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Traditional Machine Learning

• Supervised learning (classification, regression)

• Spam detection using Bayes’ Theorem

• Clustering (e.g. k-means)

• Dimensionality reduction

• Rigorous theory:

• learning guarantees, error bounds

• interpretable (which factors influenced decision)

• robust



Deep Learning

• Image Classification

• Natural Language Classification

• e.g. Google Translate

• Reinforcement Learning

• e.g. Chess, Go

• Generative Models

• e.g. Deep Fakes

Deep learning is way cooler than traditional ML.  
More accurate, harder problems, etc.

Now used in many applications (medical, banking, commerce, etc)

But basically no theory.  no guarantees.  not interpretable.



Deep Learning, e.g. Banking



Approximation Theory + Random sampling:
= Statistical Learning Theory

Fitting a map from images sampled from a distribution to labels

Image Classification by CNNs



Fashion MNIST

The MNIST dataset consists of m 
= 70,000,  d = 28X28 greyscale 
images of handwritten digits.  
CNNs achieve an error of less 
than 1% on MNIST.  

On this simple data set, support 
vector machines (SVM) achieve 
accuracy almost as high.



• ImageNet: Total number of 
classes: m =21841

• Total number of images:  n 
=14,197,122

• Color images d= 3*256*256= 
196,608

Last year: Facebook used 256 GPUs, working in parallel, to train 
ImageNet.  

This year: using more efficient code, we can train using 4GPUs in 
about 15 hours. 

ImageNet



Vulnerable to adversarial attacks

Small (visually imperceptible) perturbations of an image lead to 
misclassification
Source: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, Goodfellow



Machine Learning Problem:
Supervised Classification



Losses

Analyze the 0-1 loss.  Train with convex surrogate loss



Parametric Hypothesis Class



Support vector machines

• Linear classifier

• Regularize by adding 
margin.
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Can write margin as gradient regularization!  Without it, no dimension-
independent generalization bounds.



Kernel Methods

• Map into higher dimensional feature space.

• Do linear classification (with margin) in the feature space.

• Math translation: margin in feature space = function regularization

Wikipedia ML image



Losses

H-norm term is a regularization term - Fourier smoothing in many cases!
So most important rigorous method has a PDE style regularization!
Somewhat ignored by modern machine learning community, prefer to think about the 
kernel method, i.e. algorithmic aspects



Example of Fourier Kernel Regularization



Kernel Algorithms - Quadratic case

E.g. this algorithmic formulation forget the regularization in hilbert space, 
and just looks like a regularized linear system.
Thinking about the weights, not the functions



Not the traditional perspective!

Wikipedia ML image
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Is there a missing regularization for DNN which will lead to generalization 
bounds?



Statistical Learning Theory

• Interpolation: learn a function from high 
dimensional data.

• Need to overcome curse of dimensionality, 
otherwise bounds are vacuous. 

• Traditional ML: have bounds, using specific 
hypothesis classes.  Mostly linear functions in a 
high dimensional space - bound independent of 
dimension.

• Deep learning: missing such bounds.

• Generalization Theory somewhat disjoint from 
Optimization  



Curse of dimensionality

Punch line: can’t use traditional approximation theory in high dimensions. 
Need a theory to approximate (learn) functions with bounds which have
complexity  depends on samples  but not dimension



Statistical Learning Theory + Regularization

•  Goal : understand Statistical learning theory regularization ideas to 
obtain bounds for learning.  

• Support Vector Machines (SVM): linear hypothesis spaces

• Kernels: linear hypothesis spaces, in high dimensional Hilbert Space 
(Feature Space) — expand function in a (particular) series.

• Theory: Rademacher Complexity of regularized loss functions 
leads to dimension independent Learning bounds.

• Regularization: norm of the function in Hilbert space.

• Complete, mathematical theory using concentration of measure.

• Deep Neural Networks: no such theory.



Concentrate to beat the curse



Learning Theory



Statistical Learning Theory

• Later: blackboard proof of some of this.



What’s missing: regularization

• Traditional ML Classification: have bounds, using specific 
hypothesis classes.  

• Mostly linear functions in a high dimensional space - bound 
independent of dimension.

• Deep learning: non-linear models

• What’s missing?   Generalization theory doesn’t assume models 
are linear.  Instead makes a complexity assumption

• Complexity theory makes fundamental use of regularization:

• bound on weights for SVMs (linear models)

• bound on Hilbert space function norms for Kernels Methods

• Hypothesis: adding regularization will allow for generalization for 
Deep Learning.



regularization in deep learning?

• does not exist yet…

• DL people naively add “weight decay” …

• which is equivalent to pretending that the neural network is a 
SVM, and adding weight regularization.

• … but it makes no difference.

• on the other hand:

• a bunch of “hacks” which improve performance can be 
interpreted (but only by a minority) as regularization



Regularization DNN



DA = Implicit Regularization



DA noise = Regularization



AT = Regularization
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Machine Learning Problem:
Supervised Classification



Parametric Hypothesis Class



Losses

Analyze the 0-1 loss.  Train with convex surrogate loss



Losses

Analyze the 0-1 loss.  Train with convex surrogate loss



SGD - Algorithm





SGD rate

blackboard proof





Convex case: Nesterov’s accelerated gradient 
descent

https://distill.pub/2017/momentum/

Accelerated gradient descent: same budget, faster convergence.

Gradient descent.

xk+1 = xk � hrf(xk)
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Remark: two main A-GD algorithms, correspond to convex and strongly convex case.
We focus on one, convex case, to simplify presentation.  Strongly convex case is also covered.

Heuristic: momentum term remembers old gradients, 
overshoots instead of getting stuck.  



Convex case: Nesterov’s accelerated gradient 
descent

Accelerated gradient descent: 
add a “momentum” variable.
Same budget, faster convergence.

Gradient descent. xk+1 = xk � hrf(xk)
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2-step algorithm, similar to GD.

Convex case:

GD: convergence rate is 1/k

AGD: convergence rate is 1/k^2.

“acceleration”: after 1000 steps, 1e-6 versus 1e-3.

How do we understand this algorithm?
Nesterov’s proof - not clear.
Instead, Jordan, and Su-Boyd-Candes propose an ODE interpretation



ODE interpretation of Nesterov’s Method

Su-Boyd-Candes and Jordan/Wilson-Wibisino suggested:
Use continuous time ideas to understand A-GD, and develop new algorithms.

Connection: finite differences in time,
and evaluate gradients at 
y = average of x and v



Another ODE for Nesterov’s Method

Su-Boyd-Candes ODE



From ODE to Nesterov

Fix learning rate, get A-GD. 



Su-Boyd-Candes led to a lot of work on continuous time approach:

mainly re-do of proofs of convergence rate of A-GD.  

But the proofs were longer, and not really more informative.

If you like continuous time, great, otherwise, so what?

The real goal suggested by Jordan and collaborators was to build new algorithms, 
but so far has not happened.

Moreover, new work is on Stochastic gradient descent. 

Can we get a faster SGD algorithm?  This would have impact.

So What?
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Goal: minimize convex function f(x) with stochastic gradient oracle.  

Algorithm: Stochastic Gradient descent.  Simple, but more params.  

3+ Parameters: 

• learning rate: e.g:  h(k) = h/k, 

• stochastic variance

xk+1 = xk � hk
erf(xk)

<latexit sha1_base64="PLMw/T5qBOf1JzAPRJAVG3DpveQ="></latexit>

erf(x) = rf(x) + e(x, ⇠)

E(e) = 0, V ar(e) = �2
<latexit sha1_base64="6JiH+n139+heweWg711nqDQ6jw8="></latexit>

Stochastic Gradient descent



Heuristic accelerated SGD

Use accelerated gradient descent 
algorithm, with

• stochastic gradients

• constant learning rate.

Works well in practice: fast initial 
drop, then noise takes over.

Scheduled learning rate for SGD, 
converges at 1/k rate

What could you prove?  Vanilla SGD converges at rate 1/k.  Have upper bounds.
Only room for improvement is the rate constant.  Details follow.

Using Strongly convex Nesterov method (fixed learning rate and momentum) 



Accelerated SGD?

• Go back to ODE for Nesterov (there is more than one)

• Redo convergence rate, first in continuous, then in discrete time.

• Find a variable learning rate, stochastic version

• Prove the convergence rate.  

• Use proof to tune the learning rate schedule, for optimal convergence 
rate

• Determine if we get a practical algorithm.

• There are two algorithms: convex version, and strongly convex version. 

• Spoiler: convex version fast, easy to tune.  Strongly convex version faster, 
but harder to tune.

Why continuous time? Matter of taste, in previous work can do all proofs without it.  
In our case, we could not have proposed the algorithm without continuous time approach:
 it eliminates the 2 time parameters in algorithm.  Do proof in continuous time, then extend to algorithm.



Stochastic gradient version

↵ = 3/4
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Same algorithm as before, but now
- variable learning rate.
- stochastic gradient
- optimal exponent for learning rate:  3/4
- determined by convergence rate analysis, below



Acc-SGD results:
synthetic noise

Simple quadratic example, synthetic noise.
Tuned version just means optimize the learning rate. 

Condition number C = 100
 approximately 100 x accuracy0 50 100 150 200 250 300
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Quadratic function, C = 300

SGD (with 1/k schedule)
• guess/tune learning rate
• Results at k=300: 1e-1, 5e-2

A-SGD: 
• guess/tune parameter, C
• Results at k=300: 1e-4,1e-6



Acc-SGD results:
mini-batch SGD

• Faster convergence than SGD 
• Improved performance on poorly conditioned examples
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Math Outline

• Start with one of three ODEs

• Gradient descent ODE

• Convex accelerated GD ODE

• Strongly convex, accelerated GD ODE 

• Full gradient, and constant learning rate discretization leads to 

• gradient descent

• convex Nesterov’s method

• strongly convex Nesterov’s Method

• Stochastic gradient, and variable learning rate discretization leads:

• accelerated SGD, with better constants than previously available, in 
both convex and strongly convex cases



Convergence Results



Convergence Results

convex case

strongly convex case

Interpreting Improved rate: For both algorithms, simply an improvement to the rate constant.  This is 
a nice theoretical result, and nice example of continuous time method. In order for it to be of practical use, 
desire

- practical algorithm, faster in practice (saw this for simple examples)
- remains faster when theory no longer applies

- e.g. nonconvex examples, 
- e.g. training DNNs



Convergence Rate Result



Setup: abstract Lyapunov analysis



Proof Outline: abstract Lyapunov analysis

• Starting from ODE, and rate-generating Lyapunov function

• prove rate of decrease of Lyapunov function in time

• Then discretize ODE, constant time, to get a gradient algorithm.

• Prove rate in k, (consistent with time, where t = h k)

• Then allow stochastic gradients, variance gives an additional error 
term.

• Now use variable learning rate, to sum errors

• Determine learning rate (exponent) from the sum.

• Obtain unified analysis for both stochastic and gradient case.



Rademacher Complexity
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