loss, making it a convex surrogate

Analyze the 0-1 loss. Train with convex surrogate loss

Parametric Hypothesis Class

Typically, the functions considered are restricted to a parametric class
(2.3) H = {f(z,w) | we RP}

so that minimization of (EL) can be rewritten as the finite dimensional optimization
problem

(EL-W) min — Z L(f(xi,w),yq).

The problem with using (EL-W) as a surrogate for (2.2), is that a minimizer of (EL-W)
could overfit, meaning that the expected loss is much larger than the empirical loss.
Classical machine learning methods avoid overfitting by restricting H to be a class of
simple (e.g. linear) functions.

Remark 2.1. To first approximation, we can assume that the images are free of noise, that
all labels are correct, and that there are no ambiguous images. In other words, y; = y(x;)
for a label function y(z). Challenge in learning y(x) comes not from uncertainty, noise,
or ambiguity, but rather from the complexity of the functions involved.

Support vector machines

® Linear classifier

® Regularize by adding
margin.

1
1=1

1 m
= min = 37 £(f(ww),ui) + N Vaf (2, 0)

Can write margin as gradient regularization! Without it, no dimension-
independent generalization bounds.

Kernel Methods

Wikipedia ML image

® Map into higher dimensional feature space.
® Do linear classification (with margin) in the feature space.

® Math translation: margin in feature space = function regularization

. A
min Zﬁ x’w)yz)+§”f“%{

fE’err m

4. KERNEL METHODS

The state of the art methods in machine learning until the mid 2010s were kernel
methods [MRT18, Ch 6], which are based on mapping the data x € X into a high
dimensional feature space, ® : X — H, where ®(z) = (¢1(x), ¢p2(x),...). The hypoth-
esis space consists of linear combinations of feature vectors,

pher — {f<as,w> | f(@,w) = Zwm(x)}

1

The feature space is a reproducing kernel Hilbert space, H, which inherits an inner
product from the mapping ®. This allows costly inner products in H to be replaced
with a function evaluation

K(z.y) = 2(x) - 0(y) = Y éi(a)

The regularized empirical loss functional is given by

A
(EL-K) min ZL (i, w), v1) + S| f Il

fercr m

H-norm term is a regularization term - Fourier smoothing in many cases!

So most important rigorous method has a PDE style regularization!

Somewhat ighored by modern machine learning community, prefer to think about the
kernel method, i.e. algorithmic aspects

Example of Fourier Kernel Regularization

Kernels and regularization. Regularization interpretation of kernels is discussed in

[GJP95, SS98, Wah90].
Consider the case where K(z1,x2) = G(x1 — x2) where G is real and symmetric,

and the Fourier transform G(y) is a symmetric, positive function that goes to zero as
y — 00. Then

10.1 RKer _ ||f:(y)||2 d ’
(10.1) R R

where f is the Fourier transform of f. Refer to [GJP95].

Example 10.1. See [SS98] for details. The Gaussian kernel corresponds to
G(z) = exp(—|l]*/2), G(y) = Cexp(—|ly[*/2).

In this case, the regularization is given by
= 1
Ker n
REC(f) = 5t (V)" Fl 7,

n=0

Thus we see that kernel methods can be interpreted as regularized functional (EL-R)
with Fourier regularization.

Kernel Algorithms - Quadratic case

For convex losses, (EL-K) is a convex optimization in w. For classification, the margin
loss is used, and the optimization problem corresponds to quadratic programming. In
the case of quadratic losses, the optimization problem is quadratic, and the minimizer
of (EL-K) has the explicit form

sz Z'QCZ (M—l—/\l)w:

where the coefficients ¢ are given by the solution of the system of linear equations with
M;; = K(z;,z;), and I is the identity matrix. Note that the regularization term has
a stabilizing effect: the condition number of the system with Al improves with A > 0.
Better conditioning of the linear system means that the optimal weights are less sensitive
to changes in the data

= (M + X))~
Algorithm to minimize (EL-K) are designed to be written entirely in terms of inner
products, allowing for high dimensional feature spaces.

E.g. this algorithmic formulation forget the regularization in hilbert space,
and just looks like a regularized linear system.
Thinking about the weights, not the functions

Not the traditional perspective!

Wikipedia ML image

Is there a missing regularization for DNN which will lead to generalization
bounds?

Statistical Learning Theory

Interpolation: learn a function from high
dimensional data.

Need to overcome curse of dimensionality, Foundations of
otherwise bounds are vacuous. Machine Learning conon

Traditional ML: have bounds, using specific
hypothesis classes. Mostly linear functions in a
high dimensional space - bound independent of
dimension.

Deep learning: missing such bounds.

Mehryar Mohri,
Afshin Rostamizadeh,

Generalization Theory somewhat disjoint from and Amest Tabvalar
Optimization

Curse of dimensionality

3.2. Curse of dimensionality. Mathematical approximation theory [Che66] allows us
to prove convergence of approximations f™ — f with rates which depend on the error
of approximation and on the typical distance between a sampled point and a given data
point, h.

For uniform sampling of the box [0, 1|* with m points, we have h = m'/%. curse of di-
mensionality: the number of points required to achieve a given error grows exponentially
in the dimension. Vacuous bounds.

]d 1/d

Less is More
The Curse of Dimensionality
(Bellman, 1961)

) T24

D=1 4! f "
1 ” ’,

g]

[) =2

PD=3

Punch line: can’t use traditional approximation theory in high dimensions.
Need a theory to approximate (learn) functions with bounds which have
complexity depends on samples but not dimension

Statistical Learning Theory + Regularization

® Goal :understand Statistical learning theory regularization ideas to
obtain bounds for learning.

® SupportVector Machines (SVM): linear hypothesis spaces

® Kernels: linear hypothesis spaces, in high dimensional Hilbert Space
(Feature Space) — expand function in a (particular) series.

® Theory: Rademacher Complexity of regularized loss functions
leads to dimension independent Learning bounds.

® Regularization: norm of the function in Hilbert space.
® Complete, mathematical theory using concentration of measure.

® Deep Neural Networks: no such theory.

Concentrate to beat the curse

6.1. Concentration of measure. Consider the experiment of flipping a possibly biased
coin. Let X € {—1,1} represent the outcomes of the coin toss. After m coin tosses,
let Sy = = >"7", X, be the sample mean. The expected value of X, u = E[X] is
the difference of the probabilities, py — pr, which is zero when the coin is fair. In
practice, due the randomness, the sample mean will deviate from the mean, and we
expect the deviation to decrease as m increases. The Central Limit Theorem quantifies
the deviation /m(S,, — p) converges to the normal distribution as m — oo, so that,

’Sm_/” ~

3~

for m large. Concentration of measure inequalities provide non-asymptotic bounds. For
example, Hoeffdings inequality [MRT18, Appendix D] applied to random variables taking
values in [—1, 1] gives

2
P(ISm — 1| > €) < 2exp (—%)

for any € > 0. Setting 6 = 2exp (—me*/2) and solving for € allows us to restate the
result as

2log(2/0
(6.1) 1S —] < \/ 08(2/9) with probability 1 — 4, for any 6 > 0.
m

Learning Theory

6.2. Statistical learning theory and generalization. Statistical learning theory (see
[IMRT18, Chapter 3] and [SSBD14, Chapter 4]) can be used to obtain dimension inde-
pendent sample complexity bounds for the expected loss (generalization) of a learning
algorithm. These are bounds which depend on the number of samples, m but not on
the dimension of the underlying data, n.

The hypothesis space complexity approach restricts the hypothesis space (2.3) to
limit the ability of functions to overfit by bounding the the generalization gap L&P|f] :=
Lp|f] — Ls|f]- The dependence of the generalization gap on the learning algorithm is
removed by considering the worst-case gap for functions in the hypothesis space

L¥®[fas)) < sup L[]
JEH

For example, [MRT18, Theorem 3.3] (which applies to the case of bounded loss function
0 < £ < 1), states that for any § > 0

In L
(6.2) LEP[f a(5)) < Rom(H) + % with probability > 1 — 4

where R(H) is the Rademacher complexity of the hypothesis space H. Observe that
(6.2) has a similar form to (6.1), with the additional term coming from the hypothesis
space complexity. Thus, restricting to a low-complexity hypothesis space reduces learning
bounds to sampling bounds.

Statistical Learning Theory

® | ater: blackboard proof of some of this.

What’s missing: regularization

® Traditional ML Classification: have bounds, using specific
hypothesis classes.

® Mostly linear functions in a high dimensional space - bound
independent of dimension.

® Deep learning: non=linear models

® What’s missing? Generalization theory doesn’t assume models
are linear. Instead makes a complexity assumption

® Complexity theory makes fundamental use of regularization:
® bound on weights for SVMs (linear models)
® bound on Hilbert space function norms for Kernels Methods

® Hypothesis: adding regularization will allow for generalization for
Deep Learning.

regularization in deep learning?

does not exist yet...
DL people naively add “weight decay” ...

which is equivalent to pretending that the neural network is a
SVM, and adding weight regularization.

... but it makes no difference.
on the other hand:

® 3 bunch of “hacks” which improve performance can be
interpreted (but only by a minority) as regularization

Regularization DNN

. Regularization in DNN practice.

e Tychonoff gradient regularization of the form (EL-R) directly: [DLC92]
e Data augmentation [LBB™98]: small rotations, cropping, or intensity or contrast

adjustment.

e Dropout [SHK™14] consists of randomly, with small probability, changing some
model weights to zero.

e Cutout [DT17] consists of randomly sending a smaller square of pixels in the

Image to mean
e Mixup [ZCDL17] consists of taking convex combinations of data points x;, x;

and the corresponding labels v;, y;.
e Gaussian noise averaging has recently reappeared in deep neural networks [LAGT 18,

LCZH18, LCWC18, CRK19] as a method to certify a network to be robust to
adversarial perturbations.

Csmooth(aj) — arg maXC($ + 77)7 N = N(Oa 02)7

which requires many evaluations of the network.

DA = Implicit Regularization

10.1. Image transformation and implicit regularization. Consider an abstract data
transformation,

x — T (x)

which transforms the image x. This could be data augmentation, random cutout,
adding random gaussian noise to an image, or an adversarial perturbation. The data
transformation replaces (EL) with the data augmented version

(EL-A) min — Z L(f Vi)

feH M 4

which we can rewrite as

min L, (f) + R (f(x:))

where

(RT) RY(f(z:) = LUF(T(x0)), 9i) — LOf (), i)

Here the regularization is implicit, and the strength of the regularization is controlled by
making the transformation 7' closer to the identity.

DA noise = Regularization

10.2. Data augmentation. Here show how adding noise leads to regularization, fol-
lowing [Bis95].

Lemma 10.3. The augmented loss problem (EL-A) with quadratic loss and additive

noise
(10.2) T(x) =z +v, wvrandom, E(v)=0, E(vv;)=0c"
is equivalent to the regularized loss problem (EL-R) with
(103) R (1) =23 (4 = e+ 512
m — x rx 4 rxT

Proof. For clarity we treat the function as one dimensional. A similar calculation can
be done in the higher dimensional case. Apply the Taylor expansion

flz+v)=f(x)+vf, + %U2fa}x + O(v3)

to the quadratic loss £(f,y) = (f(xz + v) — y)?. Keeping only the lowest order terms,
we have

1 1

(Fa+v) = 9)* = (@) = 9)° + 200 + 502) (F(2) = 0) + (v + 502 e

Taking expectations and applying (10.2) to drop the terms with odd powers of v gives
(10.3).]

Al = Regularization

10.3. Adversarial training. In [FCAO18] it was shown that adversarial training,
T(x) =x+ \v

with attack vector v given by (8.3) or by (8.5) can be interpreted as Total Variation
regularization of the loss,

RAL(F) = ML (FVf (@)l

A different scaling was considered in [FO19], which corresponds to adversarial training
with T'(x) = x + AVL(x). The corresponding regularization is Tychonoff regularization

of the loss,
RYVE(f) = ML (f)V f ()3

gradient vector from a particular
panda to the nearest gibbon boundary

. S
VAR e -‘»,:'v‘-y

T

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

regularization in deep learning?

does not exist yet...
DL people naively add “weight decay” ...

which is equivalent to pretending that the neural network is a
SVM, and adding weight regularization.

... but it makes no difference.
on the other hand:

® 3 bunch of “hacks” which improve performance can be
interpreted (but only by a minority) as regularization

Acceleration and SGD

IPAM tutorials week

Adam Oberman

Math and Stats, McGill

Machine Learning Problem:

Supervised Classification

Let z € X C |0, 1|* and the dimension is large, d > 1.
Labels Y ={1,...,K},
The dataset

(2'1) Sm :{(zlayl)a“'a(mmaym)}

consists of m samples, x;, drawn i.i.d. from a data distribution, p(x), with support /
The labels y; €) are also given.

L:Y xY — RTis aloss function if it is zero iff y; = vs.

Our objective is to find a function f : X —) which minimizes the expected loss

(22) Lo(f) = EeuplL(f(2), y(@))] = /X L(f (2), y(x))dp(z)

Intractable. Instead minimize the empirical loss

m

1=1

(EL) Ls,,|f] =

1
m

Parametric Hypothesis Class

Typically, the functions considered are restricted to a parametric class
(2.3) H = {f(z,w) | we RP}

so that minimization of (EL) can be rewritten as the finite dimensional optimization
problem

(EL-W) min — Z L(f(xi,w),yq).

The problem with using (EL-W) as a surrogate for (2.2), is that a minimizer of (EL-W)
could overfit, meaning that the expected loss is much larger than the empirical loss.
Classical machine learning methods avoid overfitting by restricting H to be a class of
simple (e.g. linear) functions.

Remark 2.1. To first approximation, we can assume that the images are free of noise, that
all labels are correct, and that there are no ambiguous images. In other words, y; = y(x;)
for a label function y(z). Challenge in learning y(x) comes not from uncertainty, noise,
or ambiguity, but rather from the complexity of the functions involved.

L osses

2.1. Classification losses. A method for classification with K classes, Y = {1,..., K},

Is to output a a scoring function for each class, f = (f1,..., fx) and choose the index
of the maximum component as the classification
(2.4) C(f(x)) = argmax f,(x)

J

The relevant loss is the 0-1 classification loss,

0 ifO(f) =k
1 otherwise

Loi(f, k) =4

\

However, this loss is both discontinuous and nonconvex, so a surrogate convex loss is
used in practice. The margin of the function f(x) is given by

(25) Emax(f, k’) == miax fz — flc

which is convex upper bound to the classification loss, making it a convex surrogate

Analyze the 0-1 loss. Train with convex surrogate loss

L osses

Analyze the 0-1 loss. Train with convex surrogate loss

SGD - Algorithm

5.2. Stochastic gradient descent. Evaluating the loss (EL) on all m data points can

be costly. Define random minibatch I C {1,...,m}, and define the corresponding
minibatch loss by

1
Li(w) = il > L(f(xiw), i)
Tl i
Stochastic gradient descent corresponds to

whktt = wk — thwLIk(wk), I, random, h learning rate

. ” - ‘. . * o . . © L]
1 ;..Qogélo y] o - ., . |

do P4 e L Y ’ ¢ ’ 05¢F
.‘f%,‘l-i‘z‘:.}gjt&. R . o . 05

F1GURE 2. Full data set and a minibatch for data sampled uniformly
in the square. Component gradients (black) and the minibatch gradient

(green). Closer to the minimum, the relative error in the minibatch
gradient is larger.

-0.5 0 0.5 1

5.3. The convergence rate of SGD. See [BCN16] for a survey on results on SGD.
The following simple result was proved in [OP19]. Suppose f is u-strongly convex and
L-smooth, with minimum at w*. Let q(w) = ||lw — w*||?. Write

Vi f(w) = Vf(w) + e,

with e I1s a mean zero random error term, with variance o2. Consider the stochastic

gradient descent iteration
(SGD) Wet+1 = Wk — "V f (W),

with learning rate

1
(SLR) hk — — _ 9
u(k + qq lasl)

Theorem 5.2. Let wy, hj be the sequence given by (SGD) (SLR). Then,

1
Elqge | wp_1] < —, forallk > 0.

The convergence rate of SGD is slow: the error decreases on the order of 1/k for
strongly convex problems. This means that if it takes 1000 iterations to reach an error
of €, it may take ten times as many iterations to further decrease the error to ¢/10.

SGD rate

blackboard proof

5.4. Accelerated SGD. In practice, better empirical results are achieved using the
accelerated version of SGD. This algorithm is the stochastic version of Nesterov's
accelerated gradient descent [Nesl13]. See [Gohl7| for an exposition on Nesterov's
method. Nesterov's method can be interpreted as the discretization of a second order
ODE [SBC14]. In [LO19] we show how the continuous time interpretation of Nesterov's
method with stochastic gradients leads to accelerated convergence rates for Nesterov's
SGD, using a Liapunov function analysis similar to the one described above.

Why Momentum Really Works

Starting Point

Optimum
Solution
Step-size a = 0.02 Momentum B = 0.41 We often think of Momentum as a means of dampening oscillations
o o and speeding up the iterations, leading to faster convergence. But it

has other interesting behavior. It allows a larger range of step-sizes
to be used, and creates its own oscillations. What is going on?

Convex case: Nesterov’s accelerated gradient
descent

:(/r-r:]StartingPoint xk+1 — xk o th(xk)

Optimum

@)

Solution

Gradient descent.

= (1
(/ Starting Point $k+1 —_— ’ljk — va(yk)
) k
A = T +
\ Yk+1 k+1 k13

($k+1 — xk)

Optimum

Accelerated gradient descent: same budget, faster convergence.

https:/distill.pub/2017/momentumy Fl€UIriStiC: momentum term remembers old gradients,
overshoots instead of getting stuck.

Remark: two main A-GD algorithms, correspond to convex and strongly convex case.
We focus on one, convex case, to simplify presentation. Strongly convex case is also covered.

Convex case: Nesterov’s accelerated gradient
descent

Gradient descent. Lt — LTk — th(CEk)

Accelerated gradient descent: _ 1

Tyl =Y — =V
add a “momentum” variable. k+1 = Uk L /(Yr)
Same budget, faster convergence. k

= —|—
Yk+1 k+1 k13

(k1 — Tk)
2-step algorithm, similar to GD.

Convex case:

GD: convergence rate is |/k

AGD: convergence rate is 1/k"2.

“acceleration’; after 1000 steps, |e-6 versus |le-3.

How do we understand this algorithm?
Nesterov’s proof - not clear.
Instead, Jordan, and Su-Boyd-Candes propose an ODE interpretation

ODE interpretation of Nesterov’s Method

Su-Boyd-Candes and Jordan/Wilson-Wibisino suggested:
Use continuous time ideas to understand A-GD, and develop new algorithms.

Nesterov's method for a convex, L-smooth function, f, can be written as [Nesterov,

2013, Section 2.2]

(C-Nest)

/

1
Tk+1 = Yk — va(yk)
k

| Uk+1 = Trp1 + (xpr1 — k)

k+3

Su et al. [2014] made a connection between (C-Nest) and the second order ODE

(A-ODE)

3

(A-ODE) can be written as the first order system

(21)

(
T = 2(v —) Connection: finite differences in time,
< t ; and evaluate gradients at
V= —§Vf(:z:). y = average of x and v
\

Another ODE for Nesterov’s Method

Our starting point is a perturbation of (21) Su-Boyd-Candes ODE

2 1
t=—(v—1x)—-—=Vf(r)
(1st-ODE) ! t VL
The system (1st-ODE) is equivalent to the following ODE
N N o1
(H-ODE) $+Z:1:+Vf(:v)— \/Z(D flz)- -2+ tVf(:z:))

which has an additional Hessian damping term with coefficient 1/v/L.

e The system (1st-ODE) can be discretized to recover Nesterov's method using

an explicit discretization with a constant time step h = ﬁ

e Similar ODEs studied by Alvarez et al. [2002],Attouch et al. [2016].

e Shi et al. [2018] introduced a family of high resolution second order ODEs which
also lead to Nesterov's method.(H-ODE), special case.

e (1st-ODE) shorter, clearer proofs which generalize to the stochastic gradient
case (which was not treated in Shi et al. [2018]).

From ODE to Nesterov

Definition 4.1. Define the learning rate and total time,

k
he > 0, :Zhi.
1=1

The time discretization of (1st-ODE) with gradients evaluated at

7% L
IS given by
2h hi.
L+l — Tk = t—:(?}k —Tk) — ﬁvf(yk)a
(FE-C) Bty
V+1 — Vg = —va(yk),

Proposition 4.2. The discretization of (1st-ODE) given by (FE-C) with hy
1/V'L and ti, = h(k + 2) is equivalent to the standard Nesterov's method (C-Nest

h —
).

Fix learning rate, get A-GD.

So What!

Su-Boyd-Candes led to a lot of work on continuous time approach:
mainly re-do of proofs of convergence rate of A-GD.

But the proofs were longer, and not really more informative.

If you like continuous time, great, otherwise, so what!?

The real goal suggested by Jordan and collaborators was to build new algorithms,
but so far has not happened.

Moreover, new work is on Stochastic gradient descent.

Can we get a faster SGD algorithm? This would have impact.

ODE interpretation of Nesterov’s Method

Su-Boyd-Candes and Jordan/Wilson-Wibisino suggested:
Use continuous time ideas to understand A-GD, and develop new algorithms.

Nesterov's method for a convex, L-smooth function, f, can be written as [Nesterov,

2013, Section 2.2]

(C-Nest)

/

1
Tk+1 = Yk — va(yk)
k

| Uk+1 = Trp1 + (xpr1 — k)

k+3

Su et al. [2014] made a connection between (C-Nest) and the second order ODE

(A-ODE)

3

(A-ODE) can be written as the first order system

(21)

(
T = 2(v —) Connection: finite differences in time,
< t ; and evaluate gradients at
V= —§Vf(:z:). y = average of x and v
\

Another ODE for Nesterov’s Method

Our starting point is a perturbation of (21) Su-Boyd-Candes ODE

2 1
t=—(v—1x)—-—=Vf(r)
(1st-ODE) ! t VL
The system (1st-ODE) is equivalent to the following ODE
N N o1
(H-ODE) $+Z:1:+Vf(:v)— \/Z(D flz)- -2+ tVf(:z:))

which has an additional Hessian damping term with coefficient 1/v/L.

e The system (1st-ODE) can be discretized to recover Nesterov's method using

an explicit discretization with a constant time step h = ﬁ

e Similar ODEs studied by Alvarez et al. [2002],Attouch et al. [2016].

e Shi et al. [2018] introduced a family of high resolution second order ODEs which
also lead to Nesterov's method.(H-ODE), special case.

e (1st-ODE) shorter, clearer proofs which generalize to the stochastic gradient
case (which was not treated in Shi et al. [2018]).

From ODE to Nesterov

Definition 4.1. Define the learning rate and total time,

k
he > 0, :Zhi.
1=1

The time discretization of (1st-ODE) with gradients evaluated at

7% L
IS given by
2h hi.
L+l — Tk = t—:(?}k —Tk) — ﬁvf(yk)a
(FE-C) Bty
V+1 — Vg = —va(yk),

Proposition 4.2. The discretization of (1st-ODE) given by (FE-C) with hy
1/V'L and ti, = h(k + 2) is equivalent to the standard Nesterov's method (C-Nest

h —
).

Fix learning rate, get A-GD.

So What!

Su-Boyd-Candes led to a lot of work on continuous time approach:
mainly re-do of proofs of convergence rate of A-GD.

But the proofs were longer, and not really more informative.

If you like continuous time, great, otherwise, so what!?

The real goal suggested by Jordan and collaborators was to build new algorithms,
but so far has not happened.

Moreover, new work is on Stochastic gradient descent.

Can we get a faster SGD algorithm? This would have impact.

Stochastic Gradient descent

Goal: minimize convex function f(x) with stochastic gradient oracle.
Algorithm: Stochastic Gradient descent. Simple, but more params.
3+ Parameters:

® |earning rate: e.g: h(k) = h/k,

® stochastic variance

L4+1 — Tk — hk%f(l“k)

Vf(x) =Vf(z)+e(z,§)
E(e) =0, Var(e) = 0"

Heuristic accelerated SGD

Use accelerated gradient descent

——l SGD 1/k
algorithm, with

—— Nest-SGD «, 3

® stochastic gradients
® constant learning rate.

Works well in practice: fast initial
drop, then noise takes over.

Scheduled learning rate for SGD,
converges at |/k rate

107

0 50 100 150 200
Using Strongly convex Nesterov method (fixed learning rate and momentum)

What could you prove! Vanilla SGD converges at rate |/k. Have upper bounds.
Only room for improvement is the rate constant. Details follow.

Accelerated SGD!?

® Go back to ODE for Nesterov (there is more than one)

® Redo convergence rate, first in continuous, then in discrete time.
® Find a variable learning rate, stochastic version

® Prove the convergence rate.

® Use proof to tune the learning rate schedule, for optimal convergence
rate

® Determine if we get a practical algorithm.
® There are two algorithms: convex version, and strongly convex version.

® Spoiler: convex version fast, easy to tune. Strongly convex version faster,
but harder to tune.

Why continuous time? Matter of taste, in previous work can do all proofs without it.
In our case, we could not have proposed the algorithm without continuous time approach:
it eliminates the 2 time parameters in algorithm. Do proof in continuous time, then extend to algorithm.

Stochastic gradient version

Tkl — Tk = %(Uk — Tk) — %(Vf(yk) + ek),
t
Oke1 = 0k = —hi (VS (k) + ex),
_ 1 o k

Same algorithm as before, but now
- variable learning rate.
- stochastic gradient
- optimal exponent for learning rate: 3/4
- determined by convergence rate analysis, below

Acc-SGD results:
synthetic noise

Simple quadratic example, synthetic noise.
Tuned version just means optimize the learning rate.

SGD (with I/k schedule)

guess/tune learning rate |
Results at k=300: le-1, 5e-2 10°F
A-SGD: |
guess/tune parameter, C o

Results at k=300: | e-4, 1 e-6

1 1 1 1 1
0 50 100 150 200 250 300

Quadratic function, C = 300

Acc-SGD results:
mini-batch SGD

» Faster convergence than SGD
* Improved performance on poorly conditioned examples

1 02 F T 10° F T T T T T T T T T
: i ——SGD
- — SGD J — SGD tuned
— SGD tuned -\ Acc SGD
Acc SGD |
10} —— Acc SGD Tuned

10° F

104 F

1 0-3 1 1 1 105 1 1 1 1 1 1 1 1 1
0 50 100 150 200 0 20 40 60 80 100 120 140 160 180 200

Condition number C = | Condition number C = 100
approximately 10 x accuracy approximately 100 x accuracy

Math Outline

® Start with one of three ODEs
® Gradient descent ODE
® Convex accelerated GD ODE
® Strongly convex, accelerated GD ODE
® Full gradient, and constant learning rate discretization leads to
® gradient descent
® convex Nesterov’s method
® strongly convex Nesterov’s Method
® Stochastic gradient, and variable learning rate discretization leads:

® accelerated SGD, with better constants than previously available, in
both convex and strongly convex cases

Convergence Results
9(x, &) = Vf(x)+e(z,§),
Ele] =0 and Var(e) = o*.

G* bound on stochastic gradient: E[g%] < G*
Convex case:

e the optimal rate for the last iterate of SGD (see Shamir and Zhang [2013]) is

order log(k)/v/k with a rate constant that depends on G2.

e Jain et al. [2019] remove the log factor assuming that the number of iterations
Is decided in advance.

e We obtain the O(log(k)/Vk) rate for the last iterate, with a constant which
depends on o, but is independent of the L-smoothness.

Strongly convex case:

e previous results, Nemirovski et al. [2009], Shamir and Zhang [2013], Jain et al.
[2018], rate depends on G.

e obtain the optimal O(1/k) rate for the last iterate, with constants independent
of the L-smoothness bound of the gradient.

Convergence Results

TABLE 1. Convergence rate E|f(x))— f*] after k steps. for f a convex,

L-smooth function. G2 is a bound on E[V f(z)?], and o2 given by (2).
h;. is the learning rate. Ej is the initial value of the Lyapunov function.

Top: convex case, D is the diameter of the domain, c is a free parameter.
Bottom: p-strongly convex case, Cf := % hi = O(1/k) .

convex case

Shamir and Zhang [2013] Acc. SGD
c? c
hy. — —
\/E 3/4
E)
Rate D_2 gy (2 +1og(k)) | 765 + c“o°(1 + log(k))
c? VE (k1/4 —1)2
Nemirovski et al. [2009] | Shamir and Zhang [2013] | Jain et al. [2019] Acc. SGD
20 ,G* 17G*(1 + log(k)) 130G* 40
puk puk puk pk + 402E;?

strongly convex case

Interpreting Improved rate: For both algorithms, simply an improvement to the rate constant. This is
a nice theoretical result, and nice example of continuous time method. In order for it to be of practical use,
desire
= practical algorithm, faster in practice (saw this for simple examples)
= remains faster when theory no longer applies
= €.g. nonconvex examples,
= e.g. training DNNs

Convergence Rate Result

Definition 4.3. Define the continuous time parametrized Lyapunov function
(22) EC(t, z,v5€) i= (t — €)*(f(x) — f*) + 2]v — 2|7
Define the discrete time Lyapunov function E; by

(23) EZC’C = F“(tg, xg, v; hy) = BO°(tp_1, zg, vg; 0)

Proposition 4.5. Assume hy, .= ;5 < % andt, = Zle hi, then we have the following

bound on E|f(xk)| — f*
M%Eo + c*0?%(1 + log(k))
(/Cl/4 _ 1)2

3
o= —.
’ 4

Remark 4.6. Since in (25), the parameters do not depend on L. We observe that the
rates of convergence of E[f(x)| — f* in the previous proposition do not depend on the
smoothness of f and are accelerated compared to SGD (Proposition 3.4).

Setup: abstract Lyapunov analysis

Definition 2.1. Let g(t,z,p) be L,-Lipschitz continuous, and affine in the variable p,

(6) g(t,z,p) = g1(t, 2) + g2(t, 2)p.
Consider the Ordinary Differential Equation

(ODE) £(t) = g(t, 2(t), Vf(2(1)))
Referring to (1), Consider also the perturbed ODE,

(PODE) £(t) = g(t, 2(1), VF(2(1))).

Definition 2.2. For a given learning rate schedule hy. > 0 and t;. = Zf:o h;, the forward
Euler discretization of (ODE) corresponds to the sequence

(FE) 2k+1 = 2k + hieg(te, 2k, Vf (2k)),

given an initial value zy. Similarly, the forward Euler discretization of (PODE) is given
by

(FEP) 2ka1 = 2k + hieg(te, 26, Vf(2k) + ex)

Proof Outline: abstract Lyapunov analysis

® Starting from ODE, and rate-generating Lyapunov function
® prove rate of decrease of Lyapunov function in time

® Then discretize ODE, constant time, to get a gradient algorithm.
® Prove rate in k, (consistent with time, where t = h k)

® Then allow stochastic gradients, variance gives an additional error
term.

® Now use variable learning rate, to sum errors
® Determine learning rate (exponent) from the sum.

® Obtain unified analysis for both stochastic and gradient case.

Rademacher Complexity

0o

oeffdrin
7 /)(/) / [a-d)(C(‘[Aﬂj ¥

=%, X)
]pCS); Xt - X

i

The o[Ip6)- £BY[25] S 2P 22

/ﬂoﬁumfn/ M;&m f th(yé/o//%w'
A X MR sohdfes
pess)- sy < A

f: (X/»"’/ x"‘) / _
7= Ky o) Kooy, X0 Chawge on

b Plf)] 2y)

) —

Nof? an& ¥ .
Golve fo 522 (/2"“5/[”)‘)
B &= %
2w
% wH prob 2 (-§

> - BESYS Jsal | | 21%

Lo Y7

#s,
%2_1 ” Folw .
K.(6)- E_[R(g),

<D
'Nﬂrtﬂ!v Somplu 97 ™ .

Tho 53 G :z2=090] fr oy §20

E[Jm]‘ léi_gaa ' a’?ﬁ.(’?}f .‘[fg

p,!f»{

Elgo]cd Cow 4 3%, 3 Y oprs

o

r—————_———— —— [N
| —

" Lomma & 2= [yl é
Dofi 4
(5)- -
7 a1 (E47-E4))
[ko 51 g
/}’f”’ﬂ")/ S mo B “ft?’;;/ﬁ/(}"v«cfﬂpo"é

/ﬂcp =2 ‘
< 36 < F [805] "JZ/‘ wpz %
2w

Set s of pasme: S Mel)

9 peaning o1

o JEE
Fly1 - Esh] § 750
/7 Lt)
< E L]t 2 tH
will show M‘:, i %ﬁj@
G Free]< 3&n(§)/ ‘
S
Thar
P4

e Ll e oty
0

bd giz> o]

E[jcz)] < i Zj@') r &@w@ Mg’ wr;/~£
Nelt
/
Efyml< 4 £+ 36,09 13 [t
2w

Nee Le9)= {3569)
thon S5 i by ! poet

1708) - F(S)/S %
Sv /ﬂ(ﬁ;m-m’o/ /MZ aff&/ z/o 7@(5-)

fﬁf(ﬁ“]’ Kl < ﬁs%/*ﬁ& wp-z1-5h

—

om0 ES] ¢ E L) +)7:;} wp 31~
mon e Az L
go< , TR

é(éj7‘ Q(/Z% wp 31§

)
EIX @ L(E ix]) >
Eln"]
EL5G]-°

Tho 612 W G2

e XX aR PS5 kel oA
P AR /}*‘/ ass- /u‘fm PP

S= §prey Yo 3 X [) ST

H=1{x b (w, 20 ° /W//H{/\}

Thw Foot)s AYED <[22

“wm m

Y IR A B
§EPog (TR e
A é[[/):w:écm//ﬁ] XS

\w

‘N

[
z 4 P -
N {;\; Gg [// Z’o;_?@q)]l,h > Fomew's n9,
0 ‘/_\/\/
. 6 SF4I41) E (5,5)7°
!'JI ———\/\/ /\{j
Y (%i,%)
= A J Kt%)
m 7
-2 Z
\< r /\ smx.‘
/

2N

	Oberman_Part 1
	Oberman_Part 2
	Oberman Notes

