New directions in graph-based learning: Active learning, Hamilton-Jacobi equations on graphs, and elliptic regularity

Jeff Calder

School of Mathematics University of Minnesota

IPAM Hamilton-Jacobi Opening Day March 9, 2020

Outline

Introduction and background

(1)

New directions

- Hamilton-Jacobi equations on graphs
- Active Learning
- Elliptic regularity

Outline

1 Introduction and background

New directions

- Hamilton-Jacobi equations on graphs
- Active Learning
- Elliptic regularity

Fully supervised: Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, learn a function

(1)
$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, ..., n$.

Fully supervised: Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, learn a function

(1)
$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, ..., n$.

Semi-supervised learning: Given additional unlabeled data x_{n+1}, \ldots, x_{n+m} for $m \ge 1$, use both the labeled and unlabeled data to learn f.

Fully supervised: Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, learn a function

(1)
$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, ..., n$.

Semi-supervised learning: Given additional unlabeled data x_{n+1}, \ldots, x_{n+m} for $m \ge 1$, use both the labeled and unlabeled data to learn f.

1 Inductive learning: Learn a function

 $u: \mathcal{X} \to \mathcal{Y}$ for which $u(x_i) \approx y_i$ for $i = 1, \ldots, n$.

Fully supervised: Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, learn a function

(1)
$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, ..., n$.

Semi-supervised learning: Given additional unlabeled data x_{n+1}, \ldots, x_{n+m} for $m \ge 1$, use both the labeled and unlabeled data to learn f.

1 Inductive learning: Learn a function

$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, \ldots, n$.

2 Transductive learning: Learn a function

$$u: \{x_1, x_2, \ldots, x_{n+m}\} \rightarrow \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, \ldots, n$

Fully supervised: Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, learn a function

(1)
$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, ..., n$.

Semi-supervised learning: Given additional unlabeled data x_{n+1}, \ldots, x_{n+m} for $m \ge 1$, use both the labeled and unlabeled data to learn f.

Inductive learning: Learn a function

$$u: \mathcal{X} \to \mathcal{Y}$$
 for which $u(x_i) \approx y_i$ for $i = 1, \ldots, n$.

2 Transductive learning: Learn a function

 $u: \{x_1, x_2, \ldots, x_{n+m}\} \rightarrow \mathcal{Y}$ for which $u(x_i) \approx y_i$ for $i = 1, \ldots, n$

Unsupervised learning: Algorithms that use only the unlabeled data x_1, \ldots, x_n , such as clustering.

Example: Automated image captioning

Example: Automated image captioning

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

[Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature, 2015.]

Example: Automated image captioning fail

(-11.269838) a woman holding a baby giraffe in a zoo

[Andrej Karpathy's NeuralTalk]

In semi-supervised and unsupervised learning, we often build a graph $(\mathcal{X}, \mathcal{W})$:

- $\mathcal{X} \subset \mathbb{R}^d$ are the vertices and
- $W = (w_{xy})_{x,y \in \mathcal{X}}$ are the nonnegative edge weights.
- $w_{xy} \approx 1$ if x, y similar, and $w_{xy} \approx 0$ when dissimilar.

In semi-supervised and unsupervised learning, we often build a graph $(\mathcal{X}, \mathcal{W})$:

- $\mathcal{X} \subset \mathbb{R}^d$ are the vertices and
- $W = (w_{xy})_{x,y \in \mathcal{X}}$ are the nonnegative edge weights.
- $w_{xy} \approx 1$ if x, y similar, and $w_{xy} \approx 0$ when dissimilar.

The graph Laplacian:

$$\mathcal{L}u(x) = \sum_{y \in \mathcal{X}} w_{xy}(u(y) - u(x)) = 0. \quad (u: \mathcal{X} o \mathbb{R}^k)$$

• Laplacian regularized semi-supervised learning [Zhu et al., (2003)]

Propagate labels on a graph by harmonic extension.

In semi-supervised and unsupervised learning, we often build a graph $(\mathcal{X}, \mathcal{W})$:

- $\mathcal{X} \subset \mathbb{R}^d$ are the vertices and
- $W = (w_{xy})_{x,y \in \mathcal{X}}$ are the nonnegative edge weights.
- $w_{xy} \approx 1$ if x, y similar, and $w_{xy} \approx 0$ when dissimilar.

The graph Laplacian:

$$\mathcal{L}u(x) = \sum_{y \in \mathcal{X}} w_{xy}(u(y) - u(x)) = 0. \quad (u: \mathcal{X} o \mathbb{R}^k)$$

- Laplacian regularized semi-supervised learning [Zhu et al., (2003)]
 - Propagate labels on a graph by harmonic extension.
- Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]
 - Embed a graph into \mathbb{R}^k by projecting onto eigenspaces of \mathcal{L} .

In semi-supervised and unsupervised learning, we often build a graph $(\mathcal{X}, \mathcal{W})$:

- $\mathcal{X} \subset \mathbb{R}^d$ are the vertices and
- $\mathcal{W} = (w_{xy})_{x,y \in \mathcal{X}}$ are the nonnegative edge weights.
- $w_{xy} \approx 1$ if x, y similar, and $w_{xy} \approx 0$ when dissimilar.

The graph Laplacian:

$$\mathcal{L}u(x) = \sum_{y \in \mathcal{X}} w_{xy}(u(y) - u(x)) = 0. \quad (u: \mathcal{X} o \mathbb{R}^k)$$

- Laplacian regularized semi-supervised learning [Zhu et al., (2003)]
 - Propagate labels on a graph by harmonic extension.
- Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]
 - Embed a graph into \mathbb{R}^k by projecting onto eigenspaces of \mathcal{L} .
- Laplacian eigenmaps [Belkin and Niyogi (2003)], Diffusion maps [Coifman and Lafon (2006)]

MNIST (70,000 28×28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.]

Calder (UofM)

Laplace learning on MNIST

# Labels/class	10	50	100	500	1000
Laplace	93.2 (2.3)	96.9 (0.1)	97.1 (0.1)	97.6 (0.1)	97.7 (0.0)

Average accuracy over 10 trials with standard deviation in brackets.

Weight matrix constructed with the Scattering Transform [Bruna and Mallat, 2013].

Spectral embedding: MNIST

Digits $1 \ {\rm and} \ 2$ from MNIST visualized with spectral projection

Calder (UofM)

Graph-based learning

Digits 1 (blue) and 2 (red) from MNIST visualized with spectral projection

Calder (UofM)

Random geometric graph (ε -ball graph)

Assume the vertices of the graph are

$$\mathcal{X}_n = \{x_1, \ldots, x_n\}$$

where x_1, \ldots, x_n are a sequence of i.i.d. random variables on $\Omega \subset \mathbb{R}^d$ with positive density ρ , and the weights are given by

(2)
$$w_{xy} = \eta \left(\frac{|x-y|}{\varepsilon} \right),$$

where $\eta: [0,\infty) \to [0,1]$ is smooth with compact support.

Random geometric graph (ε -ball graph)

Assume the vertices of the graph are

$$\mathcal{X}_n = \{x_1, \ldots, x_n\}$$

where x_1, \ldots, x_n are a sequence of i.i.d. random variables on $\Omega \subset \mathbb{R}^d$ with positive density ρ , and the weights are given by

(2)
$$w_{xy} = \eta \left(\frac{|x-y|}{\varepsilon} \right),$$

where $\eta: [0,\infty) \to [0,1]$ is smooth with compact support. In particular, we assume

$$\begin{cases} \eta(t) \ge 1, & \text{if } 0 \le t \le \frac{1}{2} \\ \eta(t) = 0, & \text{if } t > 1 \\ \eta(t) \ge 0, & \text{for all } t \ge 0. \end{cases}$$

Manifold assumption: Also common to assume x_1, \ldots, x_n are supported on a smooth manifold \mathcal{M} embedded in \mathbb{R}^d .

k-nearest neighbor graph

Let

 $\varepsilon_k(x) = \text{Distance from } x \text{ to } k^{\text{th}} \text{ nearest neighbor.}$

• Non-symmetric (or directed) k-nn graph

$$w_{xy} = \eta\left(rac{|x-y|}{arepsilon_k(x)}
ight).$$

k-nearest neighbor graph

Let

$$\varepsilon_k(x) = \text{Distance from } x \text{ to } k^{\text{th}} \text{ nearest neighbor.}$$

• Non-symmetric (or directed) k-nn graph

$$w_{xy} = \eta\left(rac{|x-y|}{arepsilon_k(x)}
ight).$$

• Various ways to symmetrize:

$$\begin{split} w_{xy} &= \eta \left(\frac{|x-y|}{\varepsilon_k(x)} \right) + \eta \left(\frac{|x-y|}{\varepsilon_k(y)} \right) \\ w_{xy} &= \eta \left(\frac{|x-y|}{\min\{\varepsilon_k(x), \varepsilon_k(x)\}} \right) \\ w_{xy} &= \eta \left(\frac{|x-y|}{\max\{\varepsilon_k(x), \varepsilon_k(x)\}} \right) \end{split}$$

Synthetic Gaussian Data

Synthetic Gaussian Data

k-nn graph

 $\varepsilon=0.25,$ Sparsity \sim 1.7%, Disconnected graph

The limit is taken jointly as $n \to \infty$ and $\varepsilon \to 0$.

• Early work [Hein et al., 2007] established pointwise consistency for smooth functions, with high probability

$$\mathcal{L}u = \rho^{-1} \operatorname{div} \left(\rho^2 \nabla u \right) + O(\varepsilon).$$

The limit is taken jointly as $n \to \infty$ and $\varepsilon \to 0$.

• Early work [Hein et al., 2007] established pointwise consistency for smooth functions, with high probability

$$\mathcal{L}u = \rho^{-1} \operatorname{div} \left(\rho^2 \nabla u \right) + O(\varepsilon).$$

• Also early spectral convergence results [Von Lusburg et al, 2008] showed that the eigenvalues and eigenvectos of \mathcal{L} converge to those of a weighted Laplace-Beltrami operator on \mathcal{M} , though without convergence rates.

The limit is taken jointly as $n \to \infty$ and $\varepsilon \to 0$.

• Early work [Hein et al., 2007] established pointwise consistency for smooth functions, with high probability

$$\mathcal{L}u = \rho^{-1} \operatorname{div} \left(\rho^2 \nabla u \right) + O(\varepsilon).$$

- Also early spectral convergence results [Von Lusburg et al, 2008] showed that the eigenvalues and eigenvectos of \mathcal{L} converge to those of a weighted Laplace-Beltrami operator on \mathcal{M} , though without convergence rates.
- Γ-convergence framework developed in [Trillos & Slepčev 2016] for variational convergence.
 - Continuum limit for total variation on graphs [Trillos & Slepčev 2016].
 - Spectral convergence rates [Trillos et al., 2018], [Calder & Trillos 2019].
 - Many other applications.

The limit is taken jointly as $n \to \infty$ and $\varepsilon \to 0$.

• Early work [Hein et al., 2007] established pointwise consistency for smooth functions, with high probability

$$\mathcal{L}u = \rho^{-1} \operatorname{div} \left(\rho^2 \nabla u \right) + O(\varepsilon).$$

- Also early spectral convergence results [Von Lusburg et al, 2008] showed that the eigenvalues and eigenvectos of \mathcal{L} converge to those of a weighted Laplace-Beltrami operator on \mathcal{M} , though without convergence rates.
- Γ-convergence framework developed in [Trillos & Slepčev 2016] for variational convergence.
 - Continuum limit for total variation on graphs [Trillos & Slepčev 2016].
 - Spectral convergence rates [Trillos et al., 2018], [Calder & Trillos 2019].
 - Many other applications.
- Maximum principle and vicosity solution approach [Calder, 2018].

Convergence rates

Eigenmode	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Eigenvalue	2	2	2	6	6	6	6	6	12	12	12	12	12	12	12
E.value rate	2.4	2.6	3.1	2.3	2.3	2.5	2.6	3	2.1	2.1	2.2	2.3	2.4	2.8	3.3
E.vector rate	2.3	2.3	2.3	2.2	2.2	2.2	2.3	2.7	2.2	2.1	2.1	2.2	2.2	2.3	2.5

Table: Rates of convergence of the form $O(\varepsilon^b)$ (value of b is shown) for eigenvalues and eigenvectors of the graph Laplacian on the 2-sphere. Errors are averaged over 100 trials with n ranging from n = 500 to $n = 10^5$.

Rates of convergence for

$$\varepsilon = \left(\frac{\log n}{n}\right)^{1/(d+2)}$$

Sharpest known convergence rates are $O(\varepsilon)$ [Calder & Trillos 2019].

Outline

Introduction and background

New directions

- Hamilton-Jacobi equations on graphs
- Active Learning
- Elliptic regularity

Some new directions

Previous/current work has focused on continuum limits: $F_{n,\varepsilon} \to F$, which gives

- Well-posedness/stability results
- New understandings of algorithms

Some new directions

Previous/current work has focused on continuum limits: $F_{n,\varepsilon} \to F$, which gives

- Well-posedness/stability results
- New understandings of algorithms

New directions should use the developed tools to

- Establish performance guarantees for algorithms
 - Do we actually recover the correct labels?
- Develop new algorithms with performance guarantees

Some new directions

Previous/current work has focused on continuum limits: $F_{n,\varepsilon} \to F$, which gives

- Well-posedness/stability results
- New understandings of algorithms

New directions should use the developed tools to

- Establish performance guarantees for algorithms
 - Do we actually recover the correct labels?
- Develop new algorithms with performance guarantees

Some new directions

- Hamilton-Jacobi equations on graphs
- 2 Active learning
- 8 Elliptic regularity for graph Laplacians

Outline

Introduction and background

New directions

• Hamilton-Jacobi equations on graphs

- Active Learning
- Elliptic regularity

The graph eikonal equation gives a "nearest neighbor" classifier:

(3)
$$\begin{cases} \min_{y \sim x} \left\{ \nabla u(x, y) + w_{xy} \right\} = 0, & \text{if } x \in \mathcal{X} \setminus \mathsf{\Gamma} \\ u(x) = 0, & \text{if } x \in \mathsf{\Gamma}. \end{cases}$$

Here, $\nabla u(x, y) = u(y) - u(x)$ and $w_{xy} = |x - y|$.

The graph eikonal equation gives a "nearest neighbor" classifier:

(3)
$$\begin{cases} \min_{y \sim x} \left\{ \nabla u(x, y) + w_{xy} \right\} = 0, & \text{if } x \in \mathcal{X} \setminus \mathsf{\Gamma} \\ u(x) = 0, & \text{if } x \in \mathsf{\Gamma}. \end{cases}$$

Here, $\nabla u(x, y) = u(y) - u(x)$ and $w_{xy} = |x - y|$.

Performance on MNIST

# Labels/class	10	50	100	500	1000
Laplace (14 sec.)	93.2 (2.3)	96.9 (0.1)	97.1 (0.1)	97.6 (0.1)	97.7 (0.0)
eikonal (0.3 sec.)	82.3 (1.0)	89.0 (0.5)	90.6 (0.4)	93.4 (0.1)	93.7 (0.1)

The graph eikonal equation gives a "nearest neighbor" classifier:

(3)
$$\begin{cases} \min_{y \sim x} \left\{ \nabla u(x, y) + w_{xy} \right\} = 0, & \text{if } x \in \mathcal{X} \setminus \mathsf{\Gamma} \\ u(x) = 0, & \text{if } x \in \mathsf{\Gamma}. \end{cases}$$

Here, $\nabla u(x, y) = u(y) - u(x)$ and $w_{xy} = |x - y|$.

Performance on MNIST

# Labels/class	10	50	100	500	1000
Laplace (14 sec.)	93.2 (2.3)	96.9 (0.1)	97.1 (0.1)	97.6 (0.1)	97.7 (0.0)
eikonal (0.3 sec.)	82.3 (1.0)	89.0 (0.5)	90.6 (0.4)	93.4 (0.1)	93.7 (0.1)

Question: How can we incorporate information about the data distribution ρ into Hamilton-Jacobi equations on graphs for classification?

The graph eikonal equation gives a "nearest neighbor" classifier:

(3)
$$\begin{cases} \min_{y \sim x} \left\{ \nabla u(x, y) + w_{xy} \right\} = 0, & \text{if } x \in \mathcal{X} \setminus \mathsf{\Gamma} \\ u(x) = 0, & \text{if } x \in \mathsf{\Gamma}. \end{cases}$$

Here, $\nabla u(x, y) = u(y) - u(x)$ and $w_{xy} = |x - y|$.

Performance on MNIST

# Labels/class	10	50	100	500	1000
Laplace (14 sec.)	93.2 (2.3)	96.9 (0.1)	97.1 (0.1)	97.6 (0.1)	97.7 (0.0)
eikonal (0.3 sec.)	82.3 (1.0)	89.0 (0.5)	90.6 (0.4)	93.4 (0.1)	93.7 (0.1)

Question: How can we incorporate information about the data distribution ρ into Hamilton-Jacobi equations on graphs for classification?

Question: Are more general HJ-equations $H(x, \nabla u) = 0$ useful?

Outline

Introduction and background

New directions

• Hamilton-Jacobi equations on graphs

- Active Learning
- Elliptic regularity

Active learning

Main question: Which data points should be queried for labels?

Active learning

Main question: Which data points should be queried for labels?

Using	; PageRank to	choose labeled	l points	
 10	FO	100	E00	

# Labels/class	10	50	100	500	1000
Laplace	93.2 (2.3)	96.9 (0.1)	97.1 (0.1)	97.6 (0.1)	97.7 (0.0)
PR Laplace	95.4 (0.0)	97.2 (0.0)	97.3 (0.0)	97.4 (0.0)	97.3 (0.0)
eikonal	82.3 (1.0)	89.0 (0.5)	90.6 (0.4)	93.4 (0.1)	93.7 (0.1)
PR eikonal	85.6 (0.0)	92.4 (0.0)	93.6 (0.0)	95.1 (0.0)	95.0 (0.0)

Inverse problem?

To formulate the active learning problem, consider Laplace learning with $\Gamma \subset \mathcal{X}$ labels

(4)
$$\begin{cases} \mathcal{L}u(x) = 0, & \text{if } x \in \mathcal{X} \setminus \Gamma \\ u(x) = g(x), & \text{if } x \in \Gamma, \end{cases}$$

and add another label at $z \in \mathcal{X}$:

(5)
$$\begin{cases} \mathcal{L}u_{z}(x) = 0, & \text{if } x \in \mathcal{X} \setminus \mathsf{\Gamma} \\ u_{z}(x) = g(x), & \text{if } x \in \mathsf{\Gamma} \cup \{z\}. \end{cases}$$

We should choose z to minimize $||u_z - g||$?

Can we do this efficiently, and under what models for g?

Can the connection to continuum PDEs or Hamilton-Jacobi equations be utilized?

Some of the most useful tools in PDE theory are regularity results.

Some of the most useful tools in PDE theory are regularity results.

For the p-Laplacian on a random geometric graph we have the following:

Theorem (Calder, 2018)

If $\mathcal{L}_p u = 0$ and p > d, then for every $0 < \alpha < \frac{p-d}{p-1}$ there exists $C, \delta > 0$ such that

(6)
$$|u(x) - u(y)| \le C(|x - y|^{\alpha} + \varepsilon^{\alpha})$$

holds for all $x, y \in \mathcal{X}_n$ with probability at least

$$1 - \exp\left(-\delta n\varepsilon^q + C\log(n)\right),\,$$

where $q = \max\{d + 4, 3d/2\}.$

Some of the most useful tools in PDE theory are regularity results.

For the p-Laplacian on a random geometric graph we have the following:

Theorem (Calder, 2018)

If $\mathcal{L}_p u = 0$ and p > d, then for every $0 < \alpha < \frac{p-d}{p-1}$ there exists $C, \delta > 0$ such that

(6)
$$|u(x) - u(y)| \le C(|x - y|^{\alpha} + \varepsilon^{\alpha})$$

holds for all $x, y \in \mathcal{X}_n$ with probability at least

$$1 - \exp\left(-\delta n\varepsilon^q + C\log(n)\right),\,$$

where $q = \max\{d + 4, 3d/2\}.$

A similar result is implicit in [Slepčev & Thrope, 2019].

Outline

Introduction and background

New directions

• Hamilton-Jacobi equations on graphs

- Active Learning
- Elliptic regularity

Question: Given a random geometric graph model, how regular are solutions of graph Poisson equations

(7)
$$\mathcal{L}u(x) = f(x) \quad \text{for } x \in \mathcal{X}?$$

Regularity can be Hölder, Lipschitz, $C^{k,\alpha}$ or Sobolev spaces.

Question: Given a random geometric graph model, how regular are solutions of graph Poisson equations

(7)
$$\mathcal{L}u(x) = f(x) \quad \text{for } x \in \mathcal{X}?$$

Regularity can be Hölder, Lipschitz, $C^{k,\alpha}$ or Sobolev spaces.

A very preliminary result in the manifold setting:

Theorem (Calder, Lewicka, Trillos 2020)

With probability greater than $1 - n^k \exp(-cn\varepsilon^{d+4})$ solutions of (7) satisfy

$$|u(x) - u(y)| \le C(||f||_{\infty} + ||u||_{\infty})(|x - y| + \varepsilon)$$

for all $x, y \in \mathcal{X} \cap \mathcal{M}$.

The proof of the theorem uses stochastic coupling of random walks.

Question: Given a random geometric graph model, how regular are solutions of graph Poisson equations

(7)
$$\mathcal{L}u(x) = f(x) \quad \text{for } x \in \mathcal{X}?$$

Regularity can be Hölder, Lipschitz, $C^{k,\alpha}$ or Sobolev spaces.

A very preliminary result in the manifold setting:

Theorem (Calder, Lewicka, Trillos 2020)

With probability greater than $1 - n^k \exp(-cn\varepsilon^{d+4})$ solutions of (7) satisfy

$$|u(x) - u(y)| \le C(||f||_{\infty} + ||u||_{\infty})(|x - y| + \varepsilon)$$

for all $x, y \in \mathcal{X} \cap \mathcal{M}$.

The proof of the theorem uses stochastic coupling of random walks.

A direct application is L^{∞} spectral convergence rates.

Calder (UofM)

My chalkboard tutorial talk is based off Chapter 5 in the Calculus of Variations lecture notes available on my personal website:

http://www-users.math.umn.edu/~jwcalder/CalculusOfVariations.pdf