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Quick intro to learning

Fully supervised: Given training data (x1, y1), (x2, y2), . . . , (xn , yn) with xi ∈ X and
yi ∈ Y, learn a function

(1) u : X → Y for which u(xi) ≈ yi for i = 1, . . . ,n.

Semi-supervised learning: Given additional unlabeled data xn+1, . . . , xn+m for m ≥ 1,
use both the labeled and unlabeled data to learn f .

1 Inductive learning: Learn a function

u : X → Y for which u(xi) ≈ yi for i = 1, . . . ,n.

2 Transductive learning: Learn a function

u : {x1, x2, . . . , xn+m} → Y for which u(xi) ≈ yi for i = 1, . . . ,n

Unsupervised learning: Algorithms that use only the unlabeled data x1, . . . , xn , such as
clustering.
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Example: Automated image captioning

[Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature, 2015.]
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Example: Automated image captioning fail

[Andrej Karpathy’s NeuralTalk]
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Graph-based learning

In semi-supervised and unsupervised learning, we often build a graph (X ,W):

X ⊂ Rd are the vertices and

W = (wxy)x ,y∈X are the nonnegative edge weights.

wxy ≈ 1 if x , y similar, and wxy ≈ 0 when dissimilar.

The graph Laplacian:

Lu(x) =
∑
y∈X

wxy(u(y)− u(x)) = 0. (u : X → Rk )

Laplacian regularized semi-supervised learning [Zhu et al., (2003)]

I Propagate labels on a graph by harmonic extension.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

I Embed a graph into Rk by projecting onto eigenspaces of L.

Laplacian eigenmaps [Belkin and Niyogi (2003)], Diffusion maps [Coifman and
Lafon (2006)]

Calder (UofM) Graph-based learning IPAM HJ2020 7 / 28



Graph-based learning

In semi-supervised and unsupervised learning, we often build a graph (X ,W):

X ⊂ Rd are the vertices and

W = (wxy)x ,y∈X are the nonnegative edge weights.

wxy ≈ 1 if x , y similar, and wxy ≈ 0 when dissimilar.

The graph Laplacian:

Lu(x) =
∑
y∈X

wxy(u(y)− u(x)) = 0. (u : X → Rk )

Laplacian regularized semi-supervised learning [Zhu et al., (2003)]

I Propagate labels on a graph by harmonic extension.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

I Embed a graph into Rk by projecting onto eigenspaces of L.

Laplacian eigenmaps [Belkin and Niyogi (2003)], Diffusion maps [Coifman and
Lafon (2006)]

Calder (UofM) Graph-based learning IPAM HJ2020 7 / 28



Graph-based learning

In semi-supervised and unsupervised learning, we often build a graph (X ,W):

X ⊂ Rd are the vertices and

W = (wxy)x ,y∈X are the nonnegative edge weights.

wxy ≈ 1 if x , y similar, and wxy ≈ 0 when dissimilar.

The graph Laplacian:

Lu(x) =
∑
y∈X

wxy(u(y)− u(x)) = 0. (u : X → Rk )

Laplacian regularized semi-supervised learning [Zhu et al., (2003)]

I Propagate labels on a graph by harmonic extension.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

I Embed a graph into Rk by projecting onto eigenspaces of L.

Laplacian eigenmaps [Belkin and Niyogi (2003)], Diffusion maps [Coifman and
Lafon (2006)]

Calder (UofM) Graph-based learning IPAM HJ2020 7 / 28



Graph-based learning

In semi-supervised and unsupervised learning, we often build a graph (X ,W):

X ⊂ Rd are the vertices and

W = (wxy)x ,y∈X are the nonnegative edge weights.

wxy ≈ 1 if x , y similar, and wxy ≈ 0 when dissimilar.

The graph Laplacian:

Lu(x) =
∑
y∈X

wxy(u(y)− u(x)) = 0. (u : X → Rk )

Laplacian regularized semi-supervised learning [Zhu et al., (2003)]

I Propagate labels on a graph by harmonic extension.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

I Embed a graph into Rk by projecting onto eigenspaces of L.

Laplacian eigenmaps [Belkin and Niyogi (2003)], Diffusion maps [Coifman and
Lafon (2006)]

Calder (UofM) Graph-based learning IPAM HJ2020 7 / 28



MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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Laplace learning on MNIST

# Labels/class 10 50 100 500 1000

Laplace 93.2 (2.3) 96.9 (0.1) 97.1 (0.1) 97.6 (0.1) 97.7 (0.0)

Average accuracy over 10 trials with standard deviation in brackets.

Weight matrix constructed with the Scattering Transform [Bruna and Mallat, 2013].
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Spectral embedding: MNIST

Digits 1 and 2 from MNIST visualized with spectral projection
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Spectral embedding: MNIST

Digits 1 (blue) and 2 (red) from MNIST visualized with spectral projection
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Random geometric graph (ε-ball graph)

Assume the vertices of the graph are

Xn = {x1, . . . , xn}

where x1, . . . , xn are a sequence of i.i.d. random variables on Ω ⊂ Rd with positive
density ρ, and the weights are given by

(2) wxy = η

(
|x − y |
ε

)
,

where η : [0,∞)→ [0, 1] is smooth with compact support.

In particular, we assume
η(t) ≥ 1, if 0 ≤ t ≤ 1

2

η(t) = 0, if t > 1

η(t) ≥ 0, for all t ≥ 0.

Manifold assumption: Also common to assume x1, . . . , xn are supported on a smooth
manifold M embedded in Rd .
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k-nearest neighbor graph

Let
εk (x) = Distance from x to k th nearest neighbor.

Non-symmetric (or directed) k -nn graph

wxy = η

(
|x − y |
εk (x)

)
.

Various ways to symmetrize:

wxy = η

(
|x − y |
εk (x)

)
+ η

(
|x − y |
εk (y)

)
wxy = η

(
|x − y |

min{εk (x), εk (x)}

)
wxy = η

(
|x − y |

max{εk (x), εk (x)}

)
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Synthetic Gaussian Data

Synthetic Gaussian Data
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k-nn graph

k = 5, Sparsity ≤ 1%
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Random geometric graph

ε = 0.25, Sparsity ∼ 1.7%, Disconnected graph
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Continuum limits in graph-based learning

The limit is taken jointly as n →∞ and ε→ 0.

Early work [Hein et al., 2007] established pointwise consistency for smooth
functions, with high probability

Lu = ρ−1div
(
ρ2∇u

)
+ O(ε).

Also early spectral convergence results [Von Lusburg et al, 2008] showed that the
eigenvalues and eigenvectos of L converge to those of a weighted Laplace-Beltrami
operator on M, though without convergence rates.

Γ-convergence framework developed in [Trillos & Slepčev 2016] for variational

convergence.

I Continuum limit for total variation on graphs [Trillos & Slepčev 2016].
I Spectral convergence rates [Trillos et al., 2018], [Calder & Trillos 2019].
I Many other applications.

Maximum principle and vicosity solution approach [Calder, 2018].
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convergence.

I Continuum limit for total variation on graphs [Trillos & Slepčev 2016].
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Convergence rates

Eigenmode 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Eigenvalue 2 2 2 6 6 6 6 6 12 12 12 12 12 12 12
E.value rate 2.4 2.6 3.1 2.3 2.3 2.5 2.6 3 2.1 2.1 2.2 2.3 2.4 2.8 3.3
E.vector rate 2.3 2.3 2.3 2.2 2.2 2.2 2.3 2.7 2.2 2.1 2.1 2.2 2.2 2.3 2.5

Table: Rates of convergence of the form O(εb) (value of b is shown) for
eigenvalues and eigenvectors of the graph Laplacian on the 2-sphere. Errors are
averaged over 100 trials with n ranging from n = 500 to n = 105.

Rates of convergence for

ε =

(
log n

n

)1/(d+2)

.

Sharpest known convergence rates are O(ε) [Calder & Trillos 2019].
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Some new directions

Previous/current work has focused on continuum limits: Fn,ε → F , which gives

Well-posedness/stability results

New understandings of algorithms

New directions should use the developed tools to

Establish performance guarantees for algorithms

I Do we actually recover the correct labels?

Develop new algorithms with performance guarantees

Some new directions

1 Hamilton-Jacobi equations on graphs

2 Active learning

3 Elliptic regularity for graph Laplacians
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Hamilton-Jacobi equations on graphs

The graph eikonal equation gives a “nearest neighbor” classifier:

(3)

{
min
y∼x
{∇u(x , y) + wxy} = 0, if x ∈ X \ Γ

u(x) = 0, if x ∈ Γ.

Here, ∇u(x , y) = u(y)− u(x) and wxy = |x − y |.

Performance on MNIST

# Labels/class 10 50 100 500 1000

Laplace (14 sec.) 93.2 (2.3) 96.9 (0.1) 97.1 (0.1) 97.6 (0.1) 97.7 (0.0)
eikonal (0.3 sec.) 82.3 (1.0) 89.0 (0.5) 90.6 (0.4) 93.4 (0.1) 93.7 (0.1)

Question: How can we incorporate information about the data distribution ρ into
Hamilton-Jacobi equations on graphs for classification?

Question: Are more general HJ-equations H (x ,∇u) = 0 useful?
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Active learning

Main question: Which data points should be queried for labels?

Using PageRank to choose labeled points

# Labels/class 10 50 100 500 1000

Laplace 93.2 (2.3) 96.9 (0.1) 97.1 (0.1) 97.6 (0.1) 97.7 (0.0)
PR Laplace 95.4 (0.0) 97.2 (0.0) 97.3 (0.0) 97.4 (0.0) 97.3 (0.0)

eikonal 82.3 (1.0) 89.0 (0.5) 90.6 (0.4) 93.4 (0.1) 93.7 (0.1)
PR eikonal 85.6 (0.0) 92.4 (0.0) 93.6 (0.0) 95.1 (0.0) 95.0 (0.0)
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Inverse problem?

To formulate the active learning problem, consider Laplace learning with Γ ⊂ X labels

(4)

{Lu(x) = 0, if x ∈ X \ Γ

u(x) = g(x), if x ∈ Γ,

and add another label at z ∈ X :

(5)

{Luz (x) = 0, if x ∈ X \ Γ

uz (x) = g(x), if x ∈ Γ ∪ {z}.

We should choose z to minimize ‖uz − g‖?

Can we do this efficiently, and under what models for g?

Can the connection to continuum PDEs or Hamilton-Jacobi equations be utilized?
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Elliptic regularity on graphs

Some of the most useful tools in PDE theory are regularity results.

For the p-Laplacian on a random geometric graph we have the following:

Theorem (Calder, 2018)

If Lpu = 0 and p > d , then for every 0 < α < p−d
p−1

there exists C , δ > 0 such that

(6) |u(x)− u(y)| ≤ C (|x − y |α + εα)

holds for all x , y ∈ Xn with probability at least

1− exp (−δnεq + C log(n)) ,

where q = max{d + 4, 3d/2}.

A similar result is implicit in [Slepčev & Thrope, 2019].
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holds for all x , y ∈ Xn with probability at least

1− exp (−δnεq + C log(n)) ,

where q = max{d + 4, 3d/2}.

A similar result is implicit in [Slepčev & Thrope, 2019].
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Elliptic regularity on graphs

Question: Given a random geometric graph model, how regular are solutions of graph
Poisson equations

(7) Lu(x) = f (x) for x ∈ X ?

Regularity can be Hölder, Lipschitz, C k,α or Sobolev spaces.

A very preliminary result in the manifold setting:

Theorem (Calder, Lewicka, Trillos 2020)

With probability greater than 1− nk exp(−cnεd+4) solutions of (7) satisfy

|u(x)− u(y)| ≤ C (‖f ‖∞ + ‖u‖∞)(|x − y |+ ε)

for all x , y ∈ X ∩M.

The proof of the theorem uses stochastic coupling of random walks.

A direct application is L∞ spectral convergence rates.
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My chalkboard tutorial talk is based off Chapter 5 in the Calculus of Variations lecture notes 
available on my personal website: 
 
http://www-users.math.umn.edu/~jwcalder/CalculusOfVariations.pdf 
 

http://www-users.math.umn.edu/%7Ejwcalder/CalculusOfVariations.pdf
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